Aplikace matematiky

Ta Van Dish

On multi-parameter error expansions in finite difference methods for linear Dirichlet problems

Aplikace matematiky, Vol. 32 (1987), No. 1, 16-24

Persistent URL: http://dml.cz/dmlcz/104232

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON MULTI-PARAMETER ERROR EXPANSIONS
 IN FINITE DIFFERENCE METHODS FOR LINEAR DIRICHLET PROBLEMS

Ta Van Dinh

(Received July 29, 1985)

Abstract

Summary. The paper is concerned with the finite difference approximation of the Dirichlet problem for a second order elliptic partial differential equation in an n-dimensional domain.

Considering the simplest finite difference scheme and assuming a sufficient smoothness of the domain, coefficients of the equation, right-hand part, and boundary condition, the author develops a general error expansion formula in which the mesh sizes of an (n-dimensional) rectangular grid in the directions of the individual axes appear as parameters.

Keywords: finite difference method, Dirichlet problem, error expansion.
AMS classification: 65 N 15 .

In finite difference methods the one-parameter error expansions have been studied by many authors (cf. for instance [1] and references therein). In this paper we investigate the multi-parameter expansions for solving elliptic linear Dirichlet problems on a multidimensional domain with smooth boundary.

1. THE DIFFERENTIAL PROBLEM

Let R^{n} be a real n-dimensional Euclidean space. Let Ω be a bounded domain in R^{n} and Γ its boundary. Denote by $x=\left(x_{1}, \ldots, x_{n}\right)$ the point in R^{n}. Let functions of n variables $x_{1}, \ldots, x_{n}: f(x), p_{i}(x), q(x)$ on $\bar{\Omega}$ and $g(x)$ on Γ, be given. Consider the differential operator

$$
L u \equiv \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i} \frac{\partial u}{\partial x_{i}}\right)-q u, \quad x \in \Omega,
$$

The differential problem is

$$
\begin{align*}
L u & =f, & & x \in \Omega, \tag{1.1}\\
u & =g, & & x \in \Gamma . \tag{1.2}
\end{align*}
$$

Assume that there exist a real number $\lambda(0<\lambda<1)$, and a positive integer m so that (cf. [2])

$$
\begin{gather*}
\Gamma \in C^{2 m+2+\lambda} ; \tag{1.3}\\
p_{i} \in C^{2 m+1+\lambda}(\bar{\Omega}) ; \quad q, f \in C^{2 m+\lambda}(\bar{\Omega}) ; \quad g \in C^{2 m+2+\lambda}(\Gamma) ; \\
p_{i} \geqq \text { const }>0 ; \quad q \geqq 0 . \tag{1.4}
\end{gather*}
$$

Then we have ([1])
Lemma 1. The problem (1)-(4) has a unique solution

$$
\begin{equation*}
u \in C^{2 m+2+\lambda}(\bar{\Omega}) . \tag{1.5}
\end{equation*}
$$

2. THE GRID

Assume that $A_{i}, B_{i}, i=1, \ldots, n$ are real numbers such that

$$
\Omega \subset D=\left\{x \mid A_{i} \leqq x_{i} \leqq B_{i}\right\} .
$$

Let $N_{\boldsymbol{i}}$ be given positive integers. We put

$$
\begin{gathered}
h_{i}=\left(B_{i}-A_{i}\right) / N_{i} \\
x_{i}\left(j_{i}\right)=A_{i}+j_{i} h_{i} ; \quad j_{i}=0,1,2, \ldots .
\end{gathered}
$$

Then the points $\left(x_{1}\left(j_{1}\right), \ldots, x_{n}\left(j_{n}\right)\right)$, denoted by $\left(j_{1}, \ldots, j_{n}\right)$, are called grid points in the rectange D, and the grid over Ω, denoted by Ω_{h}, is defined by

$$
\Omega_{h}=\left\{\left(j_{1}, \ldots, j_{n}\right) \mid\left(j_{1}, \ldots, j_{n}\right) \in \Omega\right\} .
$$

Each point of Ω_{h} is called an interior grid point. Each interior grid point $\left(j_{1}, \ldots, j_{n}\right)$ has $2 n$ neighbouring points which are

$$
\begin{equation*}
\left(j_{1}, \ldots, j_{k-1}, j_{k} \pm 1, j_{k+1}, \ldots, j_{n}\right), \quad k=1, \ldots, n \tag{2.1}
\end{equation*}
$$

If all points (2.1) belong to $\bar{\Omega}$ then the point $\left(j_{1}, \ldots, j_{n}\right)$ is called a regular interior grid point. If at least one point of (2.1) does not belong to $\bar{\Omega}$ then the point $\left(j_{1}, \ldots, j_{n}\right)$ is an irregular interior grid point. Denote respectively by $\Omega_{h, r}$ and $\Omega_{h, i r}$ the sets of regular and irregular interior grid points. Then we have $\Omega_{h}=\Omega_{h, r} \cup \Omega_{h, i r}$.

