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1. INTRODUCTION

For many applications it is very important to know the behaviour of complicated
structures consisting of elementary substructures (for example of various components
of a mashine). It is natural that the behaviour of each element of the structure in-
fluences the bzhaviour of the others and vice versa it is influenced by them. Such
problems are called the contact problems.

Evaluation of the contact forces of (deformed) bodies is of great importance for
the stability estimates of constructions. The first solution of this problem in the three
dimensional formulation is due to G. Hertz who introduced the hypothesis (Hertz’s
hypothesis) about a small contact area as compared with the linear measures of
contacting bodies. Contact problems are nonclassical in the sense that the initial
contact area or the contact stress are unknown. The intensity of the contact forces
of two bodies in a contact assumes a great value on a certain subdomain of the
contact area. This is a disturbing phenomenon, because great values of the normal
contact stress of a structure causes wzariness and even the collapse of the element of
the structure. For this reason it is inevitable to correct the contact area in such a way
that the points of the normal stress graph are small. It is possible to assume that the
function expressing the depesndence of pressure on the vector displacement has
a known form.

The mathematical model of contact problems does not directly lead to a classical
boundary value problem of the elasticity theory. It is because of the unknown zone
of contact and of the unknown contact stress along that zone. Unlike the classical
problems of the elasticity theory, the set of admissible functions is not a linear space,
but only its convex subset. Hence the problem is nonlinear as a consequence of the
contact boundary conditions. These boundary conditions are in a form of inequali-
ties. Problems of that form in the elasticity theory were for the first time examined
by Signorini. The theory of variational inequalities is a simple but strong device
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for the study of the above problems. We can find a detailed analysis of the variational
inequalities in the monographs Kinderlehrer-Stampacchia [12], Duvaut-Lions [3]
The books Hlavd&ek, Haslinger, Nedas, Lovisek [8], Kikuchi-Oden [10], Glowinski,
Lions, Trémoliéres [4], give their numerical solutions by the method of finite elements.

In this paper we analyze the primary and the dual variational formulation of the
contact problem for a cylindrical shell and a stiff punch. We use the method of
penalization and duality (Lagrange multipliers). A numerical realization using finite
elements is presented for the primary formulation.

2. THE GEOMETRY OF A CYLINDRICAL SHELL

Let 2 = R? be bounded. 49 is the boundary of Q. The middle surface of a cylin-
drical shell can be considered as the image of Q with respect to a function & : Q — R>.
We assume that the boundary 02 and the function @ are sufficiently smooth.

A cylindrical shell is an elastic body T defined in the space R® by
(2.1) T={MeR>: OM = ®&(x, ) + zv(p), (x, 9)e Q,

—1e(x, @) < z < te(x, 9)},

where e is the thickness of the shell, v is the normal vector for the middle surface &
and we assume

(22) . Q=[-HH] x [0 f],
D(x, ) = xe, + acos e, + asin ge, .

2

R a0 RS

Uy

Fig. 1.

For simplicity we consider only kinematic homogeneous boundary conditions on ¢Q:

_

= =0,
on

(2.3) Uu=v=w

where n is the normal vector to the surface 0Q2 x [—-e; e] and u = {u, v, wy is the
displacement vector of the points on the shell middle surface.
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3. FUNCTION SPACES

We denote by L,(£2) the space of all measurable square integrable functions with
respect to the Lebesgue measure dQ = a dx de.
Let
o'«
T 0p™’

a

|a|=a1+oc2.

We introduce the Sobolev spaces
HYQ) = {v| Dve IX(Q); |o| < Kk},
Hy(Q) = {v[ ve H'(Q), U[ao =0},

Hé(Q) = {UI ve HZ(Q)’ Ularz = aiv

LaFT)

(u, U)Hk(g) = Z j D*uD*v dQ.
(2]

la| Sk

H*(Q) is a Hilbert space with the inner product

Further we consider C"(Q) — the space of n-times continuously differentiable
functions defined on @, &(Q) — the space of arbitrary differentiable functions on Q.
We denote the indicatrix function of the set K(Q) by

Xiov) = <

0 for veK(Q)
+o0 for v¢K(Q);

3
(a.b)gs = a.b =Y a;b, denotes the usual scalar product in R>.
i=1
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4. CONTACT CONDITIONS

The initial configuration of a body T'is determined by the position vector OM =
= x = {x, y, zy, where the components are the Lagrange coordinates of a material
point. Let w(M) be the displacement vector of the point M for the given load. Then
the new position of the point M, after the deformation, is described in terms of the
new coordinates by

(4.1) OM* = { = x + u(M),
where the coordinates of the vector §{ = {(;, {5, {3> are Euler’s coordinates of the

material point M*.
The surface of the punch is described by the equation

(4.2) Z(x,y,z) =0
We further define the contact area &, of the shell by
S, ={MeR|OM = &(x, 0) + e¥(p); (x,9)e Q).

