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31 (1986) A P L I K A C E M A T E M A T I K Y No. 5, 345-364 

DUAL FINITE ELEMENT ANALYSIS FOR CONTACT PROBLEM 

OF ELASTIC BODIES WITH AN ENLARGING CONTACT ZONE 

TRAN VAN BON 

(Received December 21, 1984) 

Summary. Dual finite element analysis of the contact problem of two elastic bodies with an 
enlarging contact zone is presented. Approximations of the solution are defined on two types 
of triangulations by piecewise constant stress fields. Convergence is proved in both cases. 

Keywords: contact of elastic bodies, dual variational formulation, dual finite element method 

AMS Subject class.: 65 N 30, 73 C 99 

INTRODUCTION 

Dual finite element analysis for the contact problem of two plane elastic bodies 
without friction was given in [1] —III by Haslinger and Hlavacek, but only for the 
case of a bounded contact zone. In the case of the contact zone enlarging during 
the deformation a primary finite element analysis was discussed in [1] —II. It is 
the aim of this paper to analyse the latter problem by a dual procedure. Two types 
of triangulations are used. The convergence of the dual finite approximations for 
each type of triangulations is proven. 

1. THE DUAL VARIATIONAL FORMULATION 

First of all we recall the primary variational formulation of a contact problem 
with an enlarging contact zone (see [1] — I, § 1 for details). We introduce the following 
notation: the norm and the semi-norm in the Sobolev space Hk(Q) are denoted 
by || • ||fc, | *|fc, respectively. Pk(T) denotes the set of all polynomials of order k defined 
on T 

W= {u\u = (u', u") e \H\Q')Y x \H\Q")Y) , 

V = {u e W\ u' = 0 on FM, un = 0 on F0} , 

KE = {v eV\ v^rj) — v'^rj) ^ e(rj) for a.e, r\ e {a, b>} , 

where vM(rj) is the component of the displacement vector vM in the direction £, 

345 



K*/) = f'(ii) — f\ri)\f\fn a r e functions describing the arcs T'K and T"K9 respectively 
(see Fig. l ) , f ' , f ' ' e C 2 « a , b » . 

A(u9 v) = Cijkleij(u) ekl(v) dx , Q = Q' v Q", 
J Q 

1 

L(v) = 

Fig. 1 

where <?l7(u) = ^(dUijdxj + dujjdXi) are the components of the strain tensor with 
respect to the displacement vector u, c^ u are coefficients defined by the generalized 
Hooke's law. Assume that there is a positive constant c0 such that each symmetric 
tensor of the 2nd order T = (T I7), i,j = 1, 2 satisfies 

Cijki^ij^ki = c0TvTy for a.e. x e O . 

Throughout this paper we shall use the adding convention, i.e., sum from 1 to 2 
for any twice repeated index. 

FtVi dx + PtVi dS , 
.Q JTT'uTT" 

where Ff, Pf are the components of the body forces and the surface loads, respectively. 

Seiy) = \A(y9 v,)- L(v). 

Then the primary problem is to find u e K£ such that 

(1.1) Se{u)^Se{y) W e K £ . 

The existence and uniqueness of a solution were discussed in [1] — I. 
We now consider the sets 

S = {^ = (^ l 7), U = 1, 2 | -yfy e L2(fl), ^ l 7 = ^ J , 

iTe = S xKE9 
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and the functional 

where 

^([jr, v]; A) = re\(jr, v) + | A^./V) - jrh)dx ; [JT, v]earz, Aes, 

J-Q 

2 J Q 

Lemma 1.1. 1. If {[Jr*, v*]; A*} is a saddle-point of the functional #f on nU/\ x S, 
ř.e., 

^f([^Г*, v*]; џ) ^ . ^ ( [ Ж * , v*]; A*) ^ ^f([Ж, v]; A*) 

holds for all [JT, v] e iVz and JIE S, then a solution u of the primary problem (1.1) 

exists and 
Jf* = e(u) , v* = u , A* = T(U) , 

where e(u) and T(U) are the strain and the stress tensor, respectively. 
2. If u is a solution of the primary problem (1.1), then {[e(u), u ] ; T(U)} is a saddle-

point of 2te on iVe x S. 

Proof. 1. From the properties of the saddle-point we deduce that 

(1.2) <5AJf{\JT\ v*]; A*) = 0 ^> JT% = eu(v) , 

(1.3) S^K[jr*, v*]; A*) = 0 o A* = c ^ f , , 

(1.4) 5 ^ ( [ ^ V * , v*]; A*) (v - v*) ^ 0 Vv e K£, 

where e.g. O"AJf denotes the partial Gateaux differential of ,ffl with respect to A. 
From (1.4) it follows that 

(1.5) j A*.e/7(v - v*) dx ^ L(v - v*) Vv eK£. 
JQ 

Making use of (1.5), (1.3) and (1.2), we obtain 

Cijkieu{v ~ v*) eki{v) dx ^ L(v - v*) Vv e K£, 
J ß 

i.e., v* = u is a solution of (1.1). Furthermore, 

JT* = e(u) , A* = T(U) . 

