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SVAZEЮ8 (1983) AP Ll KACE M A T E M ATI KY ČÍSLO 6 

A NOTE ON A DISCRETE FORM OF FRIEDRICHS' INEQUALITY 

LIBOR CERMAK 

(Received July 7, 1982) 

Discrete forms of Friedrichs' inequality in two-dimensional Euclidean space were 
introduced and analysed by Zenisek [5], [6]. These inequalities enable us to extend 
the theory of curved finite elements introduced in [ l ] to the case of boundary value 
problems with various stable and unstable boundary conditions. The aim of this 
paper is to extend one of Zenisek's results, namely to prove the discrete form of the 
"classical" Friedrichs' inequality in the n-dimensional Euclidean space for arbitrary 
n ^ 2. The finite element space on which the discrete form of Friedrichs' inequality 
is proved originates from the 1-regular triangulation of simplicial isoparametric 
elements. 

Following Ciarlet and Raviart, see e.g. [ l ] , we introduce the 1-regular family {K}*, 
of simplicial isoparametric finite elements K. We are given 

^K 

(a) A set tK = (J {diK} of fi[K distinct points of Rn such that its closed convex 
i = i 

hull K is the unit n-simplex. 
(b) A finite dimensional space PK of functions defined on K with dim PK = $K 

such that tK is PK-unisolvent, i.e. the Lagrange interpolation problem: "Find 
pKePK

 s u c r l t n a t i?K(ai,K) — ah 1 =. i = ^K" n a s o n e a n d only one solution 
for any real numbers a f. 

NK 

(c) A set IK = (J {ai>K} of NK distinct points of JR". 
i = i 

Then the finite element K is the image of the set It through the unique mapping 
FK : K —> Rn which satisfies 

FKePK and FK(di<K) = aUK, 1 g i = JVK , 

where the notation FK e PK means that 

FK : A 6 K - FK(X) = ( F r i ( < ) , . . . , FKn(*)) € R" 

with 
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We suppose 

fd) For all h the mapping FK is a C2-diffeomorphism and there exist constants 
c0, ci, c2, independent of h, such that 

(1) sup max |Da FK(x)\ = q/V , i = 1, 2 , 

(2) 0 < c0fc
B

 = |Jx(x)| , 

where a = (a1? ..., a„), |a| = a t + ... + a„ and Jx(*) is the Jacobian of the 
mapping FK at the point x e K. 

Every element K is associated with the finite dimensional space PK (with dim PK = 
= NK) of functions 

PK = {PK I K - K, Tx = M F K ' )* Vj5x e Px} . 

Let us denote by S one of the n + 1 surface (n — l)-simplexes of the unit simplex K 
and by H one of the n surface (n — 2)-simplexes of the simplex S. We denote by ts 

and Ps the restrictions to S of 1K and PK, respectively, and similarly by tH and PH 

the restrictions to H of Zs and Ps, respectively. Let S = FX(S), H = FK(H) and let £5 
denote the restriction of IK to S. 

In the sequel, by Q we mean a bounded domain in R" (n = 2) with .Q e (&1'1 (for 
the definition of such domains see e.g. Necas [3], p. 55). Then we can suppose that 
there exist R coordinate systems {xr} = {(x\, ..., xr

n)}, r = 1, ..., R, such that every 
point of the boundary F of the domain Q can be described in one of such coordinate 
systems by an equation 

xn = (p\x,r) , x'r e Ar, 

see Fig. 1; here x'r = (x\, ..., xr
n_x), Ar is an (n — l)-dimensional closed cube and cpr 

is a function with Lipschitz continuous first derivatives on Ar, i.e. (pr e C1'1(Ar). 
Following Ciarlet and Raviart [ l ] we define the 1-regular triangulation of the 

domain Q. Let Qh be the union of a finite number of simplicial elements K. The 
boundary of Qh is denoted by Fh. Every element K = FK(K) is determined by NK 

points aiK. We suppose that all points aiK belong to Q. The family of elements 
constructed in this way is called a triangulation of Q and denoted by Th. We say that 
a triangulation Th of Q is 1-regular if: 

(a) The family of all elements by which the triangulation is formed is l-regular. 

(b) The geometric shape of any "face" S of a given element K e Qh must be completely 
determined by those points aiK which belong to S, i.e. the set Is contains a Ps-
unisolvent subset. 

(c) The geometric shape of any "edge" H of a given element S e Fh must be com­
pletely determined by those points aiK which belong to H, i.e. the set 2H contains 
a PH-unisolvent subset. 