3. THE DISCRETE PROBLEM

3.1. Notation. We introduce the following notation:

1) $i \in I$ iff $i=\left(i_{1}, \ldots, i_{n}\right), i_{k}=$ integer $\geqq 0$.
2) If $i \in I$ then

$$
\begin{gathered}
|i|=i_{1}+\ldots+i_{n}, \\
w_{[i]}=w_{i_{1} \ldots i_{n}} ;
\end{gathered}
$$

3) $h=\left(h_{1}, \ldots, h_{n}\right), h_{k}=\left(B_{k}-A_{k}\right) / N_{k},|h|=\max \left\{h_{1}, \ldots, h_{n}\right\}$.
3.2. Approximation of the differential operator. Let v be a function defined on $\Omega_{h} \cup \Gamma$. Then its value at a point P is denoted by $v(P)$ or $v\left(x_{1}(P), \ldots, x_{n}(P)\right), x_{k}(P)$ being the k-coordinate of P. Now at $P \in \Omega_{h, r}$ we consider the discrete operator

$$
L_{h} v \equiv \sum_{i=1}^{n}\left(a_{i} v_{\bar{x}_{i}}\right)_{x_{i}}-q v
$$

where

$$
\begin{aligned}
\left(a_{i} v_{\bar{x}_{i}}\right)_{x_{i}} & =h_{i}^{-2}\left[a_{i}^{(+i)}(P)\left(v^{(+i)}(P)-v(P)\right)-a_{i}^{(-i)}(P)\left(v(P)-v^{(-i)}(P)\right)\right] \\
a_{i}^{ \pm i)}(P) & =p_{i}\left(x_{1}(P), \ldots, x_{i-1}(P), x_{i}(P) \pm 0 \cdot 5 h_{i}, x_{i+1}(P), \ldots, x_{n}(P)\right) \\
v_{i}^{(\pm i)}(P) & =v\left(x_{1}(P), \ldots, x_{i-1}(P), x_{i}(P) \pm h_{i}, x_{i+1}(P), \ldots, x_{n}(P)\right) .
\end{aligned}
$$

It is obvious that we have
Lemma 2. The discrete operator L_{h} satisfies the maximum principle.
Now by applying Taylor's formula we obtain
Lemma 3. For any function $w \in C^{2 l+2+\lambda}(\bar{\Omega})$ we have

$$
L_{h} w=L w+\sum_{i=1}^{n} \sum_{k=1}^{l} h_{i}^{2 k} F_{i k}(w)+r_{1}
$$

where $F_{i k}(w)$ depend only on w and on the derivatives of w up to order $2 k+2$, and $\left|r_{1}\right| \leqq$ const. $|h|^{2 l+\lambda}$.

Lemma 4. For any $w_{[j]} \in C^{2 m-2|j|+2+\lambda}(\bar{\Omega}), j \in I$, we have

$$
L_{h}\left(u+S_{m}\right)=L u+\sum_{k=1}^{m} \sum_{|j|=k} h_{1}^{2 j_{1}} \ldots h_{n}^{2 j_{n}}\left(L w_{[j]}+G_{[j]}\left(u, \ldots, w_{[i]}, \ldots\right)\right)+r_{2}
$$

where u satisfies (1.5),

$$
\begin{equation*}
S_{m}=\sum_{k=1}^{m} \sum_{|j|=k} h_{1}^{2 j_{1}} \ldots h_{n}^{2 j_{n}} w_{[j]} \tag{3.1}
\end{equation*}
$$

$G_{[j]}$ depends only on u and $w_{[i]}$ up to $|i|<|j|$, and $\left|r_{2}\right| \leqq$ const.$|h|^{2 m+\lambda}$.
Proof. We have

$$
L_{h}\left(u+S_{m}\right)=L_{h} u+\sum_{k=1}^{m} \sum_{|j|=k} h_{1}^{2 j_{1}} \ldots h_{n}^{2 j_{n}} L_{h} w_{[j]} .
$$

