Aplikace matematiky

Jiří Anděl; Asunción Rubio; Antonio Insua
On periodic autoregression with unknown mean

Aplikace matematiky, Vol. 30 (1985), No. 2, 126-139
Persistent URL: http://dml.cz/dmlcz/104133

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON PERIODIC AUTOREGRESSION WITH UNKNOWN MEAN

Jirí Anděl, Asunción Rubio, Antonio Insua

(Received May 4, 1984)

The periodic autoregression is a model for seasonal time series. It is assumed that the autoregressive parameters are periodic functions with the period corresponding to the seasonal behaviour of the given series. The mean value can also be a periodic function. Bayes approach is used in the paper for estimating parameters and for testing hypotheses. Two models are investigated, one with constant variances of the innovation process and the other with periodically changing variances.

1. INTRODUCTION

Let $\left\{Y_{t}\right\}$ be an innovation process with vanishing expectation and with Var $Y_{t}=$ $=\sigma^{2}>0$. A process $\left\{X_{t}\right\}$ is called autoregressive, if it is generated by the relation

$$
X_{t}=b_{1} X_{t-1}+\ldots+b_{n} X_{t-n}+Y_{t}
$$

where $b=\left(b_{1}, \ldots, b_{n}\right)^{\prime}$ is a vector of autoregressive parameters.
The process $\left\{X_{t}\right\}$ is stationary, if

$$
z^{n}-b_{1} z^{n-1}-\ldots-b_{n} \neq 0 \text { for }|z| \geqq 1
$$

If we analyze a seasonal time series having a period p, it is quite natural to assume that the elements of the autoregressive vector b are also periodic functions with the same period p. This can be formulated more precisely as follows.

Let X_{1}, \ldots, X_{n} be given variables. Consider vectors $b_{1}=\left(b_{11}, \ldots, b_{1 n}\right)^{\prime}, \ldots, b_{p}=$ $=\left(b_{p 1}, \ldots, b_{p n}\right)^{\prime}$. Let X_{t} for $t>n$ be defined by the formula

$$
\begin{equation*}
X_{n+(j-1) p+k}=\sum_{i=1}^{n} b_{k i} X_{n+(j-1) p+k-i}+Y_{n+(j-1) p+k}, \tag{1.1}
\end{equation*}
$$

where $k=1, \ldots, p$ and $j=1,2, \ldots$. Denote $b=\left(b_{1}^{\prime}, \ldots, b_{p}^{\prime}\right)^{\prime}$.
There are two important cases of model (1.1). If $\operatorname{Var} Y_{t}=\sigma^{2}$ does not depend on t, we have the model with constant variances. If $\operatorname{Var} Y_{n+(j-1) p+k}=\sigma_{k}^{2}, k=1, \ldots$,
\ldots, p, where $\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}$ do not coincide, we come to the model with periodic variances. In the latter case we denote $\sigma=\left(\sigma_{1}, \ldots, \sigma_{p}\right)^{\prime}$.

The analysis of such periodic models was started by Gladyshev [3] and [4]. Pagano [5] investigated properties of estimators of parameters in process (1.1). A detailed statistical analysis of model (1.1) is given by Anděl [1], where also the related references concerning the problem of periodic autoregressive processes can be found.

In the present paper we generalize model (1.1) to the case where X_{t} have nonvanishing expectations. Assume that

$$
\mathrm{E} X_{n+(j-1) p+k}=\xi_{k} \text { for } k=1, \ldots, p
$$

and that model (1.1) can be used for differences from the means. Then we have

$$
X_{n+(j-1) p+k}-\xi_{k}=\sum_{i=1}^{n} b_{k i}\left(X_{n+(j-1) p+k-i}-\dot{\xi}_{k-i}\right)+Y_{n+(j-1) p+k} .
$$

Of course, in this formula we put $\xi_{k-i}=\xi_{p+k-i}$, if $k-i \leqq 0$.
Rearranging the terms, we come to our model

$$
\begin{equation*}
X_{n+(j-1) p+k}=\mu_{k}+\sum_{i=1}^{n} b_{k i} X_{n+(j-1) p+k-i}+Y_{n+(j-1) p+k}, \tag{1.2}
\end{equation*}
$$

where

$$
\mu_{k}=\xi_{k}-\sum_{i=1}^{n} b_{k i} \xi_{n+(j-1) p+k-i}
$$

We denote

$$
\mu=\left(\mu_{1}, \ldots, \mu_{p}\right)^{\prime} .
$$

In this paper we shall assume that b, μ and σ are random vectors with a vague prior density. This approach has been successfully used by many authors, e.g. by Zellner [6] and by Anděl [1]. An interesting argumentation for this procedure can be found also in Box and Tiao [2]. The authors point out that under very general conditions this Bayes approach leads to results which are asymptotically the same as those obtained by the maximum-likelihood method. It should be emphasized, however, that Bayes approach is substantially easier in our case than the direct asymptotics of maximum-likelihood estimators.

For analyzing model (1.2) we use methods quite analogous to those which were applied in [1]. The presence of new parameters μ leads to certain complications and, therefore, these new results seem to be worth publishing separately.

2. PRELIMINARIES

To keep this paper self-contained, we recall here some general assertions which will be used in the statistical analysis of model (1.2). At the beginning we would like
to stress that the symbol c will denote a constant. It will be used in this sense throughout all the paper. We point out explicitly that c in any two formulas need not be the same constant.