Then we have Z(M) < 0 for the inner points of the punch and Z(M) > 0 for the
points outside the punch. Moreover, we assume Z(M) < 0 on a set of positive mea-
sure contained in ,, hence the contact of the shell is active.

The stress vector p, on the area &, of the contact has the form

(4.3) P = pr + pyvs (PT)i = Py — Pavis
where
(4'4) Py = ch'j"i"j = piv;,

pi; are the components of the stress tensor and pl the components of the stress
vector on the contact surface .. We formulate the contact conditions — the con-
ditions of nonpenetrating (a kinematic restriction on the field of the displacement
vectors (M) for the contact problem) in the following way:

1°. If after the deformation of the elastic cylindrical shell the points of the surface &,
are also points of the surface (4.2), hence

(4.5) ZM +u(M)) =0, MeZ,,

then the tangential component p7 of the stress vector p, vanishes and the normal
component py is nonpositive.

2°. In the case that
(4.6) Z(M +uM))>0, MeZ,,

the vector p° vanishes at M. However, it is not known when the point (M + u(M))
is at the same time a point of the area (4.2), which is the kernel of our problem. We
further assume a sufficiently small value of the displacement vector u(M),
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]grad Z(M)| > 1 for every M € &, and the boundedness of the first and the second
derivative of the function Z(M). Hence, making use of the Taylor formula for the
function Z(M) + u(M)):
o Z(M + u(M)) = Z(M) + grad Z(M) . u(M) + o ]|
we can linearize the contact conditions and write
(4.7) Z(M) + u(M).grad Z(M) =0 p5=0; py <0,

Z(M) + u(M) .grad Z(M) > 0 p5;v; =0=p;, MeZ,.

Hence a displacement vector field u(M) is kinematically admissible for the contact
problem if it satisfies the following conditions:

(4.8) 1° 1I(M ;u(M)) = Z(M) + u(M) . grad Z(M) =2 0,
2° py=0,
3° py (M ;u(Mj) =0

for every M e &..

The identity (4.8,3°) expresses the complementary condition for a variational for-
mulation of the problem. The condition (4.8,1") means that the rigid punch can not
penetrate into the body (the cylindrical shell) and the complementary condition,
that a nonzero contact stress exists only at such points at which the punch is in ac-
cordance with the shell. Due to the Kirchhoff hypothesis about normal element
conservation for M € &, we put '

(4.9) u(M)=<u—ezl, v—fal,\v>,
x

a 0
where {u, v, w) is the displacement vector of the middle surface &,.

5. DISPLACEMENTS VARIATIONAL FORMULATION

~ We search a solution of the contact problem on a convex subset of the space
(51 w(Q) = H(Q) x HY(Q) x H*(Q).
Let us define the subspace of W(Q) by

(5.2) V(Q):{u:(u,v,w)eW(Q)lu=v=w=‘2—w=00n 6!2},
n

where we consider boundary conditions in the sense of traces. Further, we introduce
the set of kinematically admissible displacements by

(53) - K(Q)={u= 4 o)yeV(Q) I(M; u(M)) 20 for a.e. Me %} .
Lemma 1. The set K(Q) is convex and closed in V(Q).
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Proof. Convexity follows directly from the form of the set K(Q). Let (u*) e K(Q)
be convergent in V(Q). Then the sequence I1(M; u*(M)) is convergent in [ L,(2)]*
and TI(M; u"(M}) = 0 for every k and a.e. M € .. Then also the limit element
u e V(Q) must satisfy the last inequality and hence u € K(Q) and K(Q) is closed.

Following [16] we introduce the system of six deformation operators

N@)T = O, (u). o Vo)

for

(5.4) Ny(u) = ¢4y, Ny(u)=Cay, Ny(u)=3(1s + 21)
Ny(u) = X1, Ns(u)=X,,, Nogu)=X,,,

where

ol a op 0x 27,

2 2’ 2
XIIZ%, XZZZ 1<6“+W’>, X12=i<2 ow _I_@_l?}f).
X

P LBV U L =1<ﬂ—w),

a* \d¢p? 2a\ 0xdp Ox a dp
Moreover we define the system of six operators of forces and moments

$T=4¢(5,85 ..., S¢>

with »
(5:5) Si =Ny, S =Ny, S3=2N,
S4 = —Myy, Ss=—M,y,, S¢= —2M,,,
where
N1 :B([n‘*‘ﬂfzz)’ My, = = D(X,; + pX,,),
Nia =4B(1 — p) (412 + ¢31) s M, =—-D(1 - p)X,5,
N22=B(fzz+#{11)’ My, = —=D(X;5; + nXyy),
e e’
B =2E , D =2E—(1-p4?,
1 — pu? 3
" i — the Poisson number.
Now we have ‘
(5-6) S = [K] N(u),
where [K] = [K;;] is a constant, symmetric and positively definite matrix of the form
|B B
B B .o
e 2B(1 =) .
(K] = - : D D
D D .
2D(1 — p) |
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We introduce a bilinear form a(¢; v} on the space V(Q) by

