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A NOTE ON A DISCRETE FORM OF FRIEDRICHS’ INEQUALITY

LiBor CERMAK

(Received July 7, 1982)

Discrete forms of Friedrichs’ inequality in two-dimensional Euclidean space were
introduced and analysed by ZeniSek [5]. [6]- These inequalities enable us to extend
the theory of curved finite elements introduced in [1] to the case of boundary value
problems with various stable and unstable boundary conditions. The aim of this
paper is to extend one of Zenisek’s results, namely to prove the discrete form of the
“classical” Friedrichs’ inequality in the n-dimensional Euclidean space for arbitrary
n = 2. The finite elemznt space on which the discrete form of Friedrichs’ inequality
is proved originates from the 1-regular triangulation of simplicial isoparametric
elements.

Following Ciarlet and Raviart, see e.g. [1], we introduce the 1-regular family {K},
of simplicial isoparametric finite elements K. We are given

Nk
(a) A set S = -!1{di’K} of N distinct points of R" such that its closed convex

hull K is the unit n-simplex.

(b) A finite dimensional space Py of functions defined on K with dim Py = Ny
such that £, is Pg-unisolvent, i.e. the Lagrange interpolation problem: “Find
pr € Py such that prlaix) =0, 1 i < N has one and only one solution
for any real numbers «;.

; e
(c) Aset Zg = { {a; x} of N distinct points of R".
i=1

Then the finite element K is the image of the set K through the unique mapping
Fy : K - R" which satisfies

FyePy and Fy(d,x) =a;x, 1=i=<Rqg,
where the notation Fy € Py means that

Fy:2eR - F(8) = (Fgy(%), ..., Fg,(%)) € R
with
Fy,ePy, 1<i<n.
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We suppose

(d) For all h the mapping Fy is a C*-diffeomorphism and there exist constants
o, C1» €2, independent of h, such that

(1) sup max[D“ FK()?)I <eht, i=1,2,
%eK lo|=1i
(2 0 < coh" < |T(%)] 5
where o = (0, ..., 2,), |¢| =0y + ... + @, and J,(£) is the Jacobian of the

mapping Fy at the point £ € K.
Every element K is associated with the finite dimensional space P (with dim Py =
= NK) of functions

Py = {PK‘K’*R, pK:ﬁK(Flzl)’ VﬁKepK}'

Let us denote by S one of the n + 1 surface (n — 1)-simplexes of the unit simplex K
and by H one of the n surface (n — 2)-simplexes of the simplex S. We denote by X
and Py the restrictions to S of £ and Py, respectively, and similarly by £, and Py,
the restrictions to A of £5and Pg, respectively. Let S = Fi(S), H = Fx(H) and let g
denote the restriction of X to S.

In the sequel, by Q we mean a bounded domain in R” (n = 2) with Qe ¢! (for
the definition of such domains see e.g. Nedas [3], p. 55). Then we can suppose that
there exist R coordinate systems {x"} = {(x}, ..., x})}, r = 1, ..., R, such that every
point of the boundary I' of the domain Q can be described in one of such coordinate
systems by an equation

xp =@ (x"), x"ed,

see Fig. 1; here x"” = (x}, ..., x,_,), 4"is an (n — 1)-dimensional closed cube and ¢"
is a function with Lipschitz continuous first derivatives on 47, i.e. ¢" e C*(4").

Following Ciarlet and Raviart [1] we define the 1-regular triangulation of the
domain Q. Let Q, be the union of a finite number of simplicial elements K. The
boundary of Q, is denoted by I',. Every element K = F(K) is determined by Ny
points a; x. We suppose that all points a; , belong to Q. The family of elements
constructed in this way is called a triangulation of Q and denoted by 7,. We say that
a triangulation 1, of Q is 1-regular if:

(a) The family of all elements by which the triangulation is formed is 1-regular.

(b) The gzometric shape of any “face” S of a given element K € Q, must be completely
determined by those points a; x which belong to S, i.e. the set 2 contains a Pg-
unisolvent subset.