Then the application of Lemma 3 to $L_{h} u$ and $L_{h} w_{[j]}$ completes the proof.
Lemma 5. Under the assumptions (1.3) (1.4) there exist functions $w_{[j]} \in$ $\in C^{2 m-2 k+2+\lambda}(\bar{\Omega}),|j|=k, k=1, \ldots, m$, independent of h so that

$$
L_{h}\left(u+S_{m}\right)=L u+r_{3}
$$

where S_{m} has the form (3.1) and $\left|r_{3}\right| \leqq$ const . $|h|^{2 m+\lambda}$.

Proof. We can write the conditions that make the coefficients of $h_{1}^{2 j_{1}} \ldots h_{n}^{2 j_{n}}$ in Lemma 4 equal to zero:

$$
L w_{[j]}=-G_{[j]}, \quad x \in \Omega ; \quad w_{[j]}=0, \quad x \in \Gamma .
$$

Then, according to Lemma 1 , the functions $w_{[j]}$ are successively determined for $|j|=1$ to $|j|=m$ and belong to $C^{2 m-2|j|+2+\lambda}(\bar{\Omega})$.
3.3. Approximation of the boundary condition. Now let $P \in \Omega_{h, i r}$. We shall calculate the value $v(P)$ with the help of Lagrange's interpolating polynomials starting with the values of v on the boundary Γ and at some points of $\Omega_{h, r}([1])$. First, in a way analogous to [1] consider the quantity

$$
B(d)=\sum_{k=1}^{2 m} \frac{(2 m)!}{k!(2 m-k)!} \cdot \frac{d}{d+k}, \quad d>0 .
$$

We observe that $B(d)$ decreases when d decreases and tends to zero when d tends to zero. So there exists $\delta>0$ such that

$$
B(d) \leqq B(\delta)<1, \quad d<\delta .
$$

Fig. 1.

Let $P \in \Omega_{h, i r}$. Consider a fixed point P^{\prime} (fig. 1) of $\Omega_{h, r}$. As the grid is uniform along each coordinate direction, the line $P P^{\prime}$, which can but need not be parallel to a coordinate direction, passes through many equally spaced grid points of $\Omega_{h, r}$. Let η be the distance between these equally spaced points. Denote by $P t$ the axis obtained by orienting the line $P P^{\prime}$ from the origin P to the exterior of Ω. Let Q be the intersection of $P t$ with the boundary Γ. Let $P Q=\sigma \eta$ with some positive σ. Let μ be the smallest positive integer satisfying $\mu \geqq \sigma / \delta$ and $H=\mu \eta$. Then $P Q=d H$ with $d=\sigma / \mu \leqq \delta$. Consider the points on $P t$ with the abscissae

$$
\begin{equation*}
-2 m H, \quad-(2 m-1) H, \ldots,-2 H,-H, \mathrm{~d} H, \tag{3.2}
\end{equation*}
$$

under the assumption that all these points belong to $\bar{\Omega}$. This assumption is satisfied when h is small enough. Then these points belong to $\Omega_{h, r} \cup \Gamma$.

Now let $w(t)$ be a smooth enough function on $[-2 m H, d H]$. Consider the interpolating polynomial $P_{2 m}(t)$ of degree $2 m$ at the nodes (3.2), so that

$$
P_{2 m}(-k H)=w(-k H), \quad k=1, \ldots, 2 m ; \quad P_{2 m}(d H)=w(d H) .
$$

Then we get

$$
w^{\prime}(P)=w(0)=J_{d} w(0)+\Lambda_{d} w(d H)+R(0),
$$

where

$$
\begin{gathered}
J_{d} w^{\prime}(0)= \\
\sum_{k=1}^{2 m}(-1)^{k} \frac{(2 m)!}{k!(2 m-k)!} \cdot \frac{d}{d+k} \cdot w(-k H), \\
\Lambda_{d} w^{\prime}(d H)=\Lambda_{d} w(Q)=\sum_{k=1}^{2 m} \frac{k}{d+k} .
\end{gathered}
$$

(The above formulae for the operators J_{d}, Λ_{d} have been introduced in [1].) Concerning the remaining term $R(0)$ we have