Q

a(u; v)=j N(u)" [K] N(v) d@ =f Vifa]ude, uveV(Q),
)
where
oy BB e e Fo\T
Tox a9’ U ox dp  ox dp ox® dxdp 092/
ou du dv v ow ow Pw  *w  Pw\T
U': Uy—, — U, — —, W, —, T T T T2
ox 0 ox 0o 0x dp 0x* odxdp 0¢®
(continued p. 415).

Lemma 2. The bilinear form a(-; *) is continuous on V(Q) x V(Q).
The proof can be found in [16].
An element ue K(Q) satisfying the variational inequality

(5.7) a(u;v —u) 20 forall veK(Q)

or equivalently

(5.7,) &(u) < &(v) forall veK(Q),

where &(v) = 1a(v; v), is called a weak variational solution of the contact problem.
The variational inequality (5.7) corresponds to the principle of virtual work in the
unilateral problem for a cylindrical shell.

We can express the bilinear form a(u; v) in the form

a(u; v) = (Au; v)p g forall u,veV(Q),

where o : V(Q) > V*(Q) is a linear bounded operator and <*, * Yy g, is the duality
pairing between V(Q) and V*(Q). The inequality (5.7) can be expressed in the form

(5.8) (AU; ¥ — Uy = 0.
Further we define the operator E as the restriction of the operator & on the set
D(E) = {ve V(Q)| #ve[L(Q)]*} by

Ev = ov forall veD(E).

The set D(E) is dense in [L,(2)]* and the operator E is unbounded and closed from
[L,(2)]® = [Ly(Q)]. Then for ue V(Q) n [H*(Q) x H*(Q) x H¥Q)] = D(E) we
have

a(u; v) = (Eu; ¥)yop
and the variational equation

(5.9) a(u;v) =0 forall ve[D(Q)]?
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is equivalent to
(5.10) ‘ Eu=0

(the equilibrium equation in the sense of distribution), whose scalar form is

o ( Ee* [1 e\ou p ov 1 e? e? 0%w
- = —(1+ =)+ E 21+ ) - == —
ox (1 — ula* 3¢2)0x  a* d0p a® 6a’ 6a’ ox?*
ue? 0w 0 Ee 1 e?\ du 1 v e* 3*w
-E 22 J=(1+ 2 )&+ - 22 2Py,
6a® d¢? 0p 1 + u|2a? 3a2) 0p  2a% 0x  6a® 0x dp
_Of[_Ee 1 (ou_ov\|_O0[_Ee (pou_dv_ p \|_
ox |1+ u2a*\0p 0x op |1 —p?\a?0x 0dp a
2 2 2 2 2 A2
Ee _1.1+_e~ él_l_+ﬁgli+_l_ 1+e W._.e a_w_ﬂe M.*.
1—p?la® 6a’) ox a dp a® 12a? 12a* 0x*>  12a® 0p*.
o? Eé? ou ’w 5 0w
+ ——— —2——aw+ a— + pa* — || —
ox? | 12a°(1 — p?) ox ox? dp?
0? Ee? ow 0w
- - — +a +
ox d¢ | 6a’(1 — p) o ox 0o

o? Eé? ou ?w 0w
+—=|— | -2u——paw+pa— +a>—|J|=0.
ox ox?

ay? | 12a°(1 — p?) dp?
We define the unilateral contact problem for a cylindrical shell in the following

way:

Problem (2). To find such a sufficiently smooth vector function u that
(5.11) py(M) = Eu(M) on & ={OM = &(x, ¢) + ev(p), (x, )€ Q}
and
(5.12) pM)=0 on ¥ - %,

Py(M) S0, N(M;u(M) 20 on 7.,
pu(M) I(M;u(M)) =0 on &, (acomplementary condition),
pr(M) =0 on ¥,

u=v=w=»a~w=0 on 0Q.
on

Theorem 1. Let u € K(Q) be a solution of (5.12). Then
(5.13) a(u;v —u) 20 forall veK(Q).
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On the other hand, if ue K(Q) is a solution of (5.13), then
pi(M) = Eu(M) < 0 (in the sense of distributions),
HI(M; u(M)) = 0 (in the sense of L,(2.)).

