
Aplikace matematiky

Alois Klíč
Period doubling bifurcations in a two-box model of the Brusselator

Aplikace matematiky, Vol. 28 (1983), No. 5, 335–343

Persistent URL: http://dml.cz/dmlcz/104045

Terms of use:
© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104045
http://dml.cz


SVAZEK 28 (1983) APLIKACE MATEMATIKY ČÍSLO 5 

PERIOD DOUBLING BIFURCATIONS 
IN A TWO-BOX MODEL OF THE BRUSSELATOR 

A L O I S K L Í Č 

(Received December 20, 1982) 

Two theorems about period doubling bifurcations are proved. A special case, where 
one multiplier of the homogeneous solution is equal to + 1 , is discussed in Appendix. 

1. PRELIMINARIES 

1.1. A two-box model of the reaction-diffusion system with Brusselator kinetics 
has been discussed by several authors, see for example [ l ] — [4], [9]. The system is 
described by the following set of four differential equations: 

(1) Xi = A - (B + 1) xt + Xjyi + Di(x2 - xi) 

yi = Bxx - Xiyi + D2(y2 - yj 

x 2 = A - (B + 1) x 2 + x\y2 + Di(x! - x 2) 

y2 = Bx2 - x 2 y 2 + D2(yi - y2) 

where A, B, Dl9 D2 are adjusted parameters. Hence, the state of the system is deter­
mined by the quadruple x = [x l 5 yu x2, y2~\ e R4. By A we shall denote the diagonal 
in R4, that is, the set 

A = {[x1? yu x2, y2] e R4, Xl = x2 A yi = y2} • 

1.2. Let us consider a mapping g : 

g(xuyux2,y2) = 

defined by the relation 

"o 0 1 o" X i 

0 0 0 1 yl 
1 0 0 0 x 2 

0 1 0 0 Уг_ 
i.e. in a short form 

(2) g(xu yu x2, y2) = (x2, y2, Xl, Уl). 
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It is easy to see that the following statements are valid. 

(i) g2 = g ° g = id. 

(ii) g is a linear diffecmorphism of R4. 

(ill) x e A iff g(x) = x, i.e. Fix(g) = A, 

(iv) The matrix A defining the mapping g has two double eigenvalues + 1 and — 1. 

The eigenvectors corresponding to + 1 are et = [1, 0, 1, 0], e2 = [0, 1, 0, 1] and 
the eigenvectors corresponding to — 1 are e3 = [1, 0, — 1, 0], e4 = [0, 1,0, —1]. 
These eigenvectors form an orthogonal system. 

1.3. The vector field v(x) on the right hand side of the system (l) is invariant 
under the diffeomorphism g9 hence the relation 

(3) v(«(x)) = (a»L>(x)) 

holds. Since the mapping g is linear, (g*)x = g for all x e R4 and the verification 
of the relation (3) is easy. 

1.4. The diagonal A forms an invariant manifold (integral surface) of the vector 
field v, as for every x e A, v(x) e TX(A). 

1.5. From now on we shall consider a more general system of ordinary differential 
equations than (1), viz. the system 

(4) x = v(x, fi) , 

where x = \_xl9 yl9 x2, y2~\e R4, /.ieRl and v(x, fi) is a one-parameter system 
of vector fields on R4 satisfying the following conditions: 

a) v(x, fi) is of class C00 in both variables x and fi. 

b) The vector field v(-, p) is invariant under the diffeomorphism g for every fie R. 

c) For every pe R, the flow T^, t e R, of the system (4) exists. 

As the vector field v(x, ja) is invariant under the diffeomorphism g, hence if x(t) 
is a solution of (4), then g(x(t)) is also a solution of (4), see [5], and every trajectory 
y of (4) has a corresponding trajectory g(y). 

1.6. The following lemma is well-known, see [6], p. 141. 

Lemma 1. Let T^ be the flow of the vector field v(x, jn), which is invariant under 
the diffeomorphism g for all \i e R. Then 

(5) 9'%=%" 9 

for all t e R and \i e R. 
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1.7. Definition 1. The periodic solution x^t) of (4) will be called a g-invariant 
solution iff its trajectory yM is an invariant set of the mapping q, i.e. g(yj;= yu. 

The g-invariant solution x/i(t) for which y^ <= A will be called a homogeneous 
solution — (HS). 