Lemma 6. If $w(t) \in C^{M+1}[-2 m H, d H], M \leqq 2 m$, then

$$
|R(0)| \leqq H^{M+1} \frac{d}{M+1} \max _{t \in[-2 m H, d H]}\left|w^{(M+1)}(t)\right| .
$$

The proof can be done by repeated application of Rolle's theorem.
If $P \in \Omega_{h, i r}$ we put, analogously to [1]:

$$
\left.\left.v(P)=J_{d} v_{\curlyvee}^{\prime} P\right)+\Lambda_{d} v_{\imath}^{\prime} Q\right) .
$$

Then Lemma 6 yields
Lemma 7. If $w \in C^{M+1}(\bar{\Omega}), M \leqq 2 m$ then

$$
\left.w_{1}^{\prime}(P)-J_{d} w_{(}^{\prime} P\right)-\Lambda_{d} w(Q)=H^{M+1} r_{4},
$$

where $\left|r_{4}\right| \leqq$ const (independent of h).
3.4. The discrete problem. We introduce the following discrete problem:

$$
\begin{gather*}
\left.L_{h} v_{,}^{\prime} P\right)=f(P), \quad P \in \Omega_{h, r}, \tag{3.3}\\
\left.\left.\left.v_{(}^{\prime} P\right)=J_{d} v^{\prime} P\right)+\Lambda_{d} v_{\imath}^{\prime} Q\right), \quad P \in \Omega_{h, i r}, \tag{3.4}\\
\left.v_{\imath}^{\prime} P\right)=g(P), \quad P \in \Gamma . \tag{3.5}
\end{gather*}
$$

4. THE ASYMPTOTIC ERROR EXPANSION

4.1. Theorem 1. The discrete problem (3.3)-(3.5) has a unique solution v which is the limit of $v^{(v)}$ calculated by the iterations

$$
L_{h} v^{(v)}=f(P), \quad P \in \Omega_{h, r},
$$

$$
\begin{aligned}
& v^{(v)}=J_{d} v^{(v-1)}(P)+\Lambda_{d} v^{(v-1)}(Q), \quad P \in \Omega_{h, i r}, \\
& v^{(v)}=g(P), \quad P \in \Gamma
\end{aligned}
$$

Proof. We have

$$
\begin{gather*}
L_{h}\left(v^{(v+1)}-v^{(v)}\right)=0, \quad P \in \Omega_{h, r} \tag{4.1}\\
v^{(v+1)}-v^{(v)}=J_{d}\left(v^{(v)}-v^{(v-1)}\right), \quad P \in \Omega_{h, i r} . \tag{4.2}
\end{gather*}
$$

We define the norms

$$
\|w\|_{h}=\max _{P \in \Omega_{h}}|w(P)|, \quad\|w\|_{h, i r}=\max _{P \in \Omega_{h, i r}}|w(P)|
$$

By virtue of the maximum principle (Lemma 2) we deduce from (4.1), (4.2)

$$
\begin{gathered}
\left\|v^{(v+1)}-v^{(v)}\right\|_{h} \leqq\left\|v^{(v+1)}-v^{(v)}\right\|_{h, i r}= \\
=\left\|J_{d}\left(v^{(v)}-v^{(v-1)}\right)\right\|_{h, i r} \leqq B(\delta)\left\|v^{(v)}-v^{(v-1)}\right\|_{h} .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\left\|v^{(v+1)}-v^{(v)}\right\|_{h} \leqq \varrho\left\|v^{(v)}-v^{(v-1)}\right\|_{h} \tag{4.3}
\end{equation*}
$$

where $\varrho=B(\delta)<1$.
Hence the discrete problem (3.3)-(3.5) has a unique solution which is the limit when $v \rightarrow \infty$ of $v^{(v)}$ for any $v^{(0)}$.
4.2. Theorem 2. There exist functions $w_{[j]} \in C^{2 m-2 k+2+\lambda}(\bar{\Omega}), j \in I,|j|=k, k=$ $=1, \ldots, m$, independent of h, so that we have the asymptotic error expansion

$$
v(P)=u(P)+S_{m}+r_{5}
$$

where v and u are solutions of the discrete and differential problems, respectively, S_{m} has the form (3.1) and $\left|r_{5}\right| \leqq$ const (independent of h). $|h|^{2 m+\lambda}$.

