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SVAZEK 29 (1984) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 
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This paper is dedicated to my father on his eightieth birthday 

(Received November 25, 1982) 

1. INTRODUCTION 

This paper deals with a bivariate model in relation to life tests and in particular, to 
a series system with two dependent components. Univariate exponential and gamma 
distributions have been extensively used as life test models. For example, in Lin-
gappaiah [6], [7] and Lawless [5], univariate exponential and gamma models are 
used to predict the future lives in a life test with available lives and the approach in 
these works is based on the classical sampling distributions of statistics. Similarly in 
Lingappaiah [8], [9], these two models are used for the same purpose of prediction, 
but here, the approach is Bayesian. A vast amount of literature is available regarding 
the applications of univariate and gama distributions in life tests as suitable models. 
Recently, bivariate exponential and gamma distributions have been getting more 
attention as suitable models in life tests. Works by Al-Saadi, Scrimshaw and Young 
[ l ] and also Al-Saadi and Young [2] deal with the bivariate exponential and its 
properties in much detail. Downton [3] derives a bivariate exponential distribution 
from a simple failure model and uses it in reliability context by considering that the 
shocks a component receives, are independently distributed and the number of 
shocks itself is a random variable. Mukherjee and Sasmal [10] use a bivariate expo
nential model for life distribution of coherent dependent systems and treat three 
different cases of the parallel system, standby system and series system. Moran [ l l ] 
and Vere-Jones [12], on the other hand, give various properties of the bivariate 
gamma distribution. From the above references, it is clear that a bivariate distribution 
does indeed serve as a suitable model for life tests. Since the bivariate exponential 
may either turn out to be too simplistic or inadequate, in this paper, the bivariate 
gamma distribution, based on Gumbel's [4] model, is considered in the life test 
context. The object of this paper is threefold. Firstly, to obtain the distribution of 
a function of x and y, where the joint distribution of the couple of random variables x 
and y is the bivariate exponential. Minimum (x, y), denoted by the variable U is 
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chosen for this purpose. Secondly, the reliability function is being evaluated and is 

also tabulated for various values of the parameter and those of u. Finally estimates 

of the parameters are also obtained using Bayesian method. The paper also includes 

a separate table for the values of the mean and the variance of U corresponding to 

various values of the parameter. Since, in life tests, both these quantities U and the 

reliability are of considerable importance, their analysis is undertaken here. 

2. RELIABILITY 

According to Gumbel [4] the joint distribution of (x, y) has the density 

(1) f(x, y, 0, a) = g(x, a) g(y, a) [1 + 0{2G(x, a) - 1} {2G(y, a) - 1}] 

where g(x, a) = e~xxa~ljr(ci) 
a - l 

(la) G(x,u) = 1 - Y.e~xxkjkl 
fc = 0 

x, y, > 0 , a a positive integer and — 1 !g 0 g 1. 

From (l) and (la), we get 

(-) f(x, y, 0, џ) = (L + ) e-ix+y)(xyy-ҶГ2(a) + 

r2(«)J " + l4e^^e-(2x+2y,xk + '~iy' + x-ljkl ?!] 
k t 

- 20y^(e~2xxa + k~ilkl)(e-yyac-lir(a))(ljr(a)) -
k 

- 201(e-2v+ a"7t0 (e -v7T(«)) (i/r(«)) • 
t 

Throughout this paper, the upper limit of ]T is a — 1 unless otherwise specified and 

the lower limit is 0. Now min (x, y) has the distribution 

(3) f(u, 0, a) = f(x, u, 0, a) dx + 

from (2) and (3), we get the first integral as 

f(u, y, , cc) dy 

(4) f(x, u, , a) dм = (1 + 0) X A(k, a) [e'2uuk + ^l\Г(k + a)] 
k 

+ 40 1 1 I A(k, a) A(t, a) [e-Auut+r+x-ljr\ 2k+I~rГ(a + ř)] 
k t г = 0 

- 2 1 1 ^(ř> « + fc) ^(fc> «) [e-3"ut+*+k-lIГ(t + a + fc)] -

- 20 X î A(k, a) A(r, a) [e-2uur+x~l 2rj2k+xГ(r + «)] . 
/c r = 0 
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A similar expression is obtained for the second integral in (3). In (4) 

rk + a - T 
(4а) A(k, a) -

k 

From (4) we have the reliability function in the form 

(5) (1/2) R{u, 0, oc) = (1 + 9) X I A(k, a) \e~2u{2u)r\r\ 2k + *~] -
k r = 0 

k + a- 1 r + r + a - 1 

- 40 1 1 I I M/c> *) ^( ' . «) #"> t + «)] [e~4u(4u)sl2r 8* 2k 4's!] 
fc Г r = 0 5 = 0 

System Reliabilities 

Table I: Values of R(u) 