Moreover, if ue[H*(Q) x HX(Q) x H*(Q)] n V(Q), then

Eu = pye L,(Q,) and pyII(M;u(M)) =0 a.e. in Q, and py < 0 in the sense
Of LZ(QL‘)

Proof. The conditions (5.12) imply the inequality
(5.14) py(M) [T(M;v(M)) — TI(M;u(M))] £0 forall veK(Q).
Multiplying the equation (5.11) by (v — u) and integrating by parts we obtain

(5.15) . a(u; v — u) =j p. (v —u)dQ.

“ce

For the active points M of the contact on Q, we can write
(5.16) grad Z(M) = —y o(M),

where o(M) = [grad Z(M){ > 0 (a smooth convex surface = the boundary of the
punch). Then we arrive at

(5.17) pi(v — u) . grad Z(M) = p§[(Z(M) + v . grad Z(M)) —
— (Z(M) + u . grad Z(M))] = ps[I(M; v(M)) — II(M; u(M))] £ 0
(due to (5.14)). . -
Using the condition (5.16) we obtain the estimate
0 = py(v — u). grad Z(M) = —pf o(M) (vy — uy), which holds for pj <0,
o(M) > 0if and only if (vy — uy) < 0 for every v € K(Q).
As

j pe. (v — u)dQ =j ((pg,v + Py <(UN - uN)v + (VT — uT)>)dQ =
Qc Qc

=.[ pg(UN_uN)ngO(P;'Eo)a
Qc

we have, taking into account (5.14), the inequality (5.13).

On the other hand let u e K(Q) be a solution of the inequality (5.13). Let ¢ =
= ¢(x, ¢) = {@;, @2, ¢3» be a smooth vector function that satisfies the homo-
geneous boundary conditions and its restriction on €, is zero. Then u + ¢ € K(9Q),
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and inserting v = ¢ + ¢ in (5.13) we have a(u; ¢) = 0. Hence the homogeneous
equilibrium equations (the equations (5.10) on Q — Q) are fulfilled in the sense of
distributions. Then from the inequality (5.13) we obtain the estimate (for a smooth
function u)

(5.18) {Lu; ¥ — Uy = (E" v — ”)[Lz(!?c)P =

=J p(M). (v(M) — v(M))dQ2 2 0 forall veK(Q)

<J‘ p(M) . (v(M) — u(M))dQ = 0 for all veK(Q)) .
-9,
Putting ¢(M) = v(M) — u(M) on Q and using ¢(M) = ¢y v(M) + @ we obtain
(5.19) 'f Poon dQ +f B 9, dQ 0.
2 2

If we have contact at a point M € &, then (5.16) yields (M) < 0, ¢(M) arbitrary.
The set

(5.20) w(Q.) = {peV(Q)| ¢x(M) =0; Me 2.}
is a linear subspace of [L,(2.)]*. Analyzing (5.19) we have

'[ p(u). 07 dQ2 =0 forany ¢eW(Q,).
2. _

Then we have

(5.21) p(u(M)) = @ forany Me 2,

as an element of the space [ L,(2,.)]?, which due to (5.19) implies

(5.22) J pi(u)(vy — uy)dQ =0 forall veK(Q).
2.

Let us denote by #, the zone of contact, i.e. the set of such points M € &, that
the relation (4 8) is an equality. We put @y = vy — uy on &, assuming additionally
oy =0o0n &, Puttingv=u+ ¢ e K(Q) for |(p] cufﬁcwntly small with a suitable
support, we obtain pj(M) = 0 for every Me ¥, — &£, as an clement of L,(R,).
The inequality (5.22) now implies

j va(u) oydQ 2 0 for all Py E Lz(Qc) , on=0,
Q¢

because v = u + ¢ € K(Q) for oy <0, ie. py(u(M)) <0 in the sense of Ly(Q,)
for every M € &..

Remark 1. For p§ < 0 in the sense of distributions we can show the following
interpretation. Let D(Q) = {¢ € D(Q) | ¢ < 0}. Then D(Q) is a negative cone of test
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functions. Hence we define a nonpositive distribution py < 0 if {py, ®>p@.,) = 0
for every ¢ € D(Q,), where (-, *>pq,, is the pairing between D*(Q2) and D(). The
complementary condition pglI(M; u(M)) = 0 a.e. on in (5.12) wilt be verified in
Section 7 after using a Lagrange multiplier.

6. EXISTENCE AND UNICITY

We use a technique of Hlavddek, Necas [8] for the proof of existence of the above
problem.

The matrix [K] is positively definite, symmetric and hence
6
(6.1) a(v; v) 2 “J’ IN(v)|* d2 = “[ZXHNJ(")“iz(Q) » x>0,
° =

(6.2) a(u; v) = a(v; u) for any u, ve K(Q).

Let Py(q, be the subspace of possible virtual displacements of the middle surface
of the shell as of a solid body, i.e.

(6:3) Py = {ve V(Q)IEHN/(V)H%Z@) = 0}.