Theorem 2.1. Let A be an $n \times n$ symmetric regular matrix. Then for every n-dimensional vectors x and q the formula

$$
x^{\prime} A x-2 x^{\prime} q=\left(x-A^{-1} q\right)^{\prime} A\left(x-A^{-1} q\right)-q^{\prime} A^{-1} q
$$

holds.
Proof is clear.
Theorem 2.2. Let $m \geqq$ 2. Then

$$
\int_{-\infty}^{\infty}\left(1+a^{2}+x^{2}\right)^{-m / 2} \mathrm{~d} x=c\left(1+a^{2}\right)^{-(m-1) / 2}
$$

where c does not depend on a.
Proof.

$$
\int_{-\infty}^{\infty}\left(1+a^{2}+x^{2}\right)^{-m / 2} \mathrm{~d} x=\left(1+a^{2}\right)^{-m / 2} \int_{-\infty}^{\infty}\left(1+\frac{x^{2}}{1+a^{2}}\right)^{-m / 2} \mathrm{~d} x
$$

After the substitution $x=\left(1+a^{2}\right)^{1 / 2} t$ we obtain the desired result.
Theorem 2.3. Let Q_{1}, \ldots, Q_{p} be $n \times n$ symmetric positive definite matrices. Let $Q=Q_{1}+\ldots+Q_{p}$. If $p \geqq 2$, then the matrix

$$
H=\left\|\begin{array}{l}
Q_{1}, 0, \ldots, 0 \\
\ldots \ldots \ldots \ldots \ldots . \\
0, \quad 0, \ldots, Q_{p-1}
\end{array}\right\|-\left\|\begin{array}{l}
Q_{1} Q^{-1} Q_{1}, \ldots, Q_{1} Q^{-1} Q_{p-1} \\
\ldots . . \\
Q_{p-1} Q^{-1} Q_{1}, \ldots, Q_{p-1} Q^{-1} Q_{p-1}
\end{array}\right\|
$$

is positive definite.
Proof. See [1], p. 366.
Theorem 2.4. Let V be an $n \times n$ symmetric positive definite matrix and let a random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ have the density

$$
\begin{equation*}
q(x)=c\left(1-x^{\prime} V x\right)^{-m / 2} \tag{2.1}
\end{equation*}
$$

where $m \geqq n+1$. Introduce a random vector

$$
Z=\left(Z_{1}, \ldots, Z_{s}\right)^{\prime}=\left(X_{i_{1}}, \ldots, X_{i_{s}}\right)^{\prime}
$$

where $1 \leqq i_{1}<i_{2}<\ldots<i_{s} \leqq n, 1 \leqq s<n$. Let W be the matrix arising from the rows i_{1}, \ldots, i_{s} and from the columns i_{1}, \ldots, i_{s} of the matrix V^{-1}. Then the marginal density of the vector Z is

$$
q_{1}(z)=c\left(1+z^{\prime} W^{-1} z\right)^{-(m-n+s) / 2}
$$

Proof. See [1], p. 367.
Theorem 2.5. Let a vector $X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ have the density (2.1). Then the random variable

$$
F=\frac{m-n}{n} X^{\prime} V X
$$

has the $F_{n, m-n}$ distribution.
Proof. See [1], p. 368.

3. MODEL WITH EQUAL VARIANCES

We shall assume in this section that $Y_{\boldsymbol{t}}$ are independent $N\left(0, \sigma^{2}\right)$ variables with $\sigma^{2}>0$. Our analysis will be based on random variables X_{1}, \ldots, X_{N}, where $N>$ $>n+p+n p+1$. As noticed above, b and μ are random vectors and σ is a random variable. At the beginning, we introduce some notations which will be used till the end of this paper. Let

$$
\alpha_{k}=\left[\frac{N-n-k}{p}\right]+1, \quad k=1, \ldots, p
$$

where [] denotes the integer part. Put

$$
\begin{gathered}
x_{t}^{0}=\left(x_{t-1}, \ldots, x_{t-n}\right)^{\prime}, \quad t=n+1, \ldots, N, \\
\bar{x}_{k}=\alpha_{k}^{-1} \sum_{j=1}^{\alpha_{k}} x_{n+(j-1) p+k}, \quad \bar{x}_{k}^{0}=\alpha_{k}^{-1} \sum_{j=1}^{a_{k}} x_{n+(j-1) p+k}^{0}, \\
\Delta_{k j}=x_{n+(j-1) p+k}-\bar{x}_{k}, \quad \Delta_{k j}^{0}=x_{n+(j-1) p+k}^{0}-\bar{x}_{k}^{0}, \\
T_{k}=\sum_{j=1}^{a_{k}} \Delta_{k j}^{2}, \quad C_{k}=\sum_{j=1}^{a_{k}} \Delta_{k j} \Delta_{k j}^{0}, \quad S_{k}=\sum_{j=1}^{a_{k}} \Delta_{k j}^{0} \Delta_{k j}^{0 \prime}, \\
b_{k}^{*}=S_{k}^{-1} C_{k}, \quad R_{k}=T_{k}-b_{k}^{* \prime} S_{k} b_{k}^{*}, \\
T=T_{1}+\ldots+T_{p}, \quad R=R_{1}+\ldots+R_{p}, \quad S=S_{1}+\ldots+S_{p}, \\
v_{k}=\mu_{k}-\bar{x}_{k}+b_{k}^{\prime} \bar{x}_{k}^{0}, \quad \mu_{k}^{*}=\bar{x}_{k}-b_{k}^{* \prime} \bar{x}_{k}^{0}, \\
q_{k}=\alpha_{k}\left[1-\alpha_{k} \bar{x}_{k}^{0 \prime}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)^{-1} \bar{x}_{k}^{0}\right], \quad q=q_{1}+\ldots+q_{p}, \\
b^{*}=\left(b_{1}^{* \prime}, \ldots, b_{p}^{* \prime}\right)^{\prime}, \quad v=\left(v_{1}, \ldots, v_{p}\right)^{\prime}, \\
\mu=\left(\mu_{1}, \ldots, \mu_{p}\right)^{\prime}, \quad \mu^{*}=\left(\mu_{1}^{*}, \ldots, \mu_{p}^{*}\right)^{\prime}, \\
W_{k}=b_{k}-b_{k}^{*}, \quad v_{k}=\mu_{k}-\bar{x}_{k}+b_{k}^{* \prime} \bar{x}_{k}^{0}=\mu_{k}-\mu_{k}^{*}, \\
\tilde{b}_{k}=b_{k}^{*}-\alpha_{k} v_{k}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)^{-1} \bar{x}_{k}^{0}, \quad \text { for } \quad k=1, \ldots, p
\end{gathered}
$$

