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APPROXIMATION AND NUMERICAL SOLUTION
OF CONTACT PROBLEMS WITH FRICTION

JAROSLAV HASLINGER, MIROSLAV TVRDY

(Received December 23, 1981)

INTRODUCTION

In applications we often meet with problems, in which one deformable body comes
in contact with another. Contact problems are non-classical in the sense that they
cannot be directly formulated as usual boundary value problems. The reason for this
is the fact that neither the contact surface nor the distribution of contact forces are
known a — priori. It is well known that the mathematical formulation leads to
variational inequalities. The aim of the present paper is to study the approximation
and the computation of contact problems between an elastic body and a rigid founda-
tion, taking into account the influence of friction on the contact surface. We analyse
the simplest model involving friction, namely that with “a given friction”. The im-
portance of this model consists in the fact that it serves as an auxiliary problem,
by means of which we can approximate contact problems with friction obeying the
classical Coulomb law. The main attention hete is paid to the modification of Uzawa’s
algorithm, using specific features of our problem.

1. SETTING OF THE PROBLEM

Let us assume a plane elastic body subjected to a body force F and to surface
tractions on a portion of its boundary, unilateraly supported by a rigid foundation.
Our aim is to determine the behaviour of the structure, taking into account the in-
fluence of friction between the body and the foundation. We start with the classical
formulation of the problem.

Let Q = R? be a bounded polygonal domain with Lipschitz boundary 0Q, which
is decomposed as follows:

Q=r,vr,uryurlg,

where I',, I',, I'y, I'y are mutually disjoint parts of 0@, I', and Iy are non-empty.
By a classical solution of the ptoblem in question we mean a displacement field
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u = (uy, u,) satisfying the boundary conditions

(1.1) u =0 on I,,

(1.2) u, =0, T(u)=0 on I,

(1.3) Tn; = P; on I,V

(1.4) u, 0, T,(u)<0, u,T,(u)=0 on Iy,
(1.5) [T(u)| < g on Iy;

it |T(u) (x)| <g(x), then u(x)=0
if |T(u)(x)] =g(x), then 3220 u(x)= —1T(u)(x)
and the system of equilibrium equations

(1.6) T4 F,=0 on @, i=12.

0x,

Here u,, u, denote the normal and tangential components of the displacement field
u,ie. u, =u.n, u =u.t;n=(ng,n,), t=_(iy,t,) =(—ny n,) are the outward
unit normal and tangential vectors to dQ. Similarly T,(u) and T,(u) are the normal
and tangential components of the stiess vector T = (Ty, Ty) = (t4;n,, T2;n;).

The stress tensor © = (t;;); ;= and the strain tensor ¢ = (g;,);

ij=1>
1 /0u; Ou;

giu) = - L A I

i) Q(ax a)

J i

are related by means of the generalized Hooke’s law

Ty = Ti,(u) = cijklgkl(u)'
The elastic coefficients c;j;, are supposed to be bounded and measurable in Q, i.e.
i1 € L(9), satisfying the symmetry conditions
Cijt = Cjigt = Cryij a.€. in Q
and the condition of ellipticity

{ dco = const > 0 such that

Cim€ijen = Coeije; Ve = ej, ;€ R,
In order to give the variational form of our problem, we introduce the following
notations.

By H*(Q) (k = 0 integer, H°(Q) = 1*(Q)) we denote the Sobolev space of functions,
the derivatives of which up to order k are square integrable in Q, equipped with the

classical norm denoted by |+ [0

1) Throughout the paper, summation convention is used.
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Let V be the space of virtual displacements:

V={ve(H(Q))*|v=00nT,uv,=0o0n Iy},
and

K ={veV|v,<0on I'y
the set of admissible displacements.

Finally, let us set

€. = [ e,

L(v) =J F,-v,-dx+J Pu;ds,
0 I

Folv) = talv,v) — Lv),

[ glo ds,

r

v I K

Fo) = Folv) + j(v),
where F = (Fy, F,) e (I}(Q))*, P=(P,, P,)e (I(I)*, g€ L"(I'), g = Oa.e.on Ik.

i(v)

Definition 1.1. By a variational solution of the contact problem with a given
friction we mean a function u € K such that

(2) Fu) < #v) Vvek.
Using a classical result of calculus of vatiations (see [ 1], [2]), one obtains the follow-
ing result:

Theorem 1.1. Under the above mentioned hypotheses there exists a unique
solution u of (2).

The problem () can be equivalently characterized by the relation
(1.7) uekK :a(u,v —u) + j(v) — j(u) = L(v — u) VoeK.