Lemma 3. The system of operators {N(u)}{_, is coercive on V(Q), i.e. there exists
such a ¢ > 0 that

6
(6.4) £§1||Nt(”)"12~z(m + ”"“[ZLZ(Q)JS 2 C“"”!Z'm) forall ueV(Q).

Further, due to ([8] — 10.4.5) we have
Py = {0} .
Then due to (Lemma 11.3.2. — [8]), Lemma 3 and the inequality (6.1) we obtain

(6.5) a(v;v) = oy |v[} forall veV(Q), « >0.

Theorem 2. There exists a unique solution ueK(Q) of the variational ine-
quality

(6-6) (AU ¥V — Uy = a(u;v — ) 20 forany veK(Q).

Proof. We formulate the penalized equation

(6.7) a(us v) + 1 {B(Y), YOpoy =0 forall veV(Q),
€
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where the penalizator f : V(Q) — V*(Q) is of the form

(6.8) <P(u); vivio) = ‘J

[Z(M) + grad Z(M) . u(M)]~ grad Z(M) . v(M) dQ

with v* =sup(v,0), v~ =sup(—v,0), v =0v" — v~ the linecar form v —
= [o.[Z(M) + grad Z(M) . u(M)]~ grad Z(M) . vdQ is continuous on V(Q) and
defines the functional (u) e V*(Q).

The properties of f:

1° Lipschitz continuity: Using the inequality ((a + ¢)™ — (b + ¢)7)d <
< la - bl |d[ for arbitrary real numbers a, b, ¢, d, we can write

CBY) — B(W): Wyvia) = j L) + grad 2(00) w() -
— [2(M) + grad Z(M) . ;(M)]“} grad Z(M) . w(M) dQ <
< L |grad Z(M) . (u(M) — v(M))| |grad Z(M) . w(M)| dQ <

< const V(M) = (M) WO o

(using the theorem on traces [15]);

2° B(u) = 0 <> [Z(M) + grad Z(M) . u(M)]~ = 0 < u € K(Q) (considering the
estimate Igrad Z(M)l > 1);

3° monotonicity on V() :
CB(v) = B(u); v = Wyg) =
_ - f ([2(M) + grad Z(M) . v(M)]~ — [Z(M) + grad Z(M) . u(M)] ")
’ [erad Z(M) . (v(M) — u(M)] dQ =

- f {[2(M) + grad Z(M) . ()]~ — [Z(M) + grad Z(M) . u(M)]")

Il

{[Z(M) + grad Z(M).v(M)]~ — [Z(M) + grad Z(M) . u(M)]} dQ =
= J {[Z(M) + grad Z(M) . v(M)]™ — [Z(M) + grad Z(M) . u(M)]"}?*dQ = 0,
where we have used the relations: —(a” — b7)(a — b) = —(a” — b7).
Jat—a )= (" =b)]=—(a —=b )@ b )+ (a —b" ) 2
>(a” — b7)? forany a, beR;

4° hemicontinuity: It is a consequence of Lipschitz continuity of the operator f3,
ie. for u,v,weV(Q) the function A — {B(u + Av); W)y, is continuous on R.
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Applying the theory of monotone operators [14] we obtain a unique solution
u e V(Q) of the penalized equation (6.7).

Now we verify that the solutions u, € ¥(Q) are bounded with respect to e. Let
Vo € K(Q) be an arbitrary element. Inserting v = u, — v, in the equation (6.7) and
using B(v,) = 0 we arrive at

(69) a(ux; u, — VO) + i <ﬂ(uc) - ﬁ(vo), u, — VO>V(Q) =0.

The monotonicity of § implies
(6.10) a(u; u, —vy) 0,
while the ellipticity of the form a(+; -) yields

CilulViey = Calulvie Vol via

and
(6'11) ||usHV(Q) =C,

where C does not depend on e.
We can extract such a subsequence (denoting it again by u,) that

(6.12) u, —u (weakly) in ¥(Q) for ¢—0.

Further the equation (6.7) and the estimate (6.11) imply

(6.3 1By = sup <2 — o),

vio [V]yo

and, due to (6.11), (6.13) we have T

lim {f(u,); u, — Vv =0.

en0
Using the monotonicity of  and the weak convergence (6.12) we arrive at
(6.14) (=B(v); u=VDy =0 forall veV(Q).
letv=u+ Aw; 1> 0; we V(Q) Then the inequality (6.14) implies
(6.15) {B(u + AW); W)y = 0 forany 1>0.

Using the hemicontinuity of  we obtain after A — 0

(6.16) {P(u); Wy 2 0 forall weV(Q)

which implies f(u) = 0 and u € K(Q).
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Inserting in (6.7) v — w, instead of v; v € K(2), we have
1
(6'17) a("s; v — “e) =- (ﬂ(v) - ﬁ(”e); V= Uy =0.
€

The bilinear form a(v; v) is weakly lower semicontinuous on V() and (6.12) implies

(6.18) a(u; ¥) < lxm inf a(u,; u,)

and the inequality (6.6) follows immediately from (6.17).