2. Let u be a solution of (1.1). We have to verify that 

(1.6) JT{[e{u), u ] ; /I) g JT([<u), U] ; T(U)) ^ Jf\[./V, v]; T(U)) 

V / i eS , [ . / V , v ] e # V 

It is easy to show that the left inequality holds even with the equality sign. 
We have 
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(1.7) Ж(\Jf, vj; x(u)) - Ж([e(u), u ] ; т(u)) = 

= SЄy(Jf, v) - iŕ.(e(u), u) + ^ • ( U ) Ы V ) - ^ . 7 І ^ 

= ~ CUkl[^ij - eij(u)~] [^kl - *«(«)] d * + 4 U > v - u ) ~ *XV - u ) • 
2 J.Q 

Since u is a solution of (1.1), we have 

(1.8) A(u, v - u) - L(v - u) ^ 0 Vv e K£. 

From (1.7), (1.8) and the positive definiteness of the coefficients cijkl the right 
inequality of (1.6) follows. Thus {[e(u), u] ; T(U)} is a saddle-point of Jf on 'Wz x S. 
Q.E.D. 

Using the definition of $T and the relation 

we arrive at 

(1.9) 

o f ч г / ч ІГ л л / ° iî Jf = e(v) , 
Sup Ay[eřj.(v) - Л^./J dx = < J ' 
AєS J ß

 ч + 00 lf JГ ф e(v) , 

<Є(ú) = Inf Jðf(v) = Inf Sup J f ( [ Ж , v]; A) , 
vєK£ ÂєS 

where u is an arbitrary solution of ( l . l) . 
The problem: to find 

(1.10) Sup Inf Ж([JГ,v\;X) 
XeS [Ж,v]є<Г e 

will be called dwal to the primary problem (1.1). 

We shall reformulate the dual problem (1.10) in a simpler form. To this end, we 
introduce the decomposition 

#e([jr, v]; A) = #e x(jr, A) + JT 2(A, V) , 
where 

Cijki^ij^kid* ЖX(JГ, X) X^JTij dx, 

(1.11) ^ 2 ( A , v ) = 

The definitions of ^f x, ,?f 2 imply that 

(1.12) 

It is readily seen that 

(1.13) Inf ^X(JT, A) - tf X(JT*, X 

V0.(v) dx - L(v) . 

Inf Jť([jr, v]; A) = Inf .T jpV, A) + Inf Jť2(A, v) 
lV,v]eÍVE JreS veKe 

aijki^ijKi dx 

where aijkl are the coefficients of the inverse generalized Hooke's law, and Jf\j = 
= aijkiKi-
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Since K0 c KE and K0 is a convex cone (K0 denotes K£ with e = 0), the infimum 

of 34?2
 o n ^ £

 lS finite only if 

(1.14) J?2(^v) = 0 V v e K 0 . 

We set 

S £ P = {X e S | ,?f 2(A, v) *.> 0 Vv G K0} . 

It is possible to show that for any X e SPJ> smooth enough we have 

dXt (1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

ôx 
+ F, = 0 in Q, 1 = 1,2, 

XijYij = P, on rt, i = 1, 2 , 

T/'CA") = 0 on Fo , 

T;(l') = 0 on K, F;(A") = 0 on F^ , 

• T^(A') (cos a ' )"1 = T (̂A") (cos a")"1 ^ 0 , we <a, b> 

where aM, M = ' , " is the angle between the axis n and the tangent to FM and 
( c o s a ^ - 1 = [1 -(dfMldrj)2Y/2. 

In fact, from the condition X e SPP it follows that any v e K0 satisfies 

vf —Ь- dx + v^ijtij áS ^ F;v; dx + P;v; dS . 

Inserting vM = +</>/ e CQ(QM), M = ', " we obtain (1.15). Then we arrive at 

VІXІJПJ áS ^ I P-PІ áS 

Choosing vt = + */>f such that the trace of i/̂  has its support in FT, we obtain (1.16). 
Consequently, we deduce 

0 < vfanj dS = [ [T4'(A') t>ť + T;(A') O dS + 
5Í2 + TT J T K ' 

[T;'(rк + T;(л-)<]ds + 
Tx" 

T/'(A") i í dS W e K0 . 
TO 

Choosing v' = 0, v" with v"n = 0, v" = +i/> on F0, where the support of ^ is contained 
in F0, we obtain (1.17). Thus we are left with the following inequality 

(1.20) [щ + T;<] ds + [тrø + T;<] ds ^ o vv є 0. 
Гк' J Гк" 

Taking v e V such that t^ = v"n — 0 and i>4 = v\ — ±<p for points on r'K u Ex 
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having the same coordinates rj and with cp e C™((a, b>) we have 

0 = f \T^(X') cp] dS + f T^(X") cp dS = 
JrK' JrK" 

=. J [T/(A") (cos a")"1 + T^U') (cos a')"1] cp drj. 