The g-invariant solution xJj)for which y^ n A = 0 will be called a Asymmetric 
solution. 

The following lemma yields a useful characterization of the A-symmetric solution. 

Lemma 2. Let xM(t) be a periodic solution of (4) and yM its trajectory. Let both 
the points x and g(x) #= x lie on yM. Then the point g(y) + y lies on y^ for every 
y eyH and hence g(y^) == yM. The phase shi/7 Of the pOiftts y e ŷ  Ot.d g(y) e >̂  is one 
half of the period of the solution x (t). 

Proof. *) Let w be the smallest period of the solution x(t). Under our assumption 
the points x and g(x) =f= x lie on y, hence Tw(xj = x and T^Ofx)) = g(x). Then 
there exists a number 5 e (0, co) such that 

(6) r ( x ) = g(x). 

From (5) and with help of g 0 g = id we obtain 

x = a2(x) = g(g(x)) = g(T°(x)) = T^(x)) = T\T%x)) = T2*(x) . 

Hence 

2s = a), S = - and #(x) = T*(°(x). 

Let y be an arbitrary point of y. A number r e (0, OJ) can be found such that y = 
= Tr(x). Then 

T^(y) = r(^+r)(x) = r(7*°(x)) = r-(g(x)) = g(r(x)) = g(y), QED '." 

2. THE PERIOD DOUBLING BIFURCATION OF (HS) 

2.1. Let y/i0 c Abe the trajectory of an (HS) of the system (4) for /i = //0. A Poin-
care map will be used for the description of the bifurcation phenomena. Let x/[i0 e yu 

By I we shall denote the hyperplane of the codimension 1, which intersects trari's-
versally the trajectory yjUo at the point x/lo. By ^(x^) we denote BE(x^0) n A, where 
B£(x^o) is an appropriate neighbourhood of the point x/10 in /£?4. The hyperplane £ 
may be chosen in such a way that2) 

(?) вЏ) 

1 ) The subscript // will usually be omitted from now on. 
2 ( See Appendix, relation (13(. 
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2.2. Let us denote by P//0 : l(x^0) -• I the Poincare map corresponding to the 
closed trajectory y^0. We suppose that none of the multipliers of this trajectory 
equals one. In this case there exists a one-parameter family P , of Poincare maps 
corresponding to closed trajectories yM, fi e O(in0) and 0(/io) is an appropriate neigh­
bourhood of fi0. (PM is defined on an appropriately chosen -E(xM0).) 

Lemma 3. For every \i e 0(^0) we ^ f l l 'e 

(8) g o PM = P , o g , 

whenever P , o g is defined. 

Proof. The Poincare map PM can be expressed with help of the flow T.J, see [7]. 
If OJM is the period of the corresponding (HS), then 

(9) P„(x) = r[e,"+^(jr)](x) 

where ^ : l(xj -» ff , ^(xM) = 0 , x„ e Z ( x J n y„ . 
Let us denote 

(10) cD,(x) = OJ, + d/x) . 

For x e £(x^0) we have 

g(Pfl(x)) = g(T°**\x)) = T"^*»(g(x)) = P,(g(x)) • 

The validity of the relation ^ (^ (x ) ) = o^(x) results from the following considera­
tion: The trajectory y starting at the point x e ^(x^0) intersects I for the first time at 
the same moment as the trajectory g(y) starting at the point g(x) e -£(xM0) intersects I. 

2.3. Theorem 1. After a period doubling bifurcation of an (HS), the resulting 
double period solution must be Asymmetric. 

Proof. Let F, be the trajectory of the double period solution bifurcated from the 
(HS) in question. It is sufficient to prove the existence of points x e FM and g(x) e FM, 
g(x) =j= x. It is well-known that after a period doubling bifurcation two fixed points 
of Pi arise, let us denote then x^/z) and x2(/i). Then 

p i x i ( > ) ) = X2(A0 and PM(x2(|i)) = x-fji). 

The relation (8) yields (the latter \i is omitted) 

P(g(x1)) = g(P(x1)) = g(x2), 

P(g(x2)) = g(P(x2)) = g(*i), 
hence 

, g(Xl) = P(g(x2)) = P(P(g(x,))) = P2(a(x,)) 

and g(xt) is a fixed point of P2. Then g(xt) = xx or g(xt) = x2. The first equality 
is not possible: if g(xx) — xx then xx e A, hence F, c: A which is impossible — a pe-
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riod doubling bifurcation cannot arise in the two-dimensional diagonal A. Thus 
the second equality g(xx) = x2 holds and the points xl and x2 = g(x{) 4= xt lie 
on F^, QED. 