It remains to verify the unicity of a solution of (6.6). If u, u, € K(Q) are two
solutions of (6.6), then a(u; — u,; &, — w,) <0 and u; = u,, because the form
a(v; v) is coercive — (6.5).

We have verified that a sequence of solutions (u,) of penalized equations converges
to a solution u € K(Q) of the variational inequality (6.6), if ¢ - 0. We shall verify,
using the Lagrange multiplier, that the approximate force py, = —1/e (JI(M; u,))” .
. grad Z(M) converges to the contact forces for the unilateral problem, if ¢ — 0.

The physical meaning of the penalized member is described in [11] and [16].
The vnhysical idea is rather simple: the solid punch is approximated by continuously
distributed feathers with rigidity l/s for sufficiently small ¢ > 0. If ¢ —» 0 the feather
of foundation turns into the rigid one and the condition (4.8) can be replaced by the
relation

(6.19) Pe = ! [Z(M) + grad Z(M) . w,(M)]~ grad Z(M),

which represents a boundary condition for a unilateral feather supporting. Replace-
ment of the condition (4.8) by the relation (6.9) means that the intensive contact
stress is determined on the region Q, as the penalization, if the obstacle II(M; u) = 0
generated by the solid punch is abolished. Replacement of the solid punch by a system
of solid feathers is called the penalization of the obstacle (4.8) with ¢ as a parameter
of penalization.

7. A DUAL FORMULATION OF THE PROBLEM (2£)

We introduce a real function w(¥, x) by

(7.1) o(v, p) =f plI(M;v)dQ; veV(Q), ued (2),
2

where

(7.2) A47(2,) = {u eLz(Qc)| u < 0}-convex cone .

A function w(v, p) is homogeneous with respect to u:

(7.3) o(v; ku) = kw(v; ) forany p <6, keR.
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The convex set K(2) can te characterized by

(7.4) veK(Q)©f wII(M, v)dQ < 0 for any neA7(2,).
2
We introduce the Lagrangian by
(7.5 L(v, p) = &(v) +J~ plI(M,¥v)dQ on V{(Q) x Lx(€.),
2

&(v) = ta(v;v).
Let us denote

&(v); veK(Q),
7.6 Exav) =<
(7.6) k") \+oo; v¢K(Q).
Lemma 4. Let (7.2) hold. Then
7.7 Exa(v) = sup L(v;p).
ned=(R2¢)

Proof. We have [, uII(M; v)dQ < 0 for all v € K(@) and p € 47(2,). Moreover,
0 e A7 (RQ,) which implies

sup Z(v,pn) = &(v) + sup f pII(M, v) dQ = &(V) = Ex@)v)-

ned=(2¢) ned = (2¢)

c

Next, if v ¢ K(Q), there exists such an element p* € A7(Q,) that [o, #*II(M, v) dQ =
= 0O > 0. However, A7(2,) is a cone and kue A~ (R,) for k > 0. Moreover,
fo. kp*fI(M, v) dQ = kO > 0. Consequently,

sup ZL(v, u) Z sup L(v; ky) = E(¥) + sup kO = +00 = Exq)(v).
20 k=0

pned = (2c) k

If an element 4 € A™(€,) satisfies the relations

(7-8) inf &(v) = inf sup Z(v;u) = inf L(v; 1)

veK(R2) veV () ued = (2:) veV ()

then it is called the Lagrange multiplier of the original problem and 1 is a solution
of the dual problem.

Dual problem (#*). To find the element A€ A~ (R,) realizing

(7.9) sup { inf [é”(v)+ Lcun(M; v)dﬂ]}.

ned=(2:) (veV(R)

Lemma 5. There exists at least one solution of the problem (#¥).

Proof. For pe A7(R,) there exists an element u, € K(2) realizing

inf {é"(v) + f un(u; ) dg} .

veV(22)
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Denote M(u) = inf {E(v) + [o ulI(M;v)dQ}. Then the function u— M(p) is
veV(2)

concave and weakly upper szmicontinuous. As A_(QC) is convex and closed in LZ(Q(),
there exists an element 1€ A7(Q,) for which M(4) = sup M(u), which implies the

ueA~ ()
proof of Lemma 5.
The next step is to verify the existence of an element A € 47(Q,) satisfying the equa-
tion (7.8). Hence the original problem on K(€) is equivalent to the minimum problem
on V(&) (the space without any obstacle).