Consequently, we deduce 

(1.21) - T{(X) (cos a')~x = T / ( r ) (cos a")~A Viy e <a, b> . 

Choosing v\ = v£ = 0, v"n = 0, v'n = ±<p on F#, we obtain from (1.20) that T/^A') = 0 
on F^. The condition T^(X") = 0 on F'K can be deduced in the same way. Thus, 
(1.20) yields that 

Í 
J a 

[T/(Я")(cos a"Ył] (ej - »J) dłj ^ 0 V v є K 0 . 

By virtue of the condition v\ — v^ ^ 0 Vv e K 0 , (1.19) follows. 
From (1.15) up to (1A8) and (1.21) it is readily seen that for any veKe, X e Sp P 

we have 

(1.22) je2(X, v) = f T'{(X") (cos a " ) " 1 (v,r - v') diy. 

We can show that for any X e Sp P, 

Cb 

(1.23) lnfje2(X, v) = T^'(X") (cos a " ) " 1 e(vj) drj. 
V e ^ J a 

In fact, from (1.22), (1.19) and the definition of Ke, it follows that 

(1.24) 3f2(X, v) = j T^(A") (cos a " ) " x e(iy) drj Vv e K£, l e SP)P . 

Let the functions/' andf" describing T'K and r'K, respectively, be twice continuously 
differentiable on <a, b>. There exists a function u0 e [H1(0")]2 such that uo„ = 0 
on F0, uo^ = e(rj) on <a, b>. Choosing u0 = (u0, UQ), where u0 = 0, we have 
u0 e Ke and 

(1.25) J^2(X, u0) = j T^(A") (cos a")"1 s(rj) drj . 

Then (1.23) follows from (1.24) and (1.25). 
Combining (1.23), (1.12) with (1.13) we arrive at 

(1.26) Sup Inf jfflyV, v};X) = - Inf &X(X)9 

where 

9>X(X) = \ f flvwA,Ai d * ~ f W ) (cos a")"1 e(iy) df/ . 
^ J.Q Ja 
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We introduce the following notation for ex, T e S: 

<o~, T> = (TijTij dx , (c, T) = ic~xa, T> , 
in 

Ml = <T> T> , WAY = (T, t ) 

where c: S -> <$ is the isomorphism defined by the generalized Hooke's law: 

a = ce <-> ay = c w e w . 

Then, making use of (1.25) and (1.11), we may write 

^iW= = iM2 - o « u > + L(u0) 
and the dual problem (1A0) is reformulated as follows: to find A* e SPP such that 

(1.27) Sf{X*) s ST{X) VI e si~fP, 

where ^ ) = i | |A| | 2-<e(u 0) ,A>. 

Lemma 1.2. Let u be a solution of the primary problem (1.1). Phew A* = (A*.) = 
= (cijkiekl(u)) is the unique solution of the dual problem (1.27). 

Proof. It is easy to see that A* e SPP since v = u + weKe for any w e K 0 . 
For any A e S£F we have 

Sŕ(к) - Ңк*) = - fly*i(Ay - A*) (AH - A*;) dx + 

-W?A. - &) <** - «u 0), x~x*y^ 
JQ 

(Ay - A*) (kkl - A*) dx + f e y (u) (Ay - A*-) dx - <e(«i0), A - A*> ^ 

^ <e(u - u 0), A - A*> , 

where we have used the ellipticity of the coefficients aw The solution u of the pri
mary problem satisfies 

<A*, e(v - u)> ^ L(v - u) W e K . 
Since u0 e K we have 

< e ( u - u0), -A*> + L(u- u 0 ) ^ 0 . 

From A G Sp P and u — u0 eK 0 it follows that 

0 S *2(X9 u~~u0) = <e(u - u0), A> - i ( u - u0) 

Adding the two inequalities we arrive at 

<e(u - u0), A - A*> ^ 0 VA £ ^ F ) P , 
i.e., 

^(A) ^ &{)*) VA e S;jF • 

351 



This implies that A* solves the problem (1.27). Moreover, since the functional ST(X) 
is strictly convex on Sp P, the uniqueness of A* follows. Q.E.D. 

R e m a r k 1.1. Let u, A* be as in Lemma 1.2. Making use of (1.9), (1.25) and the 
relation between STt(X) and Sf(J), it is possible to show that 

S£(u) + L(u0) + sr(k*) =•- 0 . 

R e m a r k 1.2. A result analogous to that of Lemma 1.5 in the paper [1] —III 
can be obtained. Namely, if a solution u of the primary problem (1.1) exists, then the 
set SfP is non-empty, convex and closed in S. Existence and uniqueness of a solution 
of (1.27) can be shown directly by using the strict convexity and the lower weak 
semicontinuity of the functional Sf(X). 

We here emphasize the fact that the dual problem (1.27) is uniquely solvable if 
the primary problem possesses at least one solution. The existence of the solution 
of the dual problem, however, can be proved directly, if in some way we show the 
non-emptiness of the set Sp P. Thus, the dual problem may have a solution even in 
some cases when the primary problem has none. 