Proof. From (4.3) we deduce

$$
\left\|v^{(v+1)}-v^{(v)}\right\|_{h} \leqq \varrho^{v}\left\|v^{(1)}-v^{(0)}\right\|_{h}
$$

hence

$$
\left\|v^{(v)}-v^{(0)}\right\|_{h} \leqq \frac{1}{1-\varrho}\left\|v^{(1)}-v^{(0)}\right\|_{h}
$$

Therefore

$$
\left\|v-v^{(0)}\right\|_{h} \leqq \frac{1}{1-\varrho}\left\|v^{(1)}-v^{(0)}\right\|_{h}
$$

and we choose

$$
v^{(0)}=u+S_{m}=u+\sum_{k=1}^{m} \sum_{|j|=k} h_{1}^{2 j_{1}} \ldots h_{n}^{2 j_{n}} w_{[j]}
$$

where $w_{[j]}$ are determined in Lemma 5 in which u is the solution of the differential problem.

In order to evaluate $\left\|v^{(1)}-v^{(0)}\right\|_{h}$ we write

$$
\begin{aligned}
L_{h} v^{(1)} & =f(P), \quad P \in \Omega_{h, r}, \\
v^{(1)} & =J_{d} v^{(0)}(P)+\Lambda_{d} v^{(0)}(Q), \quad P \in \Omega_{h, i r} .
\end{aligned}
$$

On the other hand, by Lemma 5 we have

$$
L_{h} v^{(0)}=L_{h}\left(u+S_{n}\right)=L u+r_{3} .
$$

So putting $v^{(1)}-v^{(0)}=z$ we have

$$
\begin{aligned}
L_{h} z & =-r_{3}, \quad P \in \Omega_{h, r}, \\
z & =J_{d} v^{(0)}(P)+\Lambda_{d} v^{(0)}(Q)-v^{(0)}(P), \quad P \in \Omega_{h, i r} .
\end{aligned}
$$

Since $v^{(0)}=u+S_{m}$ we have at $P \in \Omega_{h, i r}$

$$
\begin{gathered}
z=J_{d} u(P)+\Lambda_{d} u(Q)-u(P)+\sum_{k=1}^{m} \sum_{|j|=k} h_{1}^{2 j_{1}} \ldots h_{n}^{2 j_{n}} \times \\
\times\left(J_{d} w_{[j]}(P)+\Lambda_{d} w_{[j]}(Q)-w_{[j]}(P)\right) .
\end{gathered}
$$

Then, taking into account the smoothness of $w_{[j]}$ and Lemma 7 we have at $P \in \Omega_{h, i r}$

$$
\begin{equation*}
z=r, \quad|r| \leqq \text { const } .|h|^{2 m+1} \tag{4.4}
\end{equation*}
$$

So z satisfies

$$
\begin{align*}
& L_{h} z=\alpha, \quad P \in \Omega_{h, r}, \\
& z=r, \quad P \in \Omega_{h, i r}, \\
& z=0 \quad P \in \Gamma, \\
& |\alpha| \leqq c .|h|^{2 m+\lambda} \tag{4.5}
\end{align*}
$$

where

$$
c=\text { const (independent of } h \text {). }
$$

Let us put

$$
\begin{equation*}
z=z_{1}+z_{2} \tag{4.6}
\end{equation*}
$$

with

$$
\begin{equation*}
L_{h} z_{1}=0, \quad P \in \Omega_{h, r}, \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
z_{1}=r, \quad P \in \Omega_{h, i r} ; \quad z_{1}=0, \quad P \in \Gamma, \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
L_{h} z_{2}=\alpha, \quad P \in \Omega_{h, r}, \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
z_{2}=0, \quad P \in \Omega_{h, i r} \cup \Gamma . \tag{4.10}
\end{equation*}
$$

By the maximum principle (Lemma 2) we get from (4.7), (4.8)

$$
\begin{equation*}
\left\|z_{1}\right\|_{h} \leqq\|r\|_{h, i r} \tag{4.11}
\end{equation*}
$$

To evaluate z_{2} we consider the differential problem

$$
\begin{aligned}
L w=-2, & P \in \Omega, \\
w=2, & P \in \Gamma .
\end{aligned}
$$

Thus w exists by Lemma 1 and

$$
\begin{equation*}
0<w \leqq K=\text { const (independent of } h \text {). } \tag{4.12}
\end{equation*}
$$