(c) The geometric shape of any “edge” H of a given element S e I', must be com-
pletely determined by those points a; x which belong to H, i.e. the set 2, contains
a Py-unisolvent subset.

(d) There exist Lipschitz continuous functions /" defined on 4", r = 1, ..., R, such
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that every point of the boundary I', may be described at least by one of the
equations
xp=y(x"), x"ed,

see Fig. 1. Moreover, we suppose

(3) max |@"(x"") — Y'(x")| < ch?,
X'Tedr
where ¢ is a constant independent of h.
Xos
Ay Moo= greem) T X )

|
| %
1 l
| l
| |
| |
i -
\ L—F_J \—r / xm‘/—h'

'S

AI'/

Fig. 1.

It can be proved that the assumption (d) in the above definition follows from the
" assumption

(d") All points a; x lying on I’ belong to I'.

In the sequel we will suppose that for a 1-regular triangulation the assumption (d")
is fulfilled.

The parametr & has the usual geometrical meaning, i.e. h is the maximum of dia-
meters of finite elements {K},. It is understood that i approaches zero in the limit.

A given l-regular triangulation is associated with the finite dimensional space V,
of Lipschitz continuous test functions v defined by

Vi ={v|veC®(Q,), vge Py, VK e @},

where vy is the restriction of the function v to the set K.
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Let us denote
rr={(x" o (xM) | x"ed}, It={x"yE")|x"ed}.
For a function v defined on I'" we denote
o~ = 0o(x", @' (x7), xTed
and similarly for a function w defined on I'j, we denote
(") = w(xT (M), xTedr

In the szquel the constants independent of h are denoted by c. The notation is
generic, i.e. ¢ does not necessarily mean the same constant at any two places.
The norm in the Lebesgue space LZ(A) is denoted by |*[|o 4 the norm in the

Sobole space H() by [o.s = (1)1 where [ = (3 [003.0
la]
and the norm in the Sobolev space Vl"" 2(A) bY [v]lme,a = max [v!, w.4» Where

l

D1

IU]l 0,4 = Max ess sup
la]=i xed

The norms in the Lebesgue spacea L,(I') and L,(I,) are denoted by |vllo.r =

= (frv*dI)"* and |v]or, = (fr, v* dI',)"/?, respectively.

Lzt &(x) be a function defined on the element K. Then the function ®(Fg(%)) is
dzfined on K and we will denote it by &(%).

Now we are able to formulate and to prove the discrete form of Friedrichs’ ine-
quality. The following theorem extends ZeniSek’s results [6] to 3 and more di-
mensions.

Theorem. Let 1, be a 1-regular triangulation of the domain Q € €***. Let I'* be part
of the boundary I' with meas I'* > 0. Then for any function v € V, there exists
a constant ¢ independent of h and v such that the inequality

4 lol1.00 = c([oo.rue + [o]1.02)
holds true for all h sufficiently small. Here I'} denotes the set
={x|xeS, Sel, is such that Zge I'*}.

The proof of the theorem will be accomplished in five steps.

1. Given a function v e ¥, we construct the extension € H(Q, U Q) such that
() 15]1.0-0, < ch'?[v] 1,0,

2. We prove \the inequality
(6) [l = cli]ia-
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3. We can suppose that I'* may be completely described in one coordinate system
{x*} for some s € {1, ..., R} (otherwise we take I'* n I'* for a suitable s instead of I'*).
Moreover, we can suppose that for all h sufficiently small the inclusion

(7) o, = {xrs l xSe AS, (XIS, q)s(xls)) e F*} - {x/s xSe AS, (xrs, l//s(x,s)) e I-vr

holds (otherwise we take a suitable subset of I'* with nonzero measure instead of I'*).
From Friedrichs’ inequality we deduce

(8) [0 = (3o, + [7]1.0) -
4. We prove the inequality
() [8lo.r = ellltlo.re + [o]s.00 + [t]1.0-2,) -
5. Combining (6), (8) and (9) we obtain
[v] 1.0, = (o] 0,re + lle,nh + |5‘1,9~9,,)-
Hence and from (5) we get the assertion of the theorem.