Lemma 6. Let the set A7(8,) be defined by (7.2). Then 2 € A™(Q,) is theLagrange
multiplier and u € K(Q) minimizes &(v) on K(Q) if and only if

A(M; u)dQ < &(v) +f MI(M;v)dQ forall veK(Q),
Q¢

(7.10) 1° &(u) +f

2

2° f plI(M;u)dQ £ 0 forall peA (Q,),
[

3°f MI(M; u)dQ = 0.
Qe

Proof. If the relations (7.10) hold, then u € K(Q) due to (7.9,2°) and u minimizes
&(v) on K(Q) due to

&(u) = &(u) + J

Qc

AI(M; u)dQ < &(v) + J AMI(M; v)dQ < &(v)
2
and ‘
(7.11) inf &(v) = inf Z(v; 2).
veK(Q) veK(R2)

Conversely, suppose that A is the Lagrange multiplier and u minimizes &(v) on
K(Q). As ue K(Q) we have [ ul1(M; u)dQ < 0for all p€ A (Q,) and in particular
fo. AI1(M; u) dQ < 0. On the other hand, due to (7.8)

&)= inf L(v;i) < ZL(u; ) = &(u) + f AII(M; u) dQ
veV(2:) 2.
which implies [, AII(M; u) dQ = 0 and hence [, AII(M; u)dQ = 0.
We now have ‘

(7.12) &(u) +f ATI(M; u) dQ = &(u) = inf Z(v; 1) =

veV(R2)

veV ()

= inf [é"(v) +'[ A(M; v) dQ:I .
2.
We can formulate the following theorem: -
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Theorem 3. The element {u; Ly € K(Q) x A™(Q,) is the saddle point of the func-
tional £(v; ), i.e.

(7.13)  L(u,p) £ L(u, A) < L(v,d) forany pedA (), veV(Q).

Proof. The assertion of the theorem is a consequence of Lemmas 4, 5, 6.
Lemma 7. The element {u; 1) solves the problem (7.13) if and only if

(7.14)  a(u;v) +—[ Agrad Z(M).vdQ =0,
2
J (W= A)N(M;u)dQ £0 forany veV(Q), ieA (2).
2

Proof. The equality in (7.14) expresses the condition grad, #(v; A) = 0, which is
equivalent to the right hand side of (7.13), the nequality in (7.14) is identified with
the left hand side of (7.13).

Integrating the equation in (7.14) by parts we obtain (for a smooth u and vanishing
tangential contact forces)

Eu = 0 — the equilibrium equation ,
0Z
—J' pfjvde +I A—dQ2 =0,
Qc 2. 0x;
and hence we have
piv; = M0Z]ox;) — the equilibrium equation on the contact area of the cylinder.

A physical interpretation of the Lagrange multiplier A can be given in the following
way. Due to the vanishing forces we have the relation

p@:l?z; MeQ,.
Ov

Also we have

8. FINITE ELEMENTS APPROXIMATION

The approximation of the problem (2) consists of two steps.

1° Replacing the problem (£) by the finite dimensional problem (2).
2° Numerical solution of the problem (2,).

The problem (£,) means in this case the finite element approximation of the prob-
lem (2). Let {#,}, 0 < h < hy < o0, be a regular system of triangulations of the
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region Q. That means that

Q= U T, i=12,...,n(h),

TieFn

where fi > 0 is the maximal length of sides of all triangles from Z,.

2. There exists 9y > 0 such that

min 9" > 9, forany he(0, hy),

She gy
where 9" is an arbitrary interior angle in an arbitrary triangle of the triangulation .
If .4, denotes the set of all nodes of the triangulation &, then we assume

(8.1) My, < My, i€ > b,

Let Te %, be the triangle with vertices a,, a,, as, mid-points b; = %(aj_1 + aj“)
and let ¢; be the intersection of the sides a;_;a;,; and their normals v;, j = 1,2, 3.

(We denote g = as, A, = a).
It is known from the interpolation theory [2] that the foliowing 21 va]ues —

degrees of freedom
(8-2) Xr = {P(ai)y Dp(ai) (ai—1 - ai)’ Dp{ﬂi) (”i+1 - ai}v 1 3

D> pla)(ajy —a;)’, 1= 0,j =35 Dplb)(a;—¢;), 1 £i <3}
uniquely determine a polynomial of the fifth degree ps € Po(T;) — the Argyris element.

For every triangulation &, we now introduce finite dimensional spaccs

IIA

i

A

liA

(83)  X)(@) = {v,e CUR)| vyq, € P(T) for eny T, e F), v, = 0 on 0Q}

(8.4)
o
Y,(Q) = {UheC (@)] vyr, € Po(T) forany Tie &, v, = " = 0 on ag)}
on
The space
(8.5) V(Q) = X,(2) x X,(Q) x Y,(Q)

is a finite dimensional subspace of the space V{Q}. We define a finite dimensional
approximation of the convex sct K(S)) by

(8.6) K@) = {&, = Cuy, 0, wp> € Vi(Q)| Ia;; wfa;)) = 0
forany a;€ .4, Q,} .