2. APPROXIMATION OF THE DUAL PROBLEM 

As in [2] it is possible to approximate the solution of the dual problem by means 
or piecewise constant stress tensors. Here we follow the procedure suggested by 
Haslinger and Hlavacek [2]. 

Let us consider a triangulation 3T^ of QM, M = ', " such that the triangles adjacent 
to the boundaries may have a curved side along the boundary, and the nodes on F^ 
are on lines parallel to the £ axis. If a curved triangle T e ZTh = 3T'h u 3T"h adjacent 
to Fjjf is convex, it will be divided by the chord into the "straight" triangle T0 and 
the segment Ts such that T = T0 u Ts. If Tc e STh is not convex, one of its sides 
must be parallel to £ axis. We define 

Vh = Iv e V | v\Tc e [PX(T0)]2 VT0 c Te STh adjacent to T™ , 

= 0 VTS c TeSTh adjacent to F* , 

-iЛÍ =s 0 for each non-convex triangle Tc adjacent to F£ , 

v\T e [P i(T)]2 for the other triangles T I . 

We introduce the sets 

Sh ={TeS\TijeP0(T*); T* = T, T0, Ts, Tc ; i,j = 1,2} , 

KOh = {veVh\vl-v's = 0 V^e<a ,b> on T'K u F^} . 
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Then we define approximations SPPh of SPP as follows: 

S;,P,„ = {X e S„ I <A, e(vA)> ^ L(vA) VvA e K0A} . 

It is readily seen that the condition v\ — vj _ 0, v e Vft holds everywhere on 
<a, b> if only it holds for the nodes lying on FM. 

Let the function u0 = (0, u0) be known (see (1.25)). 
Then the approximate dual problem is formulated as follows: to find XheS^Ph 

such that 

(2.1) y(Xh)sy(X) VA e S;,P,„ . 

We introduce the projection mapping rh: S —> SA defined by the relation 

(2.2) <T - rhx, Xh> = 0 VZA e SA. 

Lemma 2.1. Let x e SP P. Then rhx e SP P h. 

Proof. It is readily seen that 

(2.3) (rAt) | r , = (mes T*)"1 f x dx , VT* = T\ T0, Ts, Tc e «Th, 
J T* 

||rAT — T||0 -> 0 , h -> 0 . 

Assume that vA eK 0 / r Then e(vA) e SA, and using (2.2) we obtain 

<rAT, e(vh)) = <T, e(vh)} = L(vfc) 

because of K0A c K0, T e SPP. This yields rftT e SP Ph. Q.E.D. 

Next we recall some results of [2]. 

Lemma 2.2. Let T'K n FM = 0, TKn F0 = 0. Assume that the number of points 
ofFx n fH, FT n F0 is jT7tite, tfndfM e Cm«a - S, b + £ » , (5 > 0, m = 1, M = ', ". 
Then the set 

J f „, = K0 n [C"'(0')]2 x [C"'(fl")]2 

is dense in K0. 

Lemma 2.3. Let v G [ H 2 ^ ) ] 2 x [H2(Q")]2,fM e C2((a, 6 » . Define /he Lagrange 
linear interpolation vx e Vh as follows: If At is a node of a curved non-convex tri
angle, Vj(Aij = v(D;), where Dt is the projection of A,- onto FM in the direction f; 
Vj(A^) = v(At) at the other nodes. We construct vx such that vl e Vh, i.e., v{ is a piece-
wise linear function which is extended continuously by constants on segments Ts 

and on non-convex curved triangles. Then 

||v7 - y\\i,Q'uD" -> 0 for h -> 0 

for any regular system of triangulations. 
We can prove the following result about the convergence of Xh to A*. 

Theorem 1. Let fMeC2, M — '," in a neighbourhood of the interval (a, by 
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and let the same assumptions on F^, Tu, F0, FT as in Lemma 2.2 hold. Assume 
that SP>P * 0. 

Then the approximate dual problem (2.1) possesses a unique solution Xh and 

(2.4) | K - * * | | 0 - > 0 , . h-+0 

holds for any regular family of triangulations &~h, where .A* is the solution of the 
dual problem (1.27). 

Proof. The set SpPh is convex and closed. Lemma 2.1 implies that it is non-empty. 
The functional 6?{X) is strictly convex and lower weakly semicontinuous on SPiPth. 
The existence and uniqueness of the solution of (2,1) follows. 

To show (2.4), we shall apply an abstract theorem about the convergence of the 
Ritz-Galerkin method (see e.g. [3], Chapt. 4). We only have to prove the following 
two conditions: 

(i) 3{xh), Th e SptPJl, Th -> 2* in S for h -> 0, 

(ii) The SpPh, Th -* T (weakly) in S implies T e SpfP. 

Choosing Th = rftA*, making use of Lemma 2.1 and (2.3) we deduce that (i) holds. 
Now let v be an arbitrary element of K0. By virtue of Lemma 2.2 we find vy e J f 2 

such that for any y > 0, 

\yy - y\i,Q>»n» < y . 