It is clear that S_{k} are symmetric positive definite matrices with probability one.
Theorem 3.1. Given $X_{1}=x_{1}, \ldots, X_{n}=x_{n}, b, \mu$ and σ, the conditional density of X_{n+1}, \ldots, X_{N} is given by the formula

$$
\begin{aligned}
& f\left(x_{n+1}, \ldots, x_{N} \mid x_{1}, \ldots, x_{n}, b, \mu, \sigma\right)=(2 \pi)^{-(N-n) / 2} \sigma^{-N+n} \times \\
& \times \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{p}\left[R_{k}+\alpha_{k} v_{k}^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]\right\} .
\end{aligned}
$$

Proof. Our assumptions on Y_{t} immediately yield that the conditional density is

$$
(2 \pi)^{-(N-n) / 2} \sigma^{-N+n} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{p} \sum_{j=1}^{\alpha_{k}} z_{k j}^{2}\right\}
$$

where

$$
z_{k j}=x_{n+(j-1) p+k}-\mu_{k}-\sum_{i=1}^{n} b_{k i} x_{n+(j-1) p+k-i}
$$

However, since

$$
\sum_{i=1}^{n} b_{k i} x_{n+(j-1) p+k-i}=b_{k}^{\prime} x_{n+(j-1) p+k}^{0},
$$

we have

$$
z_{k j}=\Delta_{k j}-v_{k}-b_{k}^{\prime} \Delta_{k j}^{0}
$$

Because

$$
\sum_{j=1}^{\alpha_{k}} \Delta_{k j}=0, \quad \sum_{j=1}^{\alpha_{k}} \Delta_{k j}^{0}=0,
$$

we obtain

$$
\sum_{j=1}^{\alpha_{k}} z_{k j}^{2}=T_{k}-b_{k}^{\prime} C_{k}-C_{k}^{\prime} b_{k}+b_{k}^{\prime} S_{k} b_{k}+\alpha_{k} v_{k}^{2}
$$

Finally, it follows from Theorem 2.1 that

$$
\sum_{j=1}^{\alpha_{k}} z_{k j}^{2}=R_{k}+\alpha_{k} v_{k}^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right) .
$$

It should be noticed for further purposes that v_{k} depend on μ_{k} and b_{k}.
Theorem 3.2. Let the prior density of b, μ and σ be σ^{-1} for $\sigma>0$ and zero otherwise, independently of X_{1}, \ldots, X_{n}. Then the posterior density of b, μ and σ is

$$
g(b, \mu, \sigma \mid x)=c \sigma^{-N+n-1} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{p}\left[R_{k}+\alpha_{k} v_{k}^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]\right\}
$$

for $\sigma>0$ and zero otherwise, where $x=\left(x_{1}, \ldots, x_{N}\right)^{\prime}$ stands for $X_{1}=x_{1}, \ldots, X_{N}=$ $=x_{N}$.

Proof follows from the Bayes theorem.

Theorem 3.3. The modus of the posterior density is

$$
b=b^{*}, \quad \mu=\mu^{*}, \quad \sigma^{2}=\sigma^{* 2}=(N-n+1)^{-1} R
$$

Proof. Since S_{k} are positive definite, $g(b, \mu, \sigma \mid x)$ for any fixed σ reaches its maximum for $b_{k}=b_{k}^{*}$ and $v_{k}=0$, i.e. $\mu_{k}=\mu_{k}^{*}$. Therefore,

$$
g(b, \mu, \sigma \mid x) \leqq g\left(b^{*}, \mu^{*}, \sigma \mid x\right)=c \sigma^{-N+n-1} \exp \left\{-\frac{R}{2 \sigma^{2}}\right\}=g_{0}(\sigma)
$$

The function $g_{0}(\sigma)$ is maximized when $\sigma^{2}=(N-n+1)^{-1} R$.
The modus can be used as a point estimator of the parameters b, μ and σ.
Theorem 3.4. The marginal posterior densities of σ, b and μ are given by the formulas

$$
\begin{equation*}
g_{1}(\sigma \mid x)=c \sigma^{-N+n+p+n p-1} \exp \left\{-\frac{R}{2 \sigma^{2}}\right\}, \quad \sigma>0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
g_{2}(b \mid x)=c\left[1+R^{-1} \sum_{k=1}^{p}\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]^{-(N-n-p) / 2}, \tag{ii}
\end{equation*}
$$