At the same time
for h small enough
we have

$$
\begin{aligned}
L_{h} w & \leqq-1, \quad P \in \Omega_{h, r}, \\
w & \geqq \quad 1, \quad P \in \Omega_{h, i r} \cup \Gamma .
\end{aligned}
$$

Now we consider another differential problem

$$
\begin{aligned}
L W & =-2 K^{\prime}, & & P \in \Omega, \\
W & =2 K^{\prime}, & & P \in \Gamma
\end{aligned}
$$

where

$$
\begin{equation*}
K^{\prime}=\max |\alpha(P)|, \quad P \in \Omega_{h, r} . \tag{4.14}
\end{equation*}
$$

So W exists and, in view of (4.12),

$$
\begin{equation*}
0<W \leqq K K^{\prime} . \tag{4.15}
\end{equation*}
$$

At the same time under the condition (4.13) we have

$$
\begin{aligned}
L_{h} W & -K^{\prime}, \quad P \in \Omega_{h, r}, \\
W & K^{\prime}, \quad P \in \Omega_{h, i r} \cup \Gamma .
\end{aligned}
$$

Therefore (4.9), (4.10) give

$$
\begin{aligned}
L_{h}\left(W \pm z_{2}\right) & \leqq 0, \quad P \in \Omega_{h, r}, \\
W \pm z_{2} & \geqq 0, \quad P \in \Omega_{h, i r} \cup \Gamma .
\end{aligned}
$$

By the maximum principle we have

$$
W \pm z_{2} \geqq 0, \quad P \in \Omega_{h},
$$

that is, in view of (4.15),

$$
\left|z_{2}\right| \leqq W \leqq K K^{\prime}, \quad P \in \Omega_{h} .
$$

Taking into account the relations (4.14) and (4.5) we get

$$
\begin{equation*}
\left\|z_{2}\right\|_{h} \leqq \text { const } .|h|^{2 m+\lambda} \tag{4.16}
\end{equation*}
$$

Finally, the relations (4.6), (4.11), (4.4), (4.16) give

$$
\left.\|z\|_{h} \leqq \text { const (independent of } h\right) \cdot|h|^{2 m+\lambda}
$$

and the theorem is proved.
Note 1. If $p_{i}=$ const then the restriction (4.13) is not necessary.
Note 2. The previous results still hold in the case when the term $q u$ in $L u$ is replaced by $q(x, u)$ where q is smooth enough and $\partial q / \partial u \geqq 0$.

References

[1] Г. И. Марчук, В. В. Шайдуров: Повышение точности решений разностных схем. Москва, Наука, 1979.
[2] О. А. Ладыженская, Н. Н. Уральцева: Линейные и квазилинейные уравнения эллиптического типа. Москва, Наука, 1973.

Souhrn

O VÍCEPARAMETRICKÝCH ROZVOJÍCH CHYBY U SÍŤOVÝCH METOD PRO LINEÁRNÍ DIRICHLETOVU ÚLOHU

Ta Van Dinh

Práce je věnována studiu diferenční aproximace Dirichletovy okrajové úlohy pro eliptickou parciální diferenciální rovnici druhého řádu v n-rozměrné oblasti.

K nejjednoduššímu diferenčnímu schématu odvozuje autor obecný rozvoj chyby, v němž jako parametry vystupují kroky (n-rozměrné) obdélníkové sítě ve směrech jednotlivých souřadnicových os. Předpokládá se přitom dostatečná hladkost oblasti, koeficientů rovnice, pravé strany a okrajové podmínky.

Резюме

О МНОГОПАРАМЕТРИЧЕСКИХ ФОРМУЛАХ ДЛЯ ПОГРЕШНОСТИ МЕТОДА СЕТОК ПРИ РЕШЕНИИ ЛИНЕЙНОЙ ЗАДАЧИ ДИРИХЛЕ

Ta Van Dinh

Статья посвящена конечно-разностной аппроксимации краевой задачи Дирихле для эллиптического дифференциального уравнения второго порядка на n-мерной области.

Используя простейшую разностную схему и предполагая достаточную гладкость области, коэффициентов уравнения, правой части и краевого условия, автор выводит общую формулу для погрешности, в которой в качестве параметров выступают шаги (n-мерной) прямоугольной сетки по направлениям отдельных осей координат.

Author's address: Ta Van Dinh, Khoa Toan ly, Troung dai hoc bach khoa Hanoi (Department of Mathematics and Physics, Polytechnical Institute of Hanoi) Vietnam.