Using Lemma 2.3 we arrive at 

\\yyi - yy\\i,Q'vQ" - + u 5 n->v. 
It is clear that vyI e K0h. Then we obtain 

I k / - y\\i,Q>uQ» S \\yyi - yy\\i,Q>vn» + \\yy - H k o w -* ° f o r y> h -* °-

If Th e SP Pfh, we have 

<**> e(vyl)> = Livyi) • 

Since xh -* x (weakly) in S and e(vyl) -> e(v) (strongly) in S, passing to the limit 
for h, y -> 0 we conclude 

<T, <V)> ^ L(V) V V 6 K 0 

i.e., x e S ^ p . Q.E.D. 

3. AN ALGORITHM FOR THE SOLUTION OF THE APPROXIMATE PROBLEM 

As in [2] we can simplify the approximate problem (2.1) by eliminating the 

auxiliary functions vh, which appear in the definition of SPPth. 

We set N 
vh{L *?) = I ?#*(& n) > 

1 = 1 
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where qt are the values of the displacement components at the nodes of the triangula-
tion ZTh. 

If we describe the condition v'h\ — vh% g 0 at the nodes lying on FK, then precisely 
two components {qfcl, qk2} intervene at any pair of the nodes (Afc, Bfc) e FK (see 
Fig. 2). Namely, the condition v'h\ - ^ ^ 0 implies qkl - qk2 g 0. We now intro
duce that linear transformation 

q = FKy: R2 -> R2 

defined by the relations 

yfct = qfcl, yk2 = Qui - qkl • 

Fig.2 

It is readily seen that FK is regular. We consider the same transformation for any 
pair MK = {qkl, qk2}, k = 1, ..., Q corresponding to the pair of nodes (Afc, Bfc) e FK. 

Q 

We also set yp = qp for qp£\J Mk9 1 ^ p ^ N. Finally, we have 
k=i 

(3.1) q = Fy: RN ~> RN , and 

vheKohoqejrqoyeJr,= {yeRN, yk2 ^ 0, k = 1,..., Q} . 

Let iAr* be the characteristic function of the figure T* e &~h9 T* = T, T0, Ts, Tc. 
Then we have 

(3.2) TheShoTh(Z,n)= £ <T*)iM&*)-

Denoting by 

(3.3) tT = {T t l(T t), T22(T t), T12(Tt), T l t(T2), T 2 2 (T 2 ) , T 1 2 ( T 2 ) , ...} 

the corresponding vector in RM, we obtain 

<T,<V„)>= £ f Tw(T*)IWp.)d£d>, = (Et,g), 
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where E is a matrix of order N x M (N < M) and (Ft, q) — qTEt. Since 

L(v4) = 2>iDK) = (/,<?), 
i = l 

where / is a fixed vector in R^, the condition T G SF,P^ c a n ^ e written in the form 

( / - E t , q ) ^ 0 \/qeJfq. 

Applying the mapping F, we obtain an equivalent condition 

(3.4) (/ - Ft, Fy) ^ 0 Vye Jf y . 

Denote by J~ the set of all indexes k2, k = 1, ..., Q9 and J° = {1, ..., N} — J~. 
Since the cone :£ y is defined by the vectors 

{<*;, - e m ; jeJ°, m e J"} 

where {e^, em) create an orthonormal basis of RN, (3.4) is equivalent to the system 

(3.5) g/t) = ( J - E t , F e . ) = 0 , j e J° , 

(3.6) gjt) = (/ - Ft, Fem) ^ 0 , m e J . 

Inserting (3.2), (3.3) into the functional Sf(xh)9 we arrive at the following problem: 
Sf0{i) = min over the set of all t satisfying the conditions (3.5) and (3.6). 

R e m a r k 3.1. When choosing global coordinates (xl9 x2) instead of (£, rj) the 
procedure is analogous, but the situation is somewhat more complicated. In fact, 
if we describe the condition vh\ — v'h% = 0 at the nodes on rK9 there exist precisely 
four components {qkl9 qkl9 qk39 qk4} at any pair of nodes (Ak9 Bk) e FK. The condition 

4 ' 
V'U ~ vhz = 0 implies £ fe^q^ g 0, where bx = — b3 = —cos (x1? £), b2 = — b4 = 
= cos(x 2 ,^) . i = 1 

4. ANOTHER APPROXIMATION BY FINITE ELEMENT METHOD 

In Section 2 the dual problem (1.27) was approximated by piecewise constant 
external approximations using the triangulation suggested by Haslinger and Hlavacek 
[2]. It is the aim of this section to approximate the same problem using another 
triangulation, analogous to that suggested by Hlavacek and Krizek in [4]. 

Assume that the parts rM
9 M = ', " consist of a finite number of convex and 

concave arcs. Here an arc F0 c dQ is called convex (concave) if there exists a convex 
domain Q0 c Q (Q0 cz R2 — Q) such that F0 c dQ0. 