(iii)

$$
g_{3}(\mu \mid x)=c\left[1+R^{-1} \sum_{k=1}^{p} q_{k}\left(\mu_{k}-\mu_{k}^{*}\right)^{2}\right]^{-(N-n-n p) / 2}
$$

Proof. The simultaneous posterior density of b and σ is

$$
\begin{gathered}
h_{1}(b, \sigma \mid x)=\int_{\mathbf{R}_{p}} g(b, \mu, \sigma \mid x) \mathrm{d} \mu= \\
=c \sigma^{-N+n-1} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{p}\left[R_{k}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right\} . J,\right.
\end{gathered}
$$

where

$$
J=\int_{\mathbf{R}_{p}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{p} \alpha_{k}\left(\mu_{k}-\bar{x}_{k}+b_{k}^{\prime} \bar{x}_{k}^{0}\right)^{2}\right\} \mathrm{d} \mu
$$

Using the substitutions

$$
\frac{1}{\sigma}\left(\mu_{k}-\bar{x}_{k}+b_{k}^{\prime} \bar{x}_{k}^{0}\right)=u_{k}, \quad k=1, \ldots, p,
$$

we get

$$
J=\sigma^{p} \int_{\mathbf{R}_{p}} \exp \left\{-\frac{1}{2} \sum_{k=1}^{p} \alpha_{k} u_{k}^{2}\right\} \mathrm{d} u=c \sigma^{p},
$$

which gives

$$
h_{1}(b, \sigma \mid x)=c \sigma^{-N-n+p-1} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{p}\left[R_{k}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]\right\}
$$

Further,

$$
g_{1}(\sigma \mid x)=\int_{\mathbf{R}_{n p}} h_{1}(b, \sigma \mid x) \mathrm{d} b=c^{-N+n+p-1} \exp \left\{-\frac{R}{2 \sigma^{2}}\right\} \cdot J_{1},
$$

where

$$
J_{1}=\int_{\mathbf{R}_{n p}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{p}\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right\} \mathrm{d} b .
$$

We make the substitution

$$
t_{k}=\sigma^{-1} S_{k}^{1 / 2}\left(b_{k}-b_{k}^{*}\right), \quad k=1, \ldots, p,
$$

the Jacobian of which is

$$
\prod_{k=1}^{p}\left|\sigma^{-1} S_{k}^{1 / 2}\right|^{-1}=\sigma^{n p} \prod_{k=1}^{p}\left|S_{k}\right|^{-1 / 2}=c \sigma^{n p}
$$

Therefore,

$$
J_{1}=c \sigma^{n p} \int_{\mathbf{R}_{n p}} \exp \left\{-\frac{1}{2} \sum_{k=1}^{p} t_{k}^{\prime} t_{k}\right\} \mathrm{d} t=c \sigma^{n p}
$$

and

$$
g_{1}(\sigma \mid x)=c \sigma^{-N+n+p+n p-1} \exp \left\{-\frac{R}{2 \sigma^{2}}\right\}
$$

Further we have

$$
g_{2}(b \mid x)=\int_{0}^{\infty} h_{1}(b, \sigma \mid x) \mathrm{d} \sigma .
$$

Denote

$$
A=\sum_{k=1}^{p}\left[R_{k}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]
$$

for this part of the proof. From the substitution

$$
A^{1 / 2} \sigma^{-1}=z
$$

we get

$$
g_{2}(b \mid x)=c\left[R+\sum_{k=1}^{p}\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]^{-(N-n-p) / 2} .
$$

Since R does not depend on b, it can be taken away as a constant. This gives the second assertion of the theorem.

For the last part of the proof we put

$$
B=\sum_{k=1}^{p}\left[R_{k}+\alpha_{k} v_{k}^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right] .
$$

Then

$$
g(b, \mu, \sigma \mid x)=c \sigma^{-N+n-1} \exp \left\{-\frac{B}{2 \sigma^{2}}\right\}
$$

and

$$
\begin{gathered}
h_{2}(b, \mu \mid x)=\int_{0}^{\infty} g(b, \mu, \sigma \mid x) \mathrm{d} \sigma=c B^{-(N-n) / 2}= \\
=c\left\{\sum_{k=1}^{p}\left[R_{k}+\alpha_{k}\left(\mu_{k}-\bar{x}_{k}+b_{k}^{\prime} \bar{x}_{k}^{0}\right)^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]\right\}^{-(N-n) / 2}
\end{gathered}
$$

Since

$$
\begin{gathered}
\alpha_{k}\left(\mu_{k}-\bar{x}_{k}+b_{k}^{\prime} \bar{x}_{k}^{0}\right)^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)= \\
=\alpha_{k}\left[\mu_{k}-\bar{x}_{k}+\left(b_{k}-b_{k}^{*}\right)^{\prime} \bar{x}_{k}^{0}+b_{k}^{* \prime} \bar{x}_{k}^{0}\right]^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)= \\
=\alpha_{k}\left(v_{k}+W_{k}^{\prime} \bar{x}_{k}^{0}\right)^{2}+W_{k}^{\prime} S_{k} W_{k}= \\
=W_{k}^{\prime}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right) W_{k}+2 \alpha_{k} v_{k} W_{k}^{\prime} \bar{x}_{k}^{0}+\alpha_{k} v_{k}^{2}= \\
=\left[W_{k}+\alpha_{k} v_{k}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)^{-1} \bar{x}_{k}^{0}\right]^{\prime}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)\left[W_{k}+\alpha_{k} v_{k}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)^{-1} \bar{x}_{k}^{0}\right]+ \\
+\alpha_{k} v_{k}^{2}-\alpha_{k}^{2} v_{k}^{2} \bar{x}_{k}^{0 \prime}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)^{-1} \bar{x}_{k}^{0}= \\
=\left(b_{k}-\tilde{b}_{k}\right)^{\prime}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)\left(b_{k}-\tilde{b}_{n}\right)+q_{k} v_{k}^{2},
\end{gathered}
$$