3. THE PERIOD DOUBLING BIFURCATION OF THE 
A-SYMMETRIC SOLUTION 

3.1. Let y^ be the trajectory of a A-symmetric solution of the equation (4) with 
a period co^. Let us denote the cross-section which transversally intersects the tra­
jectory yM at a point x° by Z and let P^x) be the corresponding Poincare map. 
Under our assumption, the point g(x°) 4= x° must lie on yH. Then Z = g(Z) is the 
cross-section of the trajectory y^ at the point g(x°). Let us denote by PM : Z -> I 
the corresponding Poincare map. It is known that the maps PM and PM are locally 
conjugate, see [7]. In our special case the following lemma is valid. 

Lemma 4. For the maps PM and P^ defined above we have 

(11) ?, = goP.og'1 = goP^og, 

whenever P^ o g is defined. 

Proof. We express the maps P and P by the flow Tf: for x e Z we put P(x) = 
= .T°(jr)(x) and for yeZ we put P(y) = T"(Y)(y). By an argument fully analogous 
to the one used before (cf. Theorem 1), we obtain the equality 

(12) w(g(x)) = co(x). 

Then for arbitrary x e l w e have g(x) = y e £ and 

P(g(x)) = T««*»(g(x)) = g(T™*»(x)) = g(T^\x)) = g(P(x)), 

hence the relation (1 1) holds. 

3.2. Theorem 2. The A-symmetric solution cannot bifurcate by the period doubling 
bifurcation. 

Proof. Let us suppose that for fi = //0 the ''double" trajectory F^ arose from the 
A-symmetric trajectory y^0 by the period doubling bifurcation. Hence the two fixed 
points x^fx), x2(ji) of the mapping P* lie on the trajectory F., and P^x^ = x2 , 
Pn(xi) = x i - T r i e points yt = ^(x,) and y2 = g(x2), however, are also fixed points 
of the mapping P\ for 

P(Yi) = (g o P o g) (Yl) = g(P(x{)) = g(x2) = y2 

and 
P(Yz) = (goPog) (y2) = g(P(x2)) = g(xx) = y, 

339 



Hence the trajectory FM is A-symmetric, because both the points xx and g(xx) -^ xt 

lie on F/r 

Let Q^ be the period of the double period solution corresponding to the trajectory 
IV T n e P o m t s xi> x2> Yi, Yi he on the trajectory F;. in the order xu y,, x2, y2, xr 

or in the order xu y2, x2, y1? x t . According to Lemma 2 the phase shift between 
Xj and Y\ and also between the points x2 and y2 is \Qp Hence the parts of I\ 
between the points x2, Y\ and x l s y2 have no ''moving'" time. This is in contradiction 
with our assumption about the existence of a period doubling bifurcation. 

Corollary 1. The Asymmetric solution cannot bifurcate into an n-periodic 
solution. 

The p roof is fully analogous to that of Theorem 2. 
Let us suppose that an invariant torus T2

n arises from the A-symmetric solution 
by the Neimark-Sacker bifurcation. This occurs in the system (1), see [9]. Then 
Corollary 1 yields: 

Corollary 2. The rotation number Q(H) of the flow T^ on the torus Tj; is irrational 
for all fi e 0(fi0)9 where O(fi0) is sufficiently small, and hence D(//) is constant. 

4. CLOSING REMARKS 

It seems proper to make the following remarks. 
1. Systems of the forms (4) often arise when two identical oscillators are coupled 

and the coupling between them is symmetrical, see for example [11]. 
2. The system (l) serves as an example. It has a periodic (HS) which arises by the 

HOpf bifurcation from the steady state solution [A, B/A, A, B/A], see [3] [10]. 
3. The A-symmetric solution of (1) arises by the second HOP/ bifurcation from 

the steady state solution [A, B/A, A, B/A] when the second pair of eigenvalues 
crosses the imaginary axis, see [10], [11]. 

4. A-symmetric solution has been found numerically in [9]. This solution bifurcated 
from the (HS) by a period doubling bifurcation. 