(d) There exist Lipschitz continuous functions \jjr defined on Ar, r = 1, ..., R, such 
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that every point of the boundary Fh may be described at least by one of the 
equations 

xr
n = xjj\x") , x"eAr, 

see Fig. 1. Moreover, we suppose 

(3) max \cpr(x") - il/r(x")\ g ch2 , 
x'reAr 

where c is a constant independent of h. 

*z, 
rř : <,'fíw r1": c f^2 

It can be proved that the assumption (d) in the above definition follows from the 
assumption 

(d') All points aiK lying on rh belong to F. 

In the sequel we will suppose that for a 1-regular triangulation the assumption (d') 
is fulfilled. 

The parametr h has the usual geometrical meaning, i.e. h is the maximum of dia­
meters of finite elements {K]> It is understood that h approaches zero in the limit. 

A given 1-regular triangulation is associated with the finite dimensional space Vh 

of Lipschitz continuous test functions v defined by 

Vh = {v | v E C 0 ' 1 ^ * ) , vK e PK, VK e Qh} , 

where vK is the restriction of the function v to the set K. 
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Let us denote 

r = {(*", (pr(x")) | X" E A"} , rh = {(X", r(x")) | X" E A"} . 

For a function v defined on Fr we denote 

(prv(x") = v(x",cpr(x")), x"EAr 

and similarly for a function w defined on FJ" we denote 

rw(x") = w(x", r(xfr)) , x " e , 4 r -

In the sequel the constants independent of h are denoted by c. The notation is 
generic, i.e. c does not necessarily mean the same constant at any two places. 

The norm in the Lebesgue space L2(A) is denoted by ||*||o,A> l n e norm in the 
m 

Sobolev space Hm{A) by \v\\mA = ( £ |» | ?J 1 / 2 , where |t>|M = ( £ |D"»|SM)1 /2 , 
i = 0 |« | = » 

and the norm in the Sobolev space Wm'°°(A) by ||y||m>00>^ = max Hf>00>^, where 
0 = i ^ m 

H/,oo,,4 = max ess sup |Dav|. 
|a| = i XEA 

The norms in the Lebesgue spaces L2(F) and L2(Fh) are denoted by ||v||0,T = 
= (J> v2 dF)1/2 and |H|0,Th = (J*Th v

2 dFft)
1/2, respectively. 

Let <P(x) be a function defined on the element K. Then the function &(FK(x)) is 
defined on K and we will denote it by $(x). 

Now we are able to formulate and to prove the discrete form of Friedrichs' ine­
quality. The following theorem extends Zenisek's results [6] to 3 and more di­
mensions. 

Theorem. Let xhbea l-regular triangulation of the domain Q e (£i,1.Let F* be part 
of the boundary F with meas F* > 0. Then for any function v e Vh there exists 
a constant c independent of h and v such that the inequality 

(4) IM[ IA = c(NkTH* + M I.AJ 

holds true for all h sufficiently small. Here F* denotes the set 

F* = {x | x E S, S E Fh is such that Zs E F*} . 

The p r o o f of the theorem will be accomplished in five steps. 

1. Given a function v e Vh we construct the extension v e Hi(Qh u Q) such that 

(5) Wi.o^^c*1/2 |Hli.-i,-

2. We prove the inequality 

(6) Iklkoh = cNk«-
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3. We can suppose that F* may be completely described in one coordinate system 
{xs} for some s e {1,..., R} (otherwise we take F* n Fsfor a suitable s instead of F*). 
Moreover, we can suppose that for all h sufficiently small the inclusion 

(7) CDS = {x's I x,s e As, (x's, (ps(x's)) e F*} c {x's | x's e As, (x's, \ps(x's)) e F*} 

holds (otherwise we take a suitable subset of F* with nonzero measure instead of F*). 
From Friedrichs' inequality we deduce 

(8) ||*>||i,o = c(P\\o,r* + |^|i,fl)-

4. We prove the inequality 

(9) IH|o,r* ^ c (Ho,r h * + \v\ltQh + \v\UQ-oh) • 

5. Combining (6), (8) and (9) we obtain 

H i , n h -S c(H|o,rh* + H i , ^ + \v\i,Q-Qh). 

Hence and from (5) we get the assertion of the theorem. 