we have

$$
\begin{gathered}
h_{2}(b, \mu \mid x)= \\
=c\left[1+R^{-1} \sum_{k=1}^{p}\left(b_{k}-\tilde{b}_{k}\right)^{\prime}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)\left(b_{k}-\tilde{b}_{k}\right)+R^{-1} \sum_{k=1}^{p} q_{k} v_{k}^{2}\right]^{-(N-n) / 2} .
\end{gathered}
$$

The integral

$$
g_{3}(\mu \mid x)=\int_{\mathbf{R}_{n p}} h_{2}(b, \mu \mid x) \mathrm{d} b
$$

can be calculated by using the substitution

$$
u_{k}=R^{-1 / 2}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)^{1 / 2}\left(b_{k}-\tilde{b}_{k}\right), \quad k=1, \ldots, p,
$$

the Jacobian of which is a constant. Thus

$$
g_{3}(\mu \mid x)=c \int_{\mathbf{R}_{n p}}\left(1+R^{-1} \sum_{k=1}^{p} q_{k} v_{k}^{2}+\sum_{k=1}^{p} u_{k}^{\prime} u_{k}\right)^{-(N-n) / 2} \mathrm{~d} u .
$$

Now, we use Theorem $2.2 p$-times and this leads to the formula for $g_{3}(\mu \mid x)$ which is given as the last assertion of Theorem 3.4.

Theorem 3.5. Let

$$
\lambda_{b}=\frac{N-n-n p-p}{n p R} \sum_{k=1}^{p}\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right),
$$

$$
\lambda_{\mu}=\frac{N-n-n p-p}{p R} \sum_{k=1}^{p} q_{k}\left(\mu_{k}-\mu_{k}^{*}\right)^{2} .
$$

Then the posterior distributions of λ_{b} and λ_{μ} are

$$
\lambda_{b} \sim F_{n p, N-n-n p-p}, \quad \lambda_{\mu} \sim F_{p, N-n-n p-p}
$$

Proof. The assertion follows from Theorem 3.4 (i), (ii) and from Theorem 2.5.
The variables λ_{b} and λ_{μ} can be used for tests of fit. If a hypothesis specifies some special value of b or of μ, we insert it in the formulas for λ_{b} or λ_{μ}. If the result exceeds the critical value of the corresponding F distribution, we reject the hypothesis.

Theorem 3.6. The posterior distribution of the variable R / σ^{2} is $\chi_{N-n-p-n p}^{2}$.
Proof follows from Theorem 3.4 (iii) by direct calculation.
This result can be used for constructing confidence intervals for σ^{2}.
Theorem 3.7. Denote by $s^{(k) i j}$ the elements of the matrix S_{k}^{-1}. Then the posterior distribution of the variable

$$
T_{k i}=(N-n-p-n p)^{1 / 2}\left(R s^{(k) i i}\right)^{-1 / 2}\left(b_{k i}-b_{k i}^{*}\right)
$$

is the Student $t_{N-n-n p-p}$ distribution.
Proof. The assertion follows from Theorem 3.4 (ii) and from Theorem 2.4.
The most important question is whether our model can be reduced to the classical autoregressive model or not. A test of such hypothesis can be based on the following two theorems.

Theorem 3.8. Denote

$$
\begin{gathered}
H=\operatorname{Diag}\left\{S_{1}, \ldots, S_{p-1}\right\}-\left(S_{1}, \ldots, S_{p-1}\right)^{\prime} S^{-1}\left(S_{1}, \ldots, S_{p-1}\right), \\
\Delta_{k}=\left(b_{k}-b_{k}^{*}\right)-\left(b_{p}-b_{p}^{*}\right), \quad \Delta=\left(\Delta_{1}^{\prime}, \ldots, \Delta_{p-1}^{\prime}\right)^{\prime} .
\end{gathered}
$$

Then the variable

$$
F_{\Delta}=\frac{N-p-n p-n}{n(p-1) R} \Delta^{\prime} H \Delta .
$$

has the posterior $F_{n(p-1), N-p-n p-n}$ distribution.
Proof. First of all we notice that the matrix H is constructed from S_{1}, \ldots, S_{p} in the same way as in Theorem 2.3. This ensures that H is positive definite. The proof of Theorem 3.8 is the same as that of Theorem 3.5 in [1] (only N must be replaced by $N-p$), and thus we sketch it very briefly. We put $\Delta_{p}=b_{p}-b_{p}^{*}$ and calculate the posterior density of $\Delta_{1}, \ldots, \Delta_{p-1}, \Delta_{p}$. After that we find the marginal density of $\Delta_{1}, \ldots, \Delta_{p-1}$, which have the same form as the density $q(x)$ in Theorem 2.4. This enables us to apply Theorem 2.5 .