я-= 2 

0/u 1 2 3 4 5 

a = 3 

lu 1 2 3 4 5 

- 1-0 •5035 1067 •0142 0015 0001 -1-0 8404 4100 1195 0238 0036 

-•8 •5111 1183 •0193 0028 0004 -•8 8415 4196 1314 0304 00)60 

- -6 •5187 1299 •0244 0042 0007 -•6 8426 4292 1433 0369 0084 

- -4 •5262 1416 •0295 0056 0010 -•4 8437 4387 1553 0435 0108 

2 •5338 1532 •0346 0070 0013 -•2 8448 4483 1672 0501 0132 

0-0 •5413 1648 •0397 0084 0016 o-o 8458 4579 1791 0567 OІ55 
.7 •5489 1765 •0447 0098 0019 •2 8469 • 4675 1910 0633 0179 

•4 •5565 1881 •0498 0112 0022 •4 8480 4770 2029 0699 0203 

•6 •5640 1997 •0549 0125 0025 •6 8491 4866 2148 0764 0227 

•8 •5716 2114 •0600 0139 0028 •8 8502 4962 2268 0830 025 3 

1-0 •5791 2230 •0651 0153 0031 1-0 8513 5058 2387 0896 0274 

a = 4 OÍ = 5 

ju 1 2 3 4 5 /u 1 2 3 4 5 

-1-0 •9620 7197 •3668 1276 0323 -1-0 9927 8950 6420 3410 1333 

-•8 •9621 7227 •3772 1397 0399 -•8 9927 8955 6465 3519 1454 

-•6 •9622 7257 •3876 1517 0475 - • 6 9927 8960 6510 3628 1576 

-•4 •9622 7287 •3981 1638 0551 -•4 9927 8965 6556 3736 1697 
-2 •9623 7317 •4085 1758 0627 -•2 9927 8970 6601 3845 1819 

0-0 •9624 7347 •4189 1879 0702 0-0 •9927 8975 6647 •3954 1940 
• 2 •9625 7377 •4293 2000 0778 •2 9927 8980 6692 4063 2062 

•4 •9625 7407 •4398 2120 •0854 •4 9927 8985 6737 4172 2183 

•6 •9626 7437 •4502 2241 0930 •6 9927 8990 6783 4281 2305 

•8 •9627 7467 •4606 2361 1006 •8 9927 8995 6828 4390 2426 

1-0 •9627 7497 •4710 2482 1082 1-0 9927 9000 6873 4499 2548 
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- 20 _ _ I [A(t, a + fc) A(fc, a;] [e-ҢЗuГІrl 3< + * + *] -
î k r = 0 

- 20 _ " + _ ' Г + І ' [A(fc, a) A(r, «)] [ Є - З "(3нr (2/ЗГ/s! 2к 6*] . 
/c r = 0 s = 0 

Table I gives the values of R(u) for various values of 9 and a, and for u 

and 5 (though u > 0, integer values are chosen just for the table). 

V 2, 3, 4 

3. MEAN AND VARIANCE OF U 

From (4), we get 

(6) (1/2) _(„») = (1 + 0) X[A(s, a) A(fc, s + a) s!/2'+> + >] + 
k 

k + a-\ 

+ 4 ^ X Z I \A(U a) -4(fc, a) A(r, t + a + s) A(s, f + a)] [s!/8a 2r 4' + 's 2 ,c] -
k t r = 0 

- 2d X I [-4(f, a + k + s) A(k, a + s) A(s, a)] [s !/3 ' + a + * + s ] -
/c r 

- 20 X t ' [A(fc, a) A(s, a) A(r, s + a) (2/3)'] [s!/3* 6̂  2*] . 
/c r = 0 

If s = 0 in (6), obviously we have R(0) in (5) which is equal to 1. From (6) we can 

get the mean and the variance of U. They are tabulated for certain values of a and 0 

in Table II. 

Table II: Expectation and Variances of u 

OÍ — 2 a = 3 a = 4 a = 6 a = 8 a = 1 0 

E(u) Var u E(u) Var u E(u) Var u E(u) Var ц E(u) Var ц E(u) Var u 

- 1-0 1-1212 • 4578 1-9002 •8284 2-7162 1-2296 4-4105 2-0849 6-1546 2-9829 7-9300 3-9078 

-•8 1-1470 5064 1-9327 •9036 2-7542 1-3315 4-4577 2-2398 6-2094 3-1905 7-9916 4-1682 

--6 1-1727 5536 1-9651 •9768 2-7922 1-4304 4-5049 2-3901 6-2643 3-3921 8-0532 4-4209 

-•4 1-1985 5996 1-9976 1-0478 2-8302 1-5265 4-5521 2-5360 6-3192 3-5877 8-1148 4-6660 

.2 1-2242 6442 2-0300 1-1168 2-8682 1-6197 4-5993 2-6775 6-3741 3-7772 8-1764 4-9035 

0-0 1-2500 6875 2-0625 1-1836 2-9063 1-7100 4-6465 2-8145 6-4290 3-9608 8-2380 5-1335 

• 2 1-2758 7295 2-0950 1-2483 2-9443 1-7974 4-6937 2-9470 6-4838 4-1383 8-2996 5-3558 