Proof of Step 1. We define the sets 

Ar
e = {x\x = (x'r, xr

n), x'r e Ar, dist (x'r, dAr) > 0, \xr
n - cpr(x'r)\ < e} , 

where £ is a sufficiently small positive number, see Fig. 1, Then for h sufficiently 
small we have 

Ae = U Ar
B 3 Q - Qh. 

r = l 

The theorem on the partition of unity, see e.g. Yosida [4], p. 61, asserts that there 
R 

exist functions ar e C00^") such that supp (ar) cz Ar
e and that £ ar(x) = 1 for any 

r = l 

xeAe. 
For a function v e Vh we define functions 

(v(x), xeAr
enQh, 

vr(x) = i v(x'r, V{x'r)) , x e Ar
e - Qh , r = l,...,R. 

[0 , x e Ae — Ar
e, 

Further, we define the function 
R 

v(x) = ]T ar(x) vr(x) , x e Ae. 
r=i 

Evidently v(x) = v(x) for x e Ae n Qh. If we set 

v(x) = v(x) for x e Qh — Ae, 

461 



then v is the extension of the function v from Qh to Qh u A£. Moreover, from the 
smoothness ot the functions \j/r we deduce that v e Hl(Qh u A£) and hence also 
veH\Qhu Q). 

Let us denote Br = Ar n (Q - Qh), B'r = {x'r \ x'r e Ar, (x'r, xr) e Br}. As Q -

- Oft c (J Br we have 
r= I 

(Ю) | l , ß - » и ѓШlв^lZWìZaЩlвrѓ 
r = l 7 = 1 

R R 

<(2и + l)R max | И | î f 0 0 l 4 v ľ I И l t . i m ^ á c £ \\Ң2

uвr. 
7 = i , . . . , R r = i 7 = i r = i 

For xr e Br we have i)r

(x"', xr) = v(x'r, tr

r(x'r)); then 

l—(x"-,x:) = 8v(x'r'r^"')) 

dx 

Hence 

(11) Иlî, 

дxr, 

. , Ć>i5r(x'r, t/ф"-)) 
, i = 1,..., и — 1 and — = 0 . õxí 

^ pg r (ҳ' r , XrJ 

<Z>Ҷ..x"") 

^ f y Ш ť r ,^(x,r)J 
a 

^ij+[řr(x"-,xr)]2}dxr 

Æ)Л2

+ [ l, (. ť^.- ( x '0)]4dx r 

dx' r = 

dx' r < 
</>-*(*"•) u ' = 1 L 

^ | | ^ r - ^ I k o c B - | M | l , B - = IK/9'' ~ ^ l l o . o o . ^ I I ^ H l U ' 

Let a "face" S have a non-empty intersection S# with the set FJ". If we denote by S# 
the projection of S* into the hyperplane xr = 0, then Ar = \JS*. We can and will 
suppose that the image S* = F^^S*) of the set S* lies in the hyperplane xn = 0. 
Then 

|o,^*"- фrV2 áx"' Z2jfn) dx', 

where JK'n) denotes the cofactor of the Jacobian JK. Hence and from (l) we have 

ЫІЛ.- = ch" |o,š* • 

From the trace theorem and from the equivalence of norms on the finite dimensional 
space PK we immediately obtain 

and consequently 

Using (2) we have 

(12) 

12 
0,Š* 

12 
| l , Ќ й cШ\i+ й c\Ď 2 

0,K 

ФrV\o,s 
,r < CІЃ-ҶtÅ2 

ФrV\o,s* < rh~l\u\2 

= t n \v\o,к ' 
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where K is an element such that S* c OK. From the chain rule (on the differentiating 
of the composite function) we obtain 

(13) 

and consequently 

дғкl ju* 

Jк дXj 

'drv 

.dxj-i 

àx'r 

õv J(iiy 

i= 1 ČXj Jк j 

J("-n) dГ 

/* M - 1 

J S , " J ' = 1 

-f zT'i-^lV^-'zf 
J s * i - i b ' = 1 ^ / - ^ j J * j'=1Js* 

Here again J^'0 is the cofactor of the Jacobian J^.The last equality and (l),(2) yield 

( 1 4 ) llAls.r = Ch-^ 
дv_ 

ÔX: o,ś* 

дv av 1 őv 
ś c á c 

ðxí o,š* o\£f 1 1 ,ќ Җ 

Using the trace theorem and the equivalence of norms on a finite dimensional space 
we see that 

Since 

dv ^ dv 8FKj 

dxt j=i dxj dxi 

we obtain from the last two inequalities and from (l), (2) and (14) 

(15) LHi.s*'- = ch MUK • 

Combining (12) and (15) and summing over all elements S* we obtain 

\\rv\\2
)Ar = Ch -^ lvH^^. 