Proof of Step 1. We define the sets

A= {x|x = (x",x}), x"e A, dist (x", 047) > 0,

X, — qo’(x”)] <e},

where ¢ is a sufficiently small positive number, see Fig. 1. Then for h sufficiently
small we have

R
A, =UA 2 Q- Q,.
r=1

The theorem on the partition of unity, see e.g. Yosida [4], p. 61, asserts that there
R

exist functions a” € C*(R") such that supp (a") = A and that Y a"(x) = 1 for any
. r=1

x € A,.

For a function v € ¥, we define functions

N

u(x), xedAlnQ,,
7(x) = qo(x", Y'(x")), xed,—Q,, r=1...,R.
0, xed, — A,

Further, we define the function

(x) = ZR:I a(x)i(x), xeA,.
Evidently #(x) = v(x) for x € A, n Q. If we set

o(x) = v(x) for xeQ, — A,,

461



then ¥ is the extension of the function v from Q, to Q, U A4,. Moreover, from the
smoothness of the functions y" we deduce that e H'(Q, U 4,) and hence also
te H(Q, U Q).
Let us denote B" = A]n(Q — Q,), B" = {x” l x"ed, (x",x;)eB}. As Q —
R
— Q, < {J B" we have

r=1

R R
(10 o0, < 3 [0l = 31 3 0] <
r=1 j=

IIA

R
Cn 4 DR max [ s % 3 [ e

R
S |7l
For x" e B" we have v( xp) = o(x"", " (x'")); then

i(x”, Xp) = %,?,'/’7("_)), i=1,..,n—1 and é’%v(x W) =0.
Ox'; X’ ox),

i “n

Hence
Yr(x'r) T PF, Y”’ x . " - , .
e =[N [TEEE] e o o -
B |J prxry (=1 0x};
Yr(x’ry (n—1 Sul{x"! IYII ) y r
SR ) R
B |J orixm) i=1 OX;
= “(Pr - ‘V'“o.—f.,s"‘ !./zrl‘ f,B"‘ = H‘Pr - '//r”o,m,m eri%!,ar-

Leta “face” S have a non-empty intersection S} with the set I';. If we denote by S¥
the projection of S% into the hyperplane xj, = 0, then 4" = (JS¥. We can and will
suppose that the image S, = Fg I(S;v of tlu set S% lies in the hyperplane £, = 0.
Then

2 " -~ 4 A
prlocar = j p02dy = | AP dR,
ST J 8w

where J¢" denotes the cofactor of the Jacobian J. Hence and from (1) we have

2 -
|./,rl’lo,s,..'r S ch

From the trace theorem and from the equivalence of norms on the finite dimensional
space Py we immediately obtain

|17|t2)s < of|p)|3 &« = c|p]5.k
and consequently
) IIII'LOS*" = ch"™ f(‘
Using (2) we have
(12) lyrtfo 5. < ch ™ fofd
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where K is an element such that S, < dK. From the chain rule (on the differentiating
of the composite function) we obtain

-1 J,0
(13) g _ JK7
6Xj JK

Qg0
?,sw=f Z['ﬁ]d”-—*
Jser izt 0X;

n—1 n—1 A —-1772 — n—1 A j, i)
00 OFg; (2
- [ mlE s ar <3 [ [5 25 e as
s.J=1|i=10%; Ox; =t s s 0% Jg

Here again J{/* is the cofactor of the Jacobian Jy. The last equality and (1), (2) yield

5

and consequently

yr¥

(14) . Il[;’l’ fsor S "3 2 I(')u

0,5«

Using the trace theorem and the equivalence of norms on a finite dimensional space
we see that

ab
0%;

<c ~;| .
a-\'ilJo,K

6ﬁ~
1

0,5+ i1,k

Since
A L
0b v OF;

£ J=1dx; 0%y
we obtain from the last two inequalities and from (1), (2) and (14)
(19)

Combining (12) and (15) and summing over all elements Sy we obtain

2 - 2
prU|1 s S ch 1|v|1’,<.

yrl

T S ch™Yo||f g, -
" Togsther with (L1) and (3) this yields

I

This together with (10) proves (5).

f),,r < ch“va_Qh .