* Applying Green’s formula to (1.7) one can prove formal equivalence between (1.1) to
(1.6) and (2).

2. THE APPROXIMATION OF (2)
Let all the assumptions and notations of Section 1 be satisfied. Moreover, let us

suppose that Q is a polygonal domain. Let {t,}, h — 0, be a regular family

of triangulations of @, satisfying the usual requirements on the mutual position
of triangles T; € 1,
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With every 7, we associate the space
(21)  V,={v|ve(C(@)) v/Te(Py)*, v=0o0nT, v, =0 on Iy, ¥Te1,},
where P, is the set of all linear polynomials.

Denote by 4;,j = 1,2, ..., k, the vertices of Q. By n™ = (ny, ny), n* = (nf, n3)

we denote the outward unit normal vector to Aj_lAj; A;Aj,, respectively (see
Fig. 1).

Ajsg
Fig. 1.
Let a;, a,, -.., a,, by the nodes of 1, lying on I'y and define
(2.2) K,={v|veV, v(a)<0fora +4,j=12..,k

(viny + vyn3)(a;) £ 0, (vynf + vyn3)(a;) <0, if a; = A4;
forsome j =1,2,...,k; i=1,2,...,m}.

Definition 2.1. An element u, € K, is said to be the approximation of the contact
problem with a friction, if

(2) F(u) = F(v) Voek,.
It is readily seen that for every h € (0, 1), there exists a unique solution u,, of (2,).
The question arises, what is the relation between u and u,,
Theorem 2.1. Let us suppose that [y " T, =0, [y 0 [y = O and let there exist
a finite number of boudary points [, w I'y, [, v ', ', U Ty Then
(2.3) u,—>u in (H(Q)* h-0,.

Proof. If the assumptions concerning I',, I';, 'k, I'y are satisfied, then the system
of {K,}, h € (0, 1) is dense in K in the following sense:

(2.4) VveK, 3Jv,e€K, suchthat v, —>v (see[3]).

AsK, = K,Yhe(0,1),(2.4) yields (2.3).
If some additional smoothness assumptions concerning u are satisfied, then the
following rate of convergence result can be established (see [4]):

Theorem 2.2. Let us suppose that u € (H*(Q))* 0K, T(u)e(L*(I'k))?, u € (W"*(I))?,
let the number of points from Iy, where u,, u, change from u, < 0 to u, = 0 and
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fromu, % 0 tou, = 0 ,respectively, be finite. Then
[u— uplso=0(h), h—0,.
Under weaker assumptions, lower order of convergence can be derived, namely:
if ue(H*(Q))* K and T,(u)elX(Ik), then
[u = wplls,0 = ORY*), h—o0,.

3. SADDLE-POINT FORMULATION OF CONTACT PROBLEMS
WITH A GIVEN FRICTION

Formulation (#) is very simple from the theoretical point of view, but it is not
suitable for practical computations. The reason for this is the fact that the direct
application of finite elements to (#) leads to a non-differentiable optimization
problem. To avoid this difficulty, we proceed as follows (see [5]):

Let us define
(31) A= {u|pel’(I), |yl £1 ae onsuppg, p =0 on I'y\suppg}.
Clearly

i) = supJ ugv, ds .
'k

peAd

Now the problem (£) can be equivalently formulated:

find ue K such that
F(u) = min sup {4 a(v, v) — L(v) + J pgu, ds} .
I'k

veK ped

Let us set

P(v, p) = +a(v, v) — L(v) + f ugv,ds .

I'k

Now, instead of (£), we shall study the problem of finding a saddle-point (w, 1)
of £ on K x A4, ie.:

(P) L(w,u) < L(w, 1) £ Lv,2) YoeK, Vued.
The relation between (#) and (P) is given by
Theorem 3.1. There exists a unique saddle-point of & on K x A. Moreover,
w=u, ig=—T[u),
where u € K is the solution of (9’)

Proof. As the bilinear form a is V-elliptic due to Korn’s inequality and A
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is a bounded, convex subset of L*(I'k), the existence of a saddle-point (w, 1) is a direct
consequence of [6], Prop. 6.2.4.
If (w, 4) is such a saddle-point, then (see [6], Prop. 6.1.6)

aa;g(w,i)(v—w)gO YveK,
v

g(w,/l)(,u— )0 Vped.
o

Applying Green’s formula to the first inequality we have:

(3.2) gi = —T/(w) on suppy.
As T(w) = 0 on I'y \ supp g, the previous identity is true on the whole I'k.
Moreover, the pair (w, 1) € K x A, being a saddle-point of % on K x A, satisfies

F(w) = sup L(w, p) = L(w, A) = inf sup L(v, u) = inf #(v) = #(u).
vek

neA veK peAd

As the solution u of (2) is unique, necessarily w = u. The uniqueness of 2 on supp ¢
follows from (3.2).