Theorem 3.9. Let

$$
\begin{aligned}
& K=\operatorname{Diag}\left\{q_{1}, \ldots, q_{p-1}\right\}-q^{-1}\left(q_{1}, \ldots, q_{p-1}\right)^{\prime}\left(q_{1}, \ldots, q_{p-1}\right), \\
& \delta_{k}=\left(\mu_{k}-\mu_{k}^{*}\right)-\left(\mu_{p}-\mu_{p}^{*}\right) \text { for } k=1, \ldots, p-1, \delta=\left(\delta_{1}, \ldots, \delta_{p-1}\right)^{\prime} .
\end{aligned}
$$

Then the variable

$$
F_{\delta}=\frac{N-n-p-n p}{(p-1) R} \delta^{\prime} K \delta
$$

has the posterior $F_{p-1, N-n-p-n p}$ distribution.
Proof is analogous to that of Theorem 3.8.
If the hypothesis $H_{0}: b_{1}=\ldots=b_{p}$ is true, then $\Delta_{k}=b_{p}^{*}-b_{k}^{*}$. We calculate F_{Δ} with $\Delta=\left(\Delta_{1}^{\prime}, \ldots, \Delta_{p-1}^{\prime}\right)^{\prime}$ and in the case that F_{Δ} exceeds the critical value of the corresponding F distribution, we reject H_{0}. Similar procedure can be used for testing $\mathbf{H}_{0}^{\prime}: \mu_{1}=\ldots \mu_{p}$. In this case we have $\delta_{k}=\mu_{p}^{*}-\mu_{k}^{*}$ and \mathbf{H}_{0}^{\prime} is rejected if F_{δ} exceeds its critical value.

4. MODEL WITH PERIODIC VARIANCES

In this model we assume that Y_{t} are independent variables such that $Y_{n+(j-1) p+k} \sim N\left(0, \sigma_{k}^{2}\right)$. We shall keep the notations introduced at the beginning of Section 3.

Theorem 4.1. Let the prior density of b, μ and σ be $\sigma_{1}^{-1} \ldots \sigma_{p}^{-1}$ for $\sigma_{1}>0, \ldots$ $\ldots, \sigma_{p}>0$ and zero otherwise, independently of X_{1}, \ldots, X_{n}. Then the posterior density of b, μ and σ is

$$
g(b, \mu, \sigma \mid x)=c \prod_{k=1}^{p} \sigma_{k}^{-\alpha_{k}-1} \exp \left\{-\frac{1}{2 \sigma_{k}^{2}}\left[R_{k}+\alpha_{k} v_{k}^{2}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]\right\}
$$

Proof is analogous to that of Theorem 3.2.
Theorem 4.2. The modus of the posterior density is

$$
b=b^{*}, \quad \mu=\mu^{*}, \quad \sigma_{k}^{2}=\sigma_{k}^{* 2}=\frac{R_{k}}{\alpha_{k}+1} \text { for } k=1, \ldots, p .
$$

Proof is analogous to that of Theorem 3.3.
If we use the modus as an estimator of the parameters, we can see that the estimators for b and μ are the same in the model with equal variances as in the model with periodic variances. We get different estimators only for σ_{k}^{2}.

Theorem 4.3. The marginal posterior densities of σ, b and μ are:

$$
\begin{equation*}
g_{1}(\sigma \mid x)=c \prod_{k=1}^{p} \sigma_{k}^{-\alpha_{k}+n} \exp \left\{-\frac{R_{k}}{2 \sigma_{k}^{2}}\right\}, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
g_{2}(b \mid x)=c \prod_{k=1}^{p}\left[1+R_{k}^{-1}\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]^{-\left(\alpha_{k}-1\right) / 2}, \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
g_{3}(\mu \mid x)=c \prod_{k=1}^{p}\left[1+q_{k} R_{k}^{-1}\left(\mu_{k}-\mu_{k}^{*}\right)^{2}\right]^{-\left(\alpha_{k}-n\right) / 2} \tag{iii}
\end{equation*}
$$

Proof is similar to that of Theorem 3.4 and thus we introduce only its main points. First of all we calculate

$$
\begin{gathered}
h_{1}(b, \sigma \mid x)=\int_{\mathbf{R}_{p}} g(b, \mu, \sigma \mid x) \mathrm{d} \mu= \\
=c \prod_{k=1}^{p} \sigma_{k}^{-\alpha_{k}} \exp \left\{-\frac{1}{2 \sigma_{k}^{2}}\left[R_{k}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]\right\} .
\end{gathered}
$$

From here we easily get the marginal densities $g_{1}(\sigma \mid x)$ and $g_{2}(b \mid x)$. Further we derive

$$
\begin{gathered}
h_{2}(b, \mu \mid x)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} g(b, \mu, \sigma \mid x) \mathrm{d} \sigma= \\
=c \prod_{k=1}^{p}\left[R_{k}+\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)+\alpha_{k}\left(\mu_{k}-\bar{x}_{k}+b_{k}^{\prime} \bar{x}_{k}^{0}\right)^{2}\right]^{-\alpha_{k} / 2}= \\
=c \prod_{k=1}^{p}\left[R_{k}+\left(b_{k}-\tilde{b}_{k}\right)^{\prime}\left(S_{k}+\alpha_{k} \bar{x}_{k}^{0} \bar{x}_{k}^{0 \prime}\right)\left(b_{k}-\tilde{b}_{k}\right)+q_{k} v_{k}^{2}\right]^{-\alpha_{k} / 2} .
\end{gathered}
$$

The formula for $g_{3}(\mu \mid x)$ follows from

$$
g_{3}(\mu \mid x)=\int_{\mathbf{R}_{n p}} h_{2}(b, \mu \mid x) \mathrm{d} b .
$$

Theorem 4.4. Let

$$
F_{k}=\frac{\alpha_{k}-1-n}{n R_{k}}\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right), \quad k=1, \ldots, p .
$$

Then the posterior distribution of F_{k} is $F_{n, \alpha_{k}-1-n}$ and, given x, the variables F_{1}, \ldots \ldots, F_{p} are independent.