•4 1-3015 7701 2-1274 1-3109 2-9823 1-8819 4-7409 3-0751 6-5387 4-3098 8-3612 5-5706 

•6 1-3273 8094 2-1599 1-3715 3-0203 1-9635 4-7881 3-1987 6-5936 4-4752 8-4229 5-7778 

•8 1-3530 8474 2-1923 1-4299 3-0583 2-0422 4-8353 3-3179 6-6485 4-6347 8-4845 5-9774 

1-0 1-3788 8841 2-2248 1-4862 3-0963 2-1181 4-8825 3-4326 6-7033 4-7881 8-5461 6-1694 

185 



4. ESTIMATE 0 IN f(x, y; 0, i, S) 

Now we consider the distribution of x, y involving 0, a and S where 

(7) g(x, a, S) = ^ ( O * * ) * - 1 O/F(a) x, a, <5 > 0 

and the corresponding distribution function 

a- 1 

(7a) G(x: a, <$) = 1 - £ e~dx(5x)k\k\ . 
fc = 0 

Estimation of 0 (a, <5 known): 
In view of (i) and (7). the likelihood function with a sample of size n can be written 

as 

(8) L(x, y; a, 0, 5) = flfv^-; ^ ^ *) • 
i = i 

Using (l) again, (8) can be written as 

n 

(8a) L(x, y; a, 0, S) = (B) f ] (i + 0A;) , 
i= 1 

where x = (x l5 ..., xn) and similarly y = (yL, y2, •••, y„) 

n 

(B) = I ! [>(*.. «. 5) «(}>;, «. <5)] . 
1 = 1 

A, = [1 - 2 2>-4"(<5xI.r7fc!] [1 - 2 xV^'(<5v,.j'//!] . 
fc=o r=0 

Now (8) can be written in the form 

(8b) L(x,y;oc,0,S) = (B)ilje
itlArj 

i = 0 j=l 

where Vj = 1, 2, ..., n and £ is the sum over all combinations of r t , r2, .... rf. For 
example if n = 3 and i = 2 then ]T is the sum (A1A2 + AXA3 + ^42A3). Now 0 
in (8) is between — 1 and 1 as seen from (l). Due to this fact, we take the prior for 0 
e.g. as 

(9) # ) = 1/2, - l ^ H V 

One could take g(6) as one chooses. However, from all the possible forms of g(0\ 
(9) seems to be the simplest in its nature. After integrating with respect to 0 we get 
from (8b) and (9) 

(Ю) 
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Now (10) becomes 

(10a) L(x, y; a, 5) = (B) £ £ (fi//f + 1) [ ] -4rj ' 
i=o 1=i 

with st = 0 if i is odd 

= 1 if i is even . 

From (8b) and (10a) we get the estimate of 0 

\6L(x, y; a, 0, 5) g(0) dO 

(10b) E(0) = 

j L(x, y; a, 0, <5) g(0) dO 

and from (10b) we have the estimate 6: 

( Ц ) 

ľ I [(i-««)/(«• +2)] Г R , 
ŕ = Q j= 1 

І I ( ^ + 1)П4; 
1=1 

For example, if w = 1, (11) gives 

( i la) 

and for n = 2, we have 

= 1/3 A! 

( l ib) g = ( l/3)(A ( + A2)/[i + ( l / 3 ) A 1 A 2 ] . 

Similarly 5 can be estimated as well, though it would require much more work. 

5. COMMENTS 

a) The bivariate gamma model obviously requires more work and computation 
as compared to the univariate case. However, the importance of the bivariate model 
outweighs the problems encountered. 

b) The analysis done here can easily be applied to find the distribution of max (x, y) 
whose density can be written as 

(12) f(v, , a) = f(x, v, , a) dx + f(v, y, , a) dy , 

and again the reliability, mean and variance of Vcan be tabulated. As the variable U, 
that is min (x, y) represents the length of life of a series system, similarly, variable V, 
max (x, y) is of equal importance since it represents the length of life of a 2-com-
ponent parallel redundant system. 
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c) From the system reliabilities, cf. Table I, it can be seen that R(u) increases as a 
increases for a given 0 and u and so is the case for increasing 0 and given a and u. 

d) From Table II it can be easily seen that both the mean and the variance increase 
for the case of increasing a as well as that of increasing 6. 
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S o u h r n 

DVOUROZMĚRNÉ GAMA ROZLOŽENÍ V MODELU DOBY ŽIVOTA 

G. S. LINGAPPAIAH 

Dvourozměrné gama rozložení je uvažováno v modelu dob bezporuchového pro
vozu x, y dvou závislých prvků. V článku je odvozeno rozložení doby bezporuchové
ho provozu systému vzniklého sériovým zapojením těchto prvků. Pro některé hodnoty 
parametrů dvourozměrného gama rozložení jsou tabelovány hodnoty funkce spolehli
vosti, střední hodnoty a rozptylu doby do poruchy systému. Dále jsou uvedeny 
bayesovské odhady parametrů. 
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