Hence, the contact problem with a given friction can be approximated, starting
from the saddle-point formulation (P). This approach has some advantages. First
of all, the minimization problem for a non-differentiable functional is replaced
by the saddle-point formulation for a functional, which is smooth in all components.
Secondly, the Lagrange multiplier A has a “nice” physical meaning and the saddle-
point formulation makes it possible to approximate it independently of the displace-
ment field u. Finally, the approximation of our problem, which is based on the
saddle-point formulation, offers a very effective algorithm for its numerical realiza-
tion (see below).

Remark 3.1. In the approach, described above, only the dualization of the non-
differentiable term is used. In order to release the geometrical constraint v € K, another
set of Lagrange multipliers has to be introduced. This formulation, involving two
fields of Lagrange multipliers, together with its approximation by finite elements,
is analysed in [7]. The approach, presented in the present paper, is suitable for the
approximation of the so-called semicoercive cases, when the bilinear form is a V/P-
elliptic only (P denotes the set of rigid body motions).

4. APPROXIMATION OF (P)
The general idea of the approximation of the saddle-point formulation is the
following:

Let {4}, A, = V, {A,}, A, = I*(Ik) be the families of sets approximating K
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and A, respectively. Instead of (P), we shall consider the following problem:
(B,) find (w,, 4,) € 4, x A, such that
LWy 1) = ZL(wy, ;11.) < L(vy 24) Voely, Vuued,.

One can formulate conditions concerning /', A, under which {w,, 4,) tends to
(w. 4) in the corresponding norms, where (w, 1) is the solution of (P) (see [8]). More-
over, the first component w, minimizes the functional

Fo(vy) + ju(v) over A,

where

jh(vh) = sup J gHpy, ds
I'k

unedAn

In what follows we use the following choice of 7, A,:
(4.]) Hy=K,, A, =4,
with K, and A given by (2.2) and (3.1), respectively. In this case

Ju(vn) = j(v,) Vo, eV, he(0,1)

and w, € K,, coincides with the solution u,, of (2,).

Remark 4.1. In (4.1) the family {4,} does not depend on h. Nevertheless, some
other constructions of A, are possible. One can use for example “finite” dimensional
approximations” of A, when A, is a closed, convex and bounded subset of some
finite-dimensional space L, (see [8]).

Let us assume a regular family {z,}, h = 0, of triangulations of Q. We shall
study what happens if 1 — 0,. According to Theorem 2.1 we have

wy,=u,—>u, h—->0,,
provided all the assumptions of Theorem 2.1 are satisfied. Let us study the behaviour
of the second component 4,. (It should be noted that the second component 4, depends
on h, even if A, = A are independent of /.)
Theorem 4.1. Let all the assumptions of Theorem 2.1 be satisfied. Then
w—=2A, h—>0,, weaklyin IL*(I),
where A is the second component of the saddle-point of ¥ on K x A.

Proof. From the definition of A it follows that the sequence {4,}, he (0, 1),
is bounded in LI*(I'g). Hence there exists a subsequence {4, } < {4,} andan element
% € A such that

(4.2) =%, W —>0,, in IXIy).
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We shall show that y = 2. Following the definition of (#,.) we have

(4.3) a(wyr, vy — Wy) + J G (Ve — W) ds 2 Loy — W),

I'k
J. gl — X)Wy ds £ 0 VpeAd, Vo, ek, .
I'k
As noted before,
(4.4) wy > u, B —>0,, in (H(Q).

Let v € K be an arbitrarily chosen element. Then there exists a sequence {v,.}, v, € K,
such that

(4.5) v > v in (HY(Q))* see (2.4)).

Passing to the limit for h’ — 0, in (4.3), taking into account (4.4), (4.5) as well as

the compactness of the embedding of H'(Q) into I*(I'y), we obtain the following
system of inequalities:

a(u, v — u)+J' g x(v, —u)ds = Lo — u) VYveKk,

I'k
j g(p — x)u,ds <0 Vued,
'k
which means that (u, ) is a saddle point of & on K x A. Since the saddle point
is unique (Theorem 3.1),
x=24=—gT(u).
As 2 is unique, the whole sequence {4,} tends weakly to A in the L*(I'y)-norm.