Proof. From Theorem 4.3 (ii) it is clear that b_{1}, \ldots, b_{p} are conditionally independent and that the density of b_{k} is

$$
g_{2, k}\left(b_{k} \mid x\right)=c\left[1+R_{k}^{-1}\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right]^{-\left(\alpha_{k}-1\right) / 2} .
$$

We apply Theorem 2.5, which gives the assertion about the $F_{n, \alpha_{k}-1-n}$ distribution.
Each variable F_{k} can be used for a test of fit that the k th vector of the autoregressive parameters is b_{k}. If $F_{k} \geqq F_{n, \alpha_{k}-1-n}(\alpha)$, we reject this hypothesis on the level α. A simultaneous test of fit for the whole vector b can be based on the following result.

Theorem 4.5. Let H_{k} be the distribution function of the $F_{n, \alpha_{k}-1-n}$ distribution. Put $\pi_{k}=1-H_{k}\left(F_{k}\right)$. Then the posterior distribution of

$$
\varrho=-2 \sum_{k=1}^{p} \ln \pi_{k}
$$

is $\chi_{2 p}^{2}$.
Proof. It is well known that $H_{k}\left(F_{k}\right)$ has the rectangular distribution $R(0,1)$. Then π_{k} has the same rectangular distribution and $-2 \ln \pi_{k}$ has the χ_{2}^{2} distribution. Since π_{k} are independent, given x, ϱ has the $\chi_{2 p}^{2}$ distribution.

We have the following application of Theorem 4.5. If $\varrho \geqq \chi_{2 p}^{2}(x)$, we reject the hypothesis that the vector of all autoregressive parameters is b.

Theorem 4.6. Let

$$
T_{k}=\left[\left(\alpha_{k}-n-1\right) q_{k} \mid R_{k}\right]^{1 / 2}\left(\mu_{k}-\mu_{k}^{*}\right), \quad k=1, \ldots, p .
$$

Then the posterior distribution of T_{k} is the Student $t_{x_{k}-n-1}$ distribution and, given x, T_{1}, \ldots, T_{p} are independent.

Proof. The marginal distribution of μ_{k} can be calculated either by Theorem 2.2 or by Theorem 2.4. From here we derive the density of T_{k}, which coincides with the density of the $t_{\alpha_{k}-n-1}$ distribution.

The result given in Theorem 4.6 can be used for constructing a test of fit about the true value of μ_{k}. If $\left|T_{k}\right| \geqq t_{\alpha_{k}-n-1}(\alpha)$, we reject the hypothesis that μ_{k} is the true value. The simultaneous test of fit can be constructed as follows. If $N \rightarrow \infty$, then also $\alpha_{k} \rightarrow \infty$ for all k. Since T_{k} has asymptotically the $N(0,1)$ distribution, T_{k}^{2} has asymptotically the χ_{1}^{2} distribution, and from the conditional independence weget that

$$
T=T_{1}^{2}+\ldots+T_{p}^{2}
$$

has asymptotically the χ_{p}^{2} distribution. If $T \geqq \chi_{p}^{2}(\alpha)$, we reject the hypothesis that μ_{1}, \ldots, μ_{p} are true values of the model. This procedure enables us to decide whether the vector μ is the zero vector or not, because under the hypothesis $\mu_{1}=\ldots=\mu_{p}=0$, the variable

$$
T=\sum_{k=1}^{n}\left[\left(\alpha_{k}-n-1\right) q_{k} / R_{k}\right] \mu_{k}^{* 2}
$$

has asymptotically the χ_{p}^{2} distribution.
Also the procedure described in Theorem 4.5 can be simplified if we use asymptotic results. If an n-dimensional random vector X has the density

$$
q(x)=c\left(1+x^{\prime} V x\right)^{-m / 2}
$$

where V is a positive definite matrix and $m \geqq n+1$, then $Y=m^{1 / 2} X$ has the density

$$
q_{1}(y)=c\left(1+y^{\prime} V y / m\right)^{-m / 2} .
$$

If $m \rightarrow \infty$, then

$$
q_{1}(y) \rightarrow c \exp \left\{-\frac{1}{2} y^{\prime} V y\right\},
$$

i.e. Y has asymptotically the $N\left(0, V^{-1}\right)$ distribution. If m is sufficiently large, we can approximate the distribution of X by $N\left(0, m^{-1} V^{-1}\right)$. In particular, we have approximately

$$
m X^{\prime} V X \approx \chi_{n}^{2}
$$

If we apply these considerations to the density $g_{2}(b \mid x)$ given in Theorem 4.3 (ii), we get that

$$
\varrho^{*}=\sum_{k=1}^{p}\left[\left(\alpha_{k}-1\right) / R_{k}\right]\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right) \approx \chi_{n p}^{2}
$$

approximately holds. Thus we can use a testing procedure which is based on ϱ^{*} instead of that based on ϱ in Theorem 4.5.