Next we define a triangulation of Q = Qr u Q". We construct domains QM
9 

approximating QM and such that QM cz .QM, M = ', ". Each concave arc belonging 
to rM is approximated by a polygonal curve consisting of a finite number of line 
segments whose lengths are not greater than h. Each of these line segments is tangential 
to the concave arc Furthermore, each inflexion point of FM must be a vertex of the 
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polygonal curve. By TKh we denote the union of the convex arcs and the approximate 
polygonal curves. The part of QM bounded by TM and TKh will be denoted by DM. 
Then the domain QM = QM — DM will be triangulated in the standard way used 
in the finite element method. The triangles adjacent to the boundary may have 
a curved side along the boundary. We require each end point of F^ and each node 
of the approximate polygonal curves to be also a node of the triangulation. Moreover, 
the corresponding nodes Ah Bt lying on TKh and TKh must lie on the lines AtBt 

parallel to £-axis (see Fig. 3). This triangulation will be denoted by 3T™ and ZTh = 

= rh u ri 

Fig. 3 

We say that the system {-3~h}, 0 < h = h0 is regular if the smallest internal angle 
of all triangles of ?Th, for any 0 < h = h0, is not smaller than a constant 0 > 0, 
independent of h. Here if a triangle is curved, the internal angles are defined by the 
angles of the "straight" triangle with the same vertices. 

If a curved triangle Te ^~h adjacent to TK is convex, it is divided by a chord into 
a "straight" triangle T0 and a segment Ts such that T = T0u Ts. 

We introduce 

Vh = {veV\ v\To e [P^T,)]2 VT0 c Te Ph adjacent to TM , 

= 0 VTS c Te Fh adjacent to TK , 

д_ 
= 0 VT. Dh, where Tc is a curved triangle defined by Ht 

V\T e [^ i(^)] 2 f° r a ^ t r i e remaining triangles}. 

(Fig. з), 
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In other words, Vh consists of piecewise linear vector-functions which are extended 
continuously on segments Ts and on non-convex curved triangles, constantly in the 
direction £. 

Let e > 0 be fixed. We define GM cz QM to be the so called e~skin of the curved 

part of FM, i.e., 

GM = {ye QM, 3x e FM - Ff: dist (x, y) < e} , M = ' , " 

where F£M = {x e FM; there exists a line segment S c. FM: x e 5}, and G = G' u G* 

(Fig. 4). 

Fig. 4 

The following assertion holds. 

Lemma 4.1. Let ve\H2(Q') n W1'C0(G')]2 x \H2(Q") n W1 
°(ß")]Vл 

e C2((a, b}). We define a Lagrange linear interpolation vf e Vh as follows: if At is 
a vertex of a side tangential to FM, Vj(-4,-) = Y(Dt)9 where Dt e FM is the projection 
of Ai in the direction {; Vj(at) = v(a() at the other nodes; then we construct vr 

so that Vj e Vh. Then 

| | v i - VILQW - * 0 fOr h-^0 

holds for any regular system of triangulations. 

Proof. Let Vh be the space of all piecewise linear functions on J\ u Dh, continuous 
on QM, M = ', ", where each convex curved triangle T = T0 u Ts will remain un
divided while each non-convex curved triangle Tc c Dh is divided by the line segment 
AtDi into two triangles Tc

n, m = 1, 2, on which the functions from Vh are linear 
and defined by the values at the nodes Ah Hh Hi+1 (see Fig. 3). Let the functions 
wh e Vh be constant in the direction £, i.e. ((d\d£) wh)\Tcm = 0 for each wh e Vh, 
m = 1, 2. The interpolation vh e Vh of v is defined so that vh = v at all nodes of 
the triangulation 3Thi i.e., except the nodes Dr 

First of all, we shall show that 

(4.1) | l , ß ' u ß " 0 for h -+ 0 
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In fact, there exists an extension Ev e [ H 2 ( R 2 ) ] 2 of v such that 

|Ev | | 2 i R 2 й C v 2,QM 

(see e.g. [5], Chapt. 2). For any convex curved triangle adjacent to F^ we define 
T = Adiajdk (i.e. twice extended T0) (see Fig. 5). T = T if T is a straight triangle. 
Let n denote the linear interpolation on T with the nodes ai9 aj9 ak. Using the affine 
equivalence and the regularity of the system {&~h} we deduce 

(4.3) \\nEv - Ev\\ltf = Ch\Ev\2tf , 

where C is independent of h and Ev. Since nEv = v° on T*, VT* e &~hi making use 
of (4.2), (4.3) we arrive at 

(4.4) ||v - v° | | l Q h M = V | „ _ y o ^ <; -r | |V _ ^ ^ 

£ Ch2 X ll£H|i,f* = 2C/x2JJ£;v[|f>R2 ^ C ^ I V J ^ M . 

Fig. 5 Fig. 6 

Furthermore, it is readily seen that for each point (£, 77) e Tc we have 

\v°hj(i, n)\ ^ max \vj{Ak)\ rg ||v||0i00,G , 7 = 1, 2 , 
fc=i-l,i,i+l 

because for h small enough Tc cr G and ve[ j? 1 , c 0 (G)] 2 . Consequently, we have 

K(£ , IJ) - <£ , f,)| g 2lv||0i00>G V(£, 1,) e Tc 
and 

(4.5) K - v||S, r. ^ 4|v||0i0OiG mes Tc. 