Remark 4.2. As the embedding of L*(I'y) into H™**(T'y) is compact, (4.2) implies
the strong convergence of 4, to A in the H™'/*(I'y)-norm.

For the numerical 1ealization of (SB,,) one can use the classical Uzawa’s algorithm

(see [6] or [1]).
Uzawa’s algorithm proceeds as follows:

we choose an element 4, € 41;
if 1, € A is known, we look for u{® e K, satisfying

LW, 7) = min {jo(v) + J g, ds} ,
I'k

veKp
after which we replace 4, by 4,4 as follows:
Jpr1 = HA(j'k + QQ“;:I:)) s

where IT,, denotes the projection of I2(I'x) on A. g is a positive parameter satisfying
01 S0 50501,0,>0.

62



It is readily seen that the projection II , is given by the following relations:

Lt () < -1
Myp(x) = = p(x), it |u(x)] <1
N u(x) > 1, xely.

It is well known (see [6]) that there exist ¢;, ¢; > O such that for any choice

o€ (o4, 02), the components uj* tend to u, (i.e. to the first component of the solution

of (P,)).

5. NUMERICAL REALIZATION OF CONTACT PROBLEMS
WITH A GIVEN FRICTION

The present section deals with implementation of Uzawa’s algorithm on computers.

Each iterative step of Uzawa’s method consists of two substeps. The first is the
problem of quadratic programming, the second is the computation of the projection
I1,. The latter substep is very simple. The Lagrange multipliers 4 will be defined
by their values at a finite number of points from I'x. These points will coincide with
the nodes of the quadrature formula used for the approximation of frx glu, ds.
Therefore we define the set

Ag={zeR?|z| £ 1}.

z; will be interpreted as the values of A€ A at the nodes of the chosen quadrature
formula. The projection I, is now replaced by ““pointwise” projection IT,,_ of R®
on Ag, the i-th component of which is given by

s -1 if u < -1,
(HAE#)i = </1i if |.Ui| =1,
1 if u > 1.

As was already mentioned, the fitst part of each iterative step is the minimization
problem for a quadratic function over a convex set given by linear constraints.
Expressed in the matrix form, we look for x* € K such that

(5.1) YG(x*) < 9(x) VxeKy,
where
%(x) = —}(x, Cx)R,.. — (97, X)Rm S
K;={xeR"|Bx <0, B'x =0} .
Here C denotes the stiffness matrix, & € R™ is a vector obtained by the integration
of the linear term of #(v,, /,). B, B” are rectangular matrices of the ranges n; x m
and n, x m, respectively. If we suppose that I'y is composed from one straight

line segment we see that each row contains at least one and at most two non-zero
elements and at most one non-zero element in each column.
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Elements of B, B” are formed by components of the outward unit normal vector
with respect to I'x and to Iy, respectively. The set of equality constraints can be
empty, if the conditions on Iy, are respected during the construction of the matrix C.

The minimization problem (5.1) can be realized by means of the conjugate gradient

method, which proceeds as follows (see [9]):
) choose x, € K;

(ii) set #(xo) = {1, 2. ..., ny} U {i | (b}, xo)pm = 0},
where b; is the i-th row of B';

(iii) form a matrix A, the rows of which are the vectors b} and b}, i € #(x,),

and calculate
g'(xo) =Cxqg — F,
Pyey = Afeof(Agisor A7) " Agor »
u(xo) = ~(As450) " Asio F'(%0).
where Ay, ) is the transpose of Agixo)
(iv) We distinguish two cases:
(1) (I = Pyepy) 9'(x0) # 0. Then set
pi = —(I = Pyy) %'(xo) and calculate

(*) tpuy = — (FC). Pk 1 )
K+l = >
(pk+ 1 Cpk+l)R'"
’
5., = min _7@,”,’,"-')&1,
i=1,., ny (bi’ pk+])Rm
"
&,, = min A,(éf,lx,")’ﬁ‘,

” 4
i=1,...,n (bi’ Pk+1)Rm
where the minimum is taken for i satisfying
(6% Py Jrm > 0 and (b}, psy)gm > O.
Define
— . =/ ="
X+ = MIN (ak+1! “k+1)-
If oy = gy q set