Proof of Step 2. For an element K having a non-empty intersection with the set
Q, — Q we denote K, = K n (Q — Q,) and K, = F¢'(Ky). Using (1), (13) and (2)
we have

n n ot F_~l 2
(16) olli k. = Jv |0k*+iv|m=f 82J ds +j Z[Z O 0Fki K']def_g
K

g i=1]i=1 0%; 0x;

< ch”(lﬁ

2
0,Rx + II

< ch" meas R (|0]3 . + h 72|07 . k) -
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From the equivalence of norms on finite dimensional spaces we deduce
Bk < €[b]ig, i=0,1.

Hence, from (16), (1) and (2) we get

(17) [o]3 k. < ch” meas Ry(|8]3 ¢ + h™2|0]7 ¢) < ¢ meas Ry|of|? ¢

Let us suppose that

(18) meas K, < ch.

Then summing over all elements K, we obtain

(19) [ol a0 S o]0,

Since [[0]|7 0, £ [|5]1.0 + ||v]3.0.-a (6) follows for all & sufficiently small from the

last two inequalities.
To prove (18) it suffices to prove that for any point £ € K, the inequality

(20) dist (%, dK) < ch
holds, see Fig. 2. Let £€ K, and let x = (x”, x]) = Fy(8), z = (x", ¥'(x")) and
2 = Fy'(z). Then

dist (£, 0K) = |% — £ = |2 — 2| = |Fg'(x) = Fg'(2)] =

o'(y") = v (y")

< max sup
la]=1 yeK

and (20) follows from (13), (1), (2) and (3).

D* F'(y)| max
yredr

n PRt
N
X ‘ 4 r
Y Xy,
n
K l
A
Ke |
|
T 5 — fo—
X M R X! X
Fig. 2.

Proof of Step 4. For any point x"* € o, for the definition of o, see (7), we have

@S(x’%)
B(x"%, p°(x%)) = v(x"*, Yi(x"*)) + f iy o(x", 7) dr.

ys(xsy O%p
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Squaring, using Cauchy’s inequality, integrating over the set w, and using (7) we get

(21) J' 53(x", @*(x)) dx"* < ¢ I:j 02 ("%, (%)) dx'® +

LSl |
+J [ [—— B(x"s, r):l d| d
s 1J ys(x's) ox?

Due to the smoothness of the boundary I' we have

o031+ = j( ) J(l 3 [B“’ () ] )d <. j ) d

From the last two inequalities we obtain (9). O

] é C(angyrh" + |5|$»9_QHUQF|_Q)'

Using the same technique we can prove the discrete form of Friedrichs’ inequality
also for other isoparametric triangulations, e.g. for the triangulation based on using
quadrilateral isoparametric finite elements.

The discrete form of Friedrichs’ inequality is applied in the analysis of the finite
element solution of elliptic partial differential equations of the second order with
unstable boundary conditions, see {5], [6], [2]- To illustrate it let us consider the
bilinear form

by(v, w) = Y oa(x )-6-3 w dQ, + J a(x) ow dI'y
o =1 0x; 0x; In*
such that

n

bzaij(x)éifj..clxéh VxeQ,, (Cu ,Cv..)ER": ¢ >0,

i,j=1 i=1
and
a(x) 2 ¢, >0 Vxely. :

Then the theorem on the discrete form of Friedrichs’ inequality yields
byv,v) = c|v]|}q, VoeEV,, ¢>0,

i.e. the bilinear form b,(v, w) is uniformly (with respect to h) Vj-elliptic.
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Souhrn
POZNAMKA O DISKRETNIM TVARU FRIEDRICHSOVY NEROVNOSTI
LiBor CERMAK
Prdce je vénovdna ditkazu Friedrichsovy nerovnosti na tfidé konecné dimensio-
ndlnich prostorii pouZivanych v metod¢ konecnych prvki. Konkrétné jsou uvazoviany
aproximacni prostory generované simplicidlnimi izoparametrickymi elementy.
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