Let us consider (djdrj) v° on T/ (Fig. 6). It is readily seen that 
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— v? = — v°(cos aM) + (sin aM) - v° = (cos aM) - v ° , 
dv tty dS, dt] 

i.e., 

^ ^ ( c o s a T ^ n 0 -
Ow Ov 

But v° is linear in the direction v, therefore we have 

_Yo = v°h(Ai+t)-v°M = vQ4 i + 1) ~ v(Ai) = I 

dv " |A,A,.+ 1 | \AtAt+1\ dv K ' h 

where N- is a point lying between Ax and Ai+l. Since 

we have 

I.Є., 

І v(JV;) = 1 v(iVř) (sin aм) + (cos a м ) А v(iV() 
Ov Orç õç 

| - v ° = ^ v ( i V ř ) + ( t g a ^ v ( i V ř ) 
OИ Ořl Oç 

дr\ 
й C\\vh 

Here C is independent of Tc because of the fact that 

|tg«MM B/M|c.«.,>,. 

A similar result holds for T2. 

Finally, we obtain 

d 
ъ K - *) 

- (vì - vì 
ÕГ) 

= С| |v | | l ,oo, G -

= | | V | | l , 0 0 , G 9 

Thus we deduce 

(4.6) | v ° - v | ^ ^ C | | v f l ? > 0 0 j C m e s T c . 

Combining (4.5) with (4.6) we arrive at 

\\v°h-v\2

UTc^ C | v | | ^ G mes Tc 

and 

(4.7) \\v°h - v\\2

UDhM S I K - v\\lTc S C\\v\\l„fG mes D% -> 0 
TceDhM 

for h -> 0 since mes D^ -> 0 for h -» 0. Then (4.1) is a consequence of (4.4) and (4.7). 
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Next we show that 

(4.8) h - v ? | | 1 > o « - 0 for / . - 0 . 

In fact, it is clear that 
Supp (vj - v°h) c uTs u Dh u Eh, 

where Eh is the set of all "straight" triangles having at least one vertex at the point 

of intersection of two tangents to TM. 

In every Ts we may write 

V°hj{L 10 - V,tf, fi) = VUZ, n) ~ V,0S)9 rj) = [rj - {(S)] y *°, 

for the j- th component, j = 1,2, where (£(s), ^) is the projection of the point (£, ?/) 
on the chord in the direction £. Since fM e C2(<a, b>) we have |£ — £(s)| ^ /z. 
Thus we deduce 

r r / P \2 
(4.9) 0° , - ^ . ) 2 df àr, й h2 ľ ( ^ -&Y d{ dl/ 

For Ts we also have 

(4.10) / o \ ^ 0 ^ / o \ 
, , (%' - »«) = — VhJ , — K - Vfj) 

oc, ac, or\ 
- % - - ^ 5 / ' 
O^ ði/ 

fФ) 
дц 

= M = IIЯIcҷ^)) , 7 = 1,2, 

where a is the angle between 77-axis and the chord. From (4.9), (4.10) we obtain 

(4.11) 
1 < rllv°ll2 

Let us consider a Te Eh. Then T c G for h small enough. We know that T has 
either the position of T* or T** (see Fig, 7). 

Fig. 7 Fig. 8 
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If Thas the position of T*, then Oj/a i + 1) = « / / a i + 1 ) , i.e., 

(4A2) \v°hj - vtj\ ^ max \v°hj(Ak) - vu(Ak)\, ; = 1, 2 . 
k=i,i+l 

If Thas the position of T**, vhJ(ak) = vr/fl*), k = i, i + 1, and for each (£, 77) e T** 

we have 

(413) \v°hJ({, n) - vJZ, n)\ ^ \v°hj(A) - % / A . ) | , j = 1, 2 . 

Moreover, for the j-th component, j = 1, 2, we have 

(4.14) K,(A() - У//A,.)| = I-/А.) - »/£..)! = — vj d£ 
J AІ дÇ 

dţ. 

If h is sufficiently small, A.D. <= G, |̂ 4£L>£| g C/zr, where C is independent of A8-
and hT. Furthermore, we have 

н 
û Пl.oo.G, ( í , fj) Є AĄ . 

Thus, from (4.14) we get 

(4.15) h°/A.) - i>./A,)| g Ch2 |v |1 > 0 0,G . 

Combining (4A2) — (4A5), for every TeEh we obtain 

(4.16) K - ^ I U . r ^ C h 2 ^ , ^ , 

(4.17) K ~ V/IIO.T =s C*J |r | 1 > 0 0 p f l mes T . 