Xp+1 = X + %+ 1Pr+1o

Dr+2 = —(1 - P}(xo)) g'(xk+1) + “(I — P-’“("O)) g/(le)Hz

“(I = Pyieo) ?’(xk)ll"‘

k+1>

k=0,1,....
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If Xk +1 minimizes %(x) on the convex set given by
(b, x) =0, ief(xo) —{L,....,n5},
(b,x)=0, i=12..n,,
set Xo = X4 and go to (v).
Otherwise go to (*).
If o1 > 0G4 q set
Xept = X+ Oy 1Py
and go to (ii).
(1) If (I = Pyyp)) 9'(x0) = 0 go to (V).
(v) If(u(xo))i 20 Vie #(xo) — {1,2,...,n,},
then x, is the desired minimum of ¢ on the set K.
If there exists i € #(xo)\ {1,2, ..., n} such that
(u(xo)); < 0, set #(xo) — {i} = F(x0) and go to (iii).
Clearly, this step is a limiting factor of the efficiency of Uzawa’s algorithm. How-

ever, certain features of our problem enable us to modify it in such a way that the
outcoming version repiesents an economic tool for the numerical realization.

The above mentioned features are the following ones:

— the stiffness matrix is the same during the whole iterative process:

— the number of constrained variables is small as compared with the number of all
variables;

— only a few components on the right hand side change, namely the normal and
tangential tractions along I'y, which are related to constrained variables.

Taking into account all these circumstances, the substructuring technique for the
minimization of % over Ky may be used (see [10]), where this method is applied
to the frictionless contact problem).

Let us suppose that unknowns are arranged in such a way that all constreined
variables are listed last. Due to these assumptions, we may split a vector x € R™
and write

x = (x;,%)eR" xR, k=ny +n,,

where Xx,, x, correspond to the free and constrained variables, respectively. The
closed convex set Ky can be now written as

Kp = {xeR™ x = (x;, x,), x; e R"™*, x, e R, B'x, £0, B'x, =0} .

Similarly, we can split the vector & and decompose the matrix C;
) Cyy, C
C = 11> 12> ,
(Clla C22
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where Cy,;, C,, are square matrices of the range m — k and k, respectively, and
Cy,, C,; are rectangular matrices (m — k) x k and k x (m — k), respectively.
Since C is symmetric, we have

Cy, =C,.

Let x* € K be a solution of (5.1), i.e. x* = (x}, x3) € K; fulfils
(5.2) (Cx*,y — x*)gm 2 (F, ¥y — x*pm VyeKg.

Let y = (y,, ¥,) € K be a vector of the form y, = x{ + z,, z; € R" ¥ arbitrary,
y, = x5. Substituting y into (5.2) we get
(5.3) Cipxi + Cipxs = 7,4
which implies )
(5.4) x{ = —Ci{Cox5 + Ci'F 4.
Now we choose y = (y;, y,) in such a way that y, = x7, y, = z,, where

z,6Ry={zeR*|Bz<0, B'z=0}.

Clearly y € K.

Inserting it into (5.2) we ariiwe at
(5.5) (z2 = 13, Cpuxt + CopxB)pe = (22 — X3, Fo)pe Yz, €Ky

Taking into account (5.4), we deduce that x5 € K is the solution of the variational
inequality
(z2 = X3, Cx?)nk Z (8222 — x;k)R" Vz,eKg
with
C=Cy —CyCrf Cyp and §, = F, — CpCi{ 7y,

or equivalently: x% is a minimizer of
G(Z) = %(Z’ CZ)RR - (82, Z)Rk , ZE€ RF

over the closed convex set K. It is readily seen C is symmetric and it can be shown
that it is obtained from C by the elimination of all unconstrained unknowns. Hence €
is positive definite.

NUMERICAL EXAMPLES
In order to illustrate the approach discussed above, let us consider the Signorini
problem for an elastic body given by Fig. 2, subjected to a horizontal surface
traction P; = 1000 only. The decomposition of the boundary 0Q into I',, I'y, I,

and I'y as well as the triangulation 7, of Q are clear from the figure.
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We discuss two cases:
(i) the frictionless problem, corresponding to g = 0 on I'y;

(ii) the contact problem with a given friction and g = 150 along I'.