APPENDIX 

THE BIFURCATION OF (HS) 
WHEN ONE MULTIPLIER IS EQUAL TO -f 1 

The cross section I of the orbit y^0 can be chosen in such a way that 

1. I is a hyperplane of the codimension 1. 

2. The hyperplane I contains the origin 0 e R4. 
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3. I intersects transversally the orbit y^0 at the point x/i0. 

4. g(l) = I. 

Then the Poincare map PM0 corresponding to the orbit y^0 is defined on £(xMo) = 
= Z n ^e(x/to)' w n e r e Be(Kno) 1S a n appropriate neighbourhood of the point x^o 

in /)T?4. The map PMo commutes with the diffeomorphism g, see Lemma 3. The equa­
tion of the hyperplane I is 

(13) x, + byj + x2 + by2 = 0 . 

The value of the coefficient b is determined by the coordinates of the point x^o. 
The intersection I n A is the straight line p and x^o e p. The straight line p has 
the directional vector u = bet — e2 = [b, — 1, b, — 1]. 

Now we introduce a new coordinate system in the hyperplane I. The origin of this 
coordinate system is located at the point x/io. The directions of the coordinate axes 
x, y, z are given by the vectors e3, e4, u. The axis z is identical with the straight line p. 
The following lemma is obvious. 

Lemma 5. It? the above coordinate system on I, the restriction g\x is a linear 
mapping with the matrix 

~ - l 0 0" 
B = 0 - 1 0 

0 0 1 
that is, 
(14) gj^x, y, z) = ( - x , - y , z) . 

Let us consider the one-parameter system of the Poincare maps PM corresponding 
to the orbits y^ for the values of the parameter JH sufficiently close to p,0. Thus the map 
PM commutes with the mapping #|2 on £(x^0) for all /J sufficiently close to /i0. Let us 
denote the multipliers of the orbit yMo by A^po), /l2(lt0), A3(lto)- It is well knowri that 
these multipliers are the eigenvalues of the matrix Dx PA10(x|Io) i.e. of the Jacobi 
matrix of the map PM0 at the point x/io. Let us assume that Dx PAI0(xAI0) has only one 
simple eigenvalue +1 on the unit circle, viz. Ai(/I0) = + 1 . 

Now we can apply Theorem 1.1 from [8] (or Theorem 1.1 in [7], Chap. 7). The 
one-dimensional eigenspace E° corresponding to the eigenvalue + 1 is invariant 
under the mapping (14). Two distinct cases are possible. 

Case F. The eigenspace E° is spanned by the vector u = bel — e2. The corres­
ponding center manifold is the axis z. The restriction of the mapping (14) on the axis 
z is the identity map and therefore the restriction of the Poincare map PM on the z-axis 
commutes only with the identity. This is a standard situation, see [5], in which two 
orbits exist for ft on one side of the critical value /t0 while no orbit exists on the other 
side of p0. In terms of the solution diagram, there exists a turning point for /i = p0. 

Case II. The eigenspace E° is spanned by a vector ae3 + /?e4, a, ft are some real 
numbers. The corresponding center manifold is invariant under the mapping (14) 
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and we may assume without loss of generality that this center manifold is the axis x 
The restriction of the mapping (14) on the x-axis has the form 

(15) g(x) = -x . 

Then the restriction of the Poincare map P^ on the x-axis must commute with the 
mapping (15), hence this mapping has the form, see [5], 

(16) PE(x) = (e + l)x±x3, 

where e = \i — D.0. It is easy to check the validity of the relation 

(17) Ptf(x)) = §(PJ[x)). 

From the form (16) of the Poincare map we can deduce that on one side of the 
criticality one orbit exists while on the other side three orbits exist. In terms of the 
solution diagram, the well-known pitchfork bifurcation appears. 
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S o u h r n 

BIFURKACE ZDVOJENÍ PERIODY V MODELU 
DVOU SPŘAŽENYCH TANKŮ S REAKCÍ TYPU „BRUSSELATOR" 

ALOIS KLÍČ 

Budiž dána soustava diferenciálních rovnic x = v(x, fi), kde xe R4 a \i e R je 
parametr. Vektorové pole v je i n v a r i a n t n í vůči jistému lineárnímu difeomorfizmu 
g : R4 -> R4. Jsou dokázány dvě věty o bifurkacích periodických řešení dané sou­
stavy. V dodatku je analyzován vliv symetrie na bifurkační jevy pro případ, kdy 
jeden multiplikátor orbity je roven + 1 . 
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