Let us approximate the density $g_{2}(b \mid x)$ from Theorem 4.3 (ii) by

$$
g_{2}^{*}(b \mid x)=c \exp \left\{-\frac{1}{2} \sum_{k=1}^{p}\left[\left(\alpha_{k}-1\right) / R_{k}\right]\left(b_{k}-b_{k}^{*}\right)^{\prime} S_{k}\left(b_{k}-b_{k}^{*}\right)\right\} .
$$

If we define

$$
\begin{gathered}
\Delta_{k}=\left(b_{k}-b_{k}^{*}\right)-\left(b_{p}-b_{p}^{*}\right) \text { for } k=1, \ldots, p-1, \\
\Delta=\left(\Delta_{1}^{\prime}, \ldots, \Delta_{p-1}^{\prime}\right)^{\prime}, \quad U_{k}=R_{k}^{-1}\left(\alpha_{k}-1\right) S_{k}, \quad U=U_{1}+\cdots+U_{p} \\
L=\operatorname{Diag}\left(U_{1}, \ldots, U_{p-1}\right)- \\
-\left(U_{1}, \ldots, U_{p-1}\right)^{\prime} U^{-1}\left(U_{1}, \ldots, U_{p-1}\right),
\end{gathered}
$$

then

$$
r_{b}=\Delta^{\prime} L \Delta
$$

has approximately the $\chi_{n(p-1)}^{2}$ distribution. The derivation of this result from $g_{2}^{*}(b \mid x)$ is analogous to the proof of Theorem 3.8. Similarly, the density $g_{3}(\mu \mid x)$ from Theorem 4.3 (iii) can be approximated by

$$
g_{3}^{*}(\mu \mid x)=c \exp \left\{-\frac{1}{2} \sum_{k=1}^{p} u_{k}\left(\mu_{k}-\mu_{k}^{*}\right)^{2}\right\},
$$

where

$$
u_{k}=R_{k}^{-1}\left(\alpha_{k}-n\right) q_{k}, \quad k=1, \ldots, p .
$$

If we put

$$
\begin{gathered}
\delta_{k}=\left(\mu_{k}-\mu_{k}^{*}\right)-\left(\mu_{p}-\mu_{p}^{*}\right) \text { for } k=1, \ldots, p-1, \\
\delta=\left(\delta_{1}^{\prime}, \ldots, \delta_{p-1}^{\prime}\right)^{\prime}, \quad u=u_{1}+\ldots+u_{p}, \\
M=\operatorname{Diag}\left\{u_{1}, \ldots, u_{p-1}\right\}-u^{-1}\left(u_{1}, \ldots, u_{p-1}\right)\left(u_{1}, \ldots, u_{p-1}\right)^{\prime},
\end{gathered}
$$

then

$$
r_{\mu}=\delta^{\prime} M \delta
$$

has approximately the χ_{p-1}^{2} distribution.

Using r_{b} and r_{μ} we can test the hypotheses $\mathrm{H}_{0}: b_{1}=\ldots=b_{p}$ and $\mathrm{H}_{0}^{\prime}: \mu_{1}=\ldots=\mu_{p}$, respectively. If H_{0} holds, then $\Delta_{k}=b_{p}^{*}-b_{k}^{*}$ and when $r_{k} \geqq \chi_{n(p-1}^{2}(\alpha)$, we reject H_{0}. Similarly, if H_{0}^{\prime} holds, then $\delta_{k}=\mu_{p}^{*}-\mu_{k}^{*}$ and when $r_{\mu} \geqq \chi_{p-1}^{2}(\alpha)$, we reject H_{0}^{\prime}.

References

[1] J. Anděl: Statistical analysis of periodic autoregression. A.pl. mat. 28 (1983), 364-365.
[2] G. E. P. Box, G. C. Tiao: Intervention analysis with applications to economic and environmental problems. J. Amer. Statist. Assoc. 70 (1975), 70-79.
[3] E. G. Gladyshev: Periodically correlated random sequences. Soviet Math. 2 (1961), 385-388.
[4] E. G. Gladyshev: Periodically and almost periodically correlated random process with continuous time parameter. Theory Prob. Appl. 8 (1963), 173-177.
[5] M. Pagano: On periodic and multiple autoregression. Ann. Statist. 6 (1978), 1310-1317.
[6] A. Zellner: An Introduction to Bayesian Inference in Econometrics. Wiley, New York, 1971.

Souhrn

O PERIODICKÉ AUTOREGRESI S NEZNÁMOU STŘEDNÍ HODNOTOU

Jirí Anděl, Asunción Rubio, Antonio Insua

Periodická autoregrese je model pro sezónní časové řady. Předpokládá se, že autoregresní parametry jsou periodické funkce s periodou, která odpovídá sezónnímu charakteru řady. Stř̌ední hodnota řady může být rovněž periodická funkce. V práci je pro odhad parametrů a pro testování hypotéz použit bayesovský přístup. Jsou vyšetřovány dva modely. Jeden se týká případu, kdy inovační proces má konstantní rozptyl, druhý model odpovídá inovačnímu procesu s periodicky se měnícími rozptyly.

Authors' addresses: Doc. RNDr. Jiři Anděl, DrSc., matematicko-fyzikální fakulta Univerzity Karlovy, Sokolovská 83, 18600 Praha 8; Prof. Asunción Rubio, Prof. Antonio Insua, Polytechnical University, Faculty of Informatics, Carretera Valencia km. 7, Madrid 31, Spain.