The values of normal and tangential components of displacements u,, u,, respect-
ively, at the points lying on I'y are given in Tables 1, 2. The distribution of normal
stresses for both cases is shown in Fig. 3. Finally, the computed values of tangential
components of stresses are compared with the product g/ in the case (ii) (Fig. 4).

o
ke
[ A
Q
b
1
k
7 ~d
Fig. 2.
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I

Ib
{
J
|
I
I[a
|
| -
I a) g=0
’: b) g=150
1 357 91 131657 192 element
Fig. 3.
Tab. 3

. Normal stresses

Normal stresses

Element No forg =0 for g = 150
1 881651 — 81-10406
3 — 157262 — 018515
5 835742 267252
7 — 261975 — 595142
9 3.37544 514847
1 303627 2:64455
13 9-48375 12:35480
15 — 096811 — 379457
17 3.90454 2:30423
19 10-67592 822925
21 —287-76611 — 43579272




gk

135 791 13167182 element
Fig. 4.
Tab. 4

Element No Tangential stresses g
1 — 5696169 — 682362
3 —149-17897 —150-0
5 —157-75708 —150-0
7 —157-75020 —150-0
9 —158-73059 —150-0
11 —162-73120 —150-0
13 — 148:44574 —150-0
15 —149-89653 —150-0
17 —145-13040 —150-0
19 —142-27200 —150-0
21 —191-31741 —150-0
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Tab. 1

Node Normal component Tangential component

of displacement of displacement

1 00 0-0
2 —0-708244 E-04 0-124510 E-03
3 —0-140124 E-03 0-244349 E-03
4 —0-208867 E-03 0-359382 E-03
5 —0-269836 E-03 0-471946 E-03
6 —0-323546 E-03 0-580739 E-03
7 —0-367647 E-03 0-690516 E-03
8 —0-404030 E-03 0-799063 E-03
9 —0-431806 E-03 0-905754 E-03
10 —0-450308 E-03 0-101547 E-02
11 —0-458580 E-03 0-112786 E-02
12 —0-457524 E-03 0-123950 E-02
13 —0-440191 E-03 0-135739 E-02
14 —0-416487 E-03 0-147093 E-02
15 —0-379821 E-03 0-159732 E-02
16 —0-326718 E-03 0-172764 E-02
17 —0-269428 E-03 0-185998 E-02
18 —0-203394 E-03 0-199320 E-02
19 —0-129652 E-03 0-215468 E-02
20 —0-521742 E-04 0-231479 E-02
21 —0-390520 E-09 0-249076 E-02
22 —0-492480 E-09 0-269887 E-02
23 —0-108980 E-09 0-288540 E-02
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Tab. 2

Node Normal component Tangential component

of displacement of displacement

1 0-0 0-0
2 —0-364244 E-04 0-117746 E-05
3 —0-859590 E-04 0-165844 E-04
4 —0-152534 E-03 0-467666 E-04
5 —0-210771 E-03 0-810665 E-04
6 —0-259828 E-03 0-121596 E-03
7 —0-300198 E-03 0-170359 E-03
8 —0-338336 E-03 0-225292 E-03
9 —0:369280 E-03 0-281407 E-03
10 —0-389108 E-03 0-344504 E-03
11 —0-400242 E-03 0-411434 E-03
12 —0-401480 E-03 0-481490 E-03
13 —0-383156 E-03 0-561246 E-03
14 —0-358959 E-03 0-646560 E-03
15 —0-321456 E-03 0-739529 E-03
16 —0-266279 E-03 0-846110 E-03
17 —0-208209 E-03 0-962450 E-03
18 —0-144343 E-03 0-108998 E-02
19 —0-754524 E-04 0-123141 E-02
20 —0-787149 E-0S 0-138532 E-02
21 —0-140865 E-09 0-155774 E-02
22 —0-128434 E-09 0-175705 E-02
23 —0-521430 E-10 0-194423 E-02

Souhrn

APROXIMACE A NUMERICKE RESEN[ KONTAKTNI ULOHY
SE TRENIM

JAROSLAV HASLINGER, MIROSLAV TVRDY

V této prdci je studovdno numerické feseni kontaktni tlohy s danym tfenim.
Cely problém je vhodnym zavedenim multiplikdtorti pfeveden na nalezeni sedlového
bodu Lagrangeovy funkce % na konvexni mnoZin&€ K x A. V préci je ddle defino-
vdana aproximace tohoto sedlového bodu, dokdzdna konvergence a odhadnut rdd
konvergence. K numerickému feSeni je pouzit Uzawulyv algoritmus. Na zdvér jsou
uvedeny konkrétni ptiklady.

Author’s address: Dr. Jaroslav Haslinger, CSc., MFF UK, Malostranské nam. 25, 118 00
Praha 1; Dr. Miroslav Tvrdy, 1PS Praha, Nam. Kubdnské revoluce, 11000 Praha 10.

71



		webmaster@dml.cz
	2020-07-02T04:44:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