Since v£ and v, are linear on Tand the system {&~h} is regular, setting w = v% — vt 

we have (see Fig. 8) 

dwj = w/0,) - w/02) ^ 2||w||0,OT, r g J_ n 

Obcx |0 i0 2 | 2QT ahr 

|0,oo,T , 7 = 1 , 2 

where a > 0 is the number from the definition of the regularity of {-Th}. Making 
use of (4.16) we obtain 

(4.1Í J. dxx 

d x ^ - h T | v | 1 > 0 0 ) G m e s r , ; = 1,2, 

and a similar estimate for J r |dw/Obc2|
2 dx. 

Finally, (4.17), (4.18) imply 

(4.19) | n ° - V / | | Í , r š C h 2 | v | 1 ) 0 0 ( G m e s T . 

Let us consider the last case, when Tc a Dh is defined by sides AtHi9 ^4iH,+ | 

and the arc HtHi+ x (see Fig. 6). By definitions of vh, Vj we get 
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^•(A,.) = v/At), vu(A) = Vj(Dt), 
i.e., 

(4.20) v°hj(A,) - v^A,) = Vj(A) - Vj(D) . 

Furthermore, for each (£, rj) e Tc we can show 

(4.21) \V°hj(t,r,)-vtj(t;,t,)\^ max \Vj(Ak) - Vj(Dk)\ 
k=--i-l,i,i+l 

because of the fact that 

K(Hs) ~ VIJ(HS)\ = max \Vj(Ak) - v/D,)| , s = i, i + 1 ; ./ = 1, 2 
k = s,s— 1 

and the functions vhj are linear on Tc
m, m — 1, 2 (see Fig. 6). 

From (4.14), (4.15) and (4.21) we deduce 

| | ^ ° - - ^ l ! o , T ^ ^ 4 H i , o o , G m e s T c . 

Moreoves, for each Tc we have 

^K-v , ) = o, д ..o 
Һ 

дn 
= Яvlt.«ьG> 

_O^ 

дц 
= Clv i. 

Consequently, 

|n° - Vj|i,r, ^ CMi.oo.G mes T, 
holds, i.e., 

(4.22) ||vA° - Vj\\2

UTc g (Ch4 + CO |V|? J 0 0 J G mes Tc. 

Using (4.U), (4A9) and (4.22) we arrive at 

(4.23) fly? - v,fun = X K - v, | |?, r. + X ||v° - v.||?,T + 
T.s TeEh 

+ Z Ik/? - v/||i,Tc = C I K I I L T S + C1\\v\\1^M mes (Eh u D , ) - > 0 , fe -> 0 . 
Tc6Dh 

Here we have also used the fact that mes (Eh u D,,) -> 0 for h -> 0, (using (4.4)) 
mes(uT s ) - • 0 for h -> 0 and K| |1 ? u T . s ^ Hi ,uT s + K - v | |1 > u 7 s . 

Combining (4.1), (4.23) with the triangle inequality we obtain the assertion of 
Lemma 4.1. Q.E.D. 

Theorem 2. Assume that fM e C2, M = ', " in a neighbourhood of the interval 
<a, b>. Let the assumptions on TK, TQ, Tu, Txfrom Lemma 2.2 hold. Assume that u 
satisfies the conditions of Lemma 4.1 and SPP + 0. 

Then the approximate problem 2.1 possesses a unique solution and 

Uh ~ **\\ ~+ 0 , h ~~>0 

holds for any regular system of triangulations {3~h}, where /I* is the solution of 

the dual problem (1.27). 
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P r o o f is parallel to that of Theorem 1, but instead of Lemma 2.3 we use Lemma 
4.1. 
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Souhrn 

DUÁLNÍ ANALÝZA KONTAKTU DVOU PRUŽNÝСH T LES 
S PROM NNÝM ROZSAHEM KONTAKTU METODOU KONEČNÝСH PRVKÜ 

TRAN VAN BON 

V práci je provedenа duální аnаlýzа kontаktního problému dvou pružných t les s promèrптým 
rozsаhem kontаktu. Aproximаce rešení metodou konečných prvků jsou definovány nа dvou 
typech triаngułаcí po částech konstаntními poli nаp tí. Dokаzuje se konvergence obou typů 
аproximаcí. 

P e з ю м e 

ДBOЙСTBEHHЫЙ AHAЛИЗ KOHTAKTHOЙ ЗAДAЧИ УПPУГИX TEЛ 
С PAСШИPЯЮЩEЙСЯ ЗOHOЙ KOHTAKTA 

TRAN VAN BON 

Oпpeдeляeтcя двoйcтвeнная ваpиациoнная фopмyлиpoвка кoнтактнoй задачи двyx yпpyгиx 
тeл. Aппpoкcимации пocтpoeны пpи пoмoщи двyx типoв тpиангyляции и пo чаcтям пocтoян-
ныx пoлeй напpяжeний. B oбoиx cлyчаяx дoказываeтcя cxoдимocть аппpoкcимаций. 

Auîhoťs address: Dr. Tran Van Bon, СSc, Khоа Со bаn-Ngоаi ngu, 2С-453 Nhа trаng - Phu 
Khаnh. ietnаm. 
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