Together with (11) and (3) this yields 

Walls'Sch\\v\\lQh. 

This together with (10) proves (5). 

Proof of Step 2. For an element K having a non-empty intersection with the set 
Qh - Q we denote K* = K n (Q - Qh) and K , = FK\K*\ Using (1), (13) and (2) 
we have 

r r n r n Pr r)T_1~i2 

(16) \\41K, = \v\l,Kt + \v\U = ^ d * + E I ^ ^ !Kd.^ 

S ch"(\v\lK, + h-2\v\iz„) ^ c o r n e a s ^ ( | 0 | 2
i X ; g + / r 2 |C< | 2 , X i R ) . 

463 



From the equivalence of norms on finite dimensional spaces we deduce 

Mi,*,* = C^UK, i = 0, 1 . 

Hence, from (16), (1) and (2) we get 

(17) \\41K* = corneas£*(|fi |2 f* + h~2\i)\2
UK) ^ c measK*||v | |2jK . 

Let us suppose that 

(18) measK* g ch . 

Then summing over all elements K* we obtain 

(19) \Hloh-^ch\\v\\lQh. 
Since \\v\\2

}Qh = ||v||2>Q + |[v|2,fih_fi, (6) follows for all h sufficiently small from the 
last two inequalities. 

To prove (18) it suffices to prove that for any point x e K* the inequality 

(20) dist (x, dK) = ch 

holds, see Fig. 2. Let xeK* and let x = (x'r, xr„) = FK(x), z = (x'r, il/r(x'r)) and 
z = FK

1(z). Then 

dist (x, OK) = \x - xP\ = \x - 6\ = \FK
l(x) - F~\z)\ = 

= m a x s u p l ^ F ^ ^ ^ l n 
|a | = l yeK y' 

and (20) follows from (13), (l), (2J and (3). 

^ max sup \Dř F^(y)\ max \q>r(y") - f ( / ' ) | 
| a | = 1 yeK y'reAr 

X Ч ^ U ) 

Ғig. 2. 

Proof of Step 4. For any point x's e a>s, for the definition of a>s see (7), we have 

v(x'\ <p%x's)) = v(x's, r(x's)) +T }—s v(x's, T) dT . 
J ij/s(x's) VXn 

464 



Squaring, using Cauchy's inequality, integrating over the set cos and using (7) we get 

(21) £í2(x's, ęs(x's)) àx's й c v2(x'\ V(x's)) áx's + 

+ — v{x",x)\ ár\áx's g c(\\v\\2
0irht 

J cos \J\jjs(x's) LCJXn . J | 
\l,Q-QhvQh-Q) 

Due to the smoothness of the boundary F we have 

n _ 1 r^^sfvts\-\2\ 

Hlr = í v\x's, cps(x's)) J(í + £ l ^ P T ) a*'* ž *\ ť(x'S> <PÍ*'S)) a*'*-

From the last two inequalities we obtain (9). D 

Using the same technique we can prove the discrete form of Friedrichs' inequality 
also for other isoparametric triangulations, e.g. for the triangulation based on using 
quadrilateral isoparametric finite elements. 

The discrete form of Friedrichs' inequality is applied in the analysis of the finite 
element solution of elliptic partial differential equations of the second order with 
unstable boundary conditions, see [5], [6], [2]. To illustrate it let us consider the 
bilinear form 

f* n r\ , »a /* 

bh(v> w ) = E au(x) -z^-^-dQh+ a(x) vw dF* 
jQhiJ=i ' dxidxj Jrh* 

such that 

Z <*ÍJ(X) í£j ^ ct X ř? Vx e Qh, {£u ..., Q e R", cx > 0 , 
1 ,7= 1 i=l 

and 

a(x) ;> c2 > 0 Vx G F* . 

Then the theorem on the discrete form of Friedrichs' inequality yields 

b„(v, v)^ c||t>||?A V v e V , , c> 0 , 

i.e. the bilinear form bh(v, w) is uniformly (with respect to h) V^-elliptic. 
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S o u h r n 

POZNÁMKA O DISKRÉTNÍM TVARU FRIEDRICHSOVY NEROVNOSTI 

LlBOR ČERMÁK 

Práce je věnována důkazu Friedrichsovy nerovnosti na třídě konečně dimensio­
nálních prostorů používaných v metodě konečných prvků. Konkrétně jsou uvažovány 
aproximační prostory generované simpliciálními izoparametrickými elementy. 
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