We can now proceed to the finitc dimensional approximation of the problem (9):

Problem (2,). To find a vector-function u eK,(Ol such that
h h a

(8.7) alu, v, — u,) 2 0 forany v,eK, Q).
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It can be verified in the same way as in the case of the set K(Q) = V(Q) that the set
K(Q) = V(Q) is convex and closed. Then we obtain a theorem analogous to
Theorem 2.

Theorem 4. There exists a unique solution u, € K\(Q) of the problem (2 ,,) for
every he (0, hyd.

We further show that a sequence u,, of solutions of the problems (2,) converges
to the solution u of the problem (2). First we verify the weak convergence.

Lemma 8. Let u, € K,(Q) be a solution of the problem (,@,,) Sor every he (0, hy),
let ue K(Q) be a solution of the problem (2). Then

(8-8) u, — u weakly in V(Q) for h—0.

Proof. Choose a sequence {v,} € K,(Q) such that |[v,[,o, < C; for every h €
C(O ho»>. Due to the coercivity of the form a( -) we obtain the boundedness of
the sequence {u,} € K,(Q) of solutions of the problems (#,):

(8.9) [ully @) = C for any he(0, hy) .
Then there exists a subsequence chosen from {u,} (denoted again by {u,}) such that
(8.10) u, —~ u* weaklyin V(Q).

We have to verify u* = u is a solution of the problem (£). First we show that
u* = (u*, v¥, w*) e K(Q), ie.

(8.11) II(M, u¥(x, 9)) 2 0 forany (x,¢)eQ.
As u, = {uy, v, w,> € K,(Q), we have
(8.12) (M, ufa))y =0 forany a,e.,n Q..

Let & > 0. As the function u, is uniformly continuous on @, there exists such
a number hy € (0, hy) that

\(8.13) (M, ux, ¢}) = —¢ forany (x,¢)eQ,.

The sct o
K (Q) = {u = (u,v,w) e V(Q)| (M, u(M)) = —¢ forany M e Q,}

is convex, clos:d and hence weakly closed in V(Q) Thus we have with respect to
(8.10) u* € K(¢2) and hence

(8.14) H(M, u¥(x, ¢)) = —¢ forany (x,¢)eQ,.
As ¢ > 0 is an arbitrary positivc number, we obtain
(8.15) H(M, u¥(x, ¢)) = 0 forany (x,¢)eQ,,

which means that u* e K(Q).
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It remains to show that u* is a solutions of the problem (£). Let ve K(Q) n
A [C*(Q)]?. Denote by v; the V,(Q) — interpolation polynomial belonging to the
function v € K(Q). Obviously v; € K,(Q), because I1(M, vi(a;)) = I1(M, v(a;)) = 0
for every a; € .M, n Q.. This means

(8.16) a(uy, vi —u) = 0.
Using the estimate [2]
(8:17) [v = Villvie) < ¢ h]|¥[tn2e) <22y < muon for any ve V(Q) n [C2(Q)]°,

we can write

IA

a(uy, vi — u) = —a(u,, v — v;) + a(u,, v) — a(u,, u,) .

The function a(-, *) is lower semicontinuous on V() and by (8.10), (8.17) we obtain
the inequality

(8.18) a(u*,v — u*) 2 0 forany veK(Q)n[C*(Q)]?

by letting h — 0+. .

It is verified in [6] that the set K(Q) n [C*(@)]° is dense in K() and the ine-
quality (8.18) holds also for arbitrary v € K(). Hence u* is a solution of the problem
(#). We have then u* = u due to the unicity of the solution of (%) and the proof
is completed.

The following theorem asserts the strong convergence of the sequence {u,}.

Theorem 5. Let uy, € K,(Q), h€(0, hy) and u e K(Q) be solutions of the problem
(#,) and (2), respectively. Then
(8-19) lim |u, — u]y =0.

B0+
Proof. Using the inequalities (6.5), (8.7) we obtain the estimates
cillup — ufpo) S a(u, — u, v, — u) < a(u,u — u,) +
+ a(u,, v —u), ¢, >0, forany veK(Q)n[C*(Q)]*.
Passing to the limit we arrive at
(8.20) 0= ¢, li:nosizp lu, — uly) < a(u, v — u)
forany veK(Q)n[C®(Q)].

As the set K(Q) n [C*(Q)]? is dense in K(Q), the inequality (8.20) holds for every
v € K(Q). We can now put v = u and obtain

0 < lim inf ||u, — u||}q) < lim sup ||ju, — u|}, £ 0,
h=0+ h—0+
and the relation (8.19) follows.
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