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ON MULTI-PARAMETER ERROR EXPANSIONS
IN FINITE DIFFERENCE METHODS FOR LINEAR DIRICHLET
PROBLEMS

TA VAN DINH
(Received July 29, 1985)
Summary. The paper is concerned with the finite difference approximation of the Dirichlet
problem for a second order elliptic partial differential equation in an n-dimensional domain.
Considering the simplest finite difference scheme and assuming a sufficient smoothness of the
domain, coefficients of the equation, right-hand part, and boundary condition, the author

develops a general error expansion formula in which the mesh sizes of an (n-dimensional) rectan-
gular grid in the directions of the individual axes appear as parameters.
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AMS classification: 65 N 15,

In finite difference methods the one-parameter error expansions have been studied
by many authors (cf. for instance [1] and references therein). In this paper we in-
vestigate the multi-parameter expansions for solving elliptic linear Dirichlet problems
on a multidimensional domain with smooth boundary.

1. THE DIFFERENTIAL PROBLEM

Let R" be a real n-dimensional Euclidean space. Let Q be a bounded domain
in R" and T its boundary. Denote by x = (x,, ..., x,) the point in R". Let functions
of n variables xj, ..., X,: f(x), p{x), g(x) on @ and g(x) on I', be given. Consider

the differential operator
50 ou
= - —qu, xeQ,
2 ox < 6x> 1

The differential problem is
(1.1) Lu=f, xeQ,
(1-2) u=g, xel.
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Assume that there exist a real number A (0 < A < 1), and a positive integer m
so that (cf. [2])

(13) Fec2m+2+l;
pi € C2m+l+/1([—2) ; q,fE C2m+l(§) ; g€ C2m+2+1(1") ;
l. pi=const >0; g=0.
4 0

Then we have ([1])

Lemma 1. The problem (1)—(4) has a unique solution
(L5) ue 3 HHQ)

2. THE GRID

Assume that 4;, B;, i = 1, ..., n are real numbers such that
Qc D={x|A4,£x;<B}.
Let N; be given positive integers. We put
hi = (Bi - Ai)/Ni s
x(ji) = A; + jihis ji=0,1,2,....
Then the points (x4(jy), .-, X,(j,)), denoted by (jy,...,j,), are called grid points
in the rectange D, and the grid over Q, denoted by Q,, is defined by
Q= {(j1>--rdn) | U1s - rJu) €Q} .
Each point of @, is called an interior grid point. Each interior grid point (j, ..., j,)
has 2n neighbouring points which are
(2.1) (is eoosdimtode £ Lijirgs o), k=1,..,n.
If all points (2.1) belong to @ then the point (jy, ..., j,) is called a regular interior
grid point. If at least one point of (2.1) does not belong to @ then the point (ji, ..., j,)

is an irregular interior grid point. Denote respectively by @,, and @, ;. the sets
of regular and irregular interior grid points. Then we have Q, = Q, . L Q, ;.

3. THE DISCRETE PROBLEM

3.1. Notation. We introduce the following notation:
1) ieliff i = (iy,...,1I,), i, = integer = 0.
2) If iel then
il =iy + ... + iy,
Wi = Wi, s

3) h=(hy,....,h), b = (B, — ANy, |h| = max {hy, ..., h,}.
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3.2. Approximation of the differential operator. Let v be a function defined
on Q, U I'. Then its value at a point P is denoted by v(P) or v(x(P), ..., x,(P)), x,(P)
being the k-coordinate of P. Now at P € Q, , we consider the discrete operator

n

Ly = Z(aivi;)xi - qu
i=1
where

(as), = hi ?[ai"(P) (v "O(P) — o{P)) — a{™"(P) (o(P) — v~ P))],
a$*(P) = pi(xy(P), ..., x;—4(P), x(P) £ 0-5h;, x;14(P), ..., x,(P)),
o{E(P) = v{x,(P), ..., x;—4(P), x{P) £ h;, x;+4(P), ..., x,(P)) .

It is obvious that we have

Lemma 2. The discrete operator L, satisfies the maximum principle.

Now by applying Taylor’s formula we obtain

Lemma 3. For any function w € C*'*2*4Q) we have b
n 1
Lyw=Lw+Y Y h*Fyw)+ry,
i=1k=1

where Fy(w) depend only on w and on the derivatives of w up to order 2k + 2,
and |r,| < const. |n]>'*%

Lemma 4. For any wy,;e C*" 2W* 244Gy jel, we have

m

Lfu + S,)=Lu+ Y Y hy't . h"(Lwgy + Gfu, .., wiy, ..0)) + 72
k=1 |j|=k
where u satisfies (1.5),

m s
(3.1) Sw=Y S h¥ . hYw,
k=1 =k
G; depends only on u and wp;; up to |i| < |j|, and || < const . [h|>"*%,

Proof. We have

Lu+ S,)=Lu+Y Y hi’" . h¥Lw;.

K= 1=k
Then the application of Lemma 3 to L,u and L,w;; completes the proof.
Lemma 5. Under the assumptions (1.3) ‘(1.4) there exist functions wgjj€
e Cm I IIHGY |jl = k, k=1,...,m, independent of h so that
Lfu+S,)= Lu + r;

where S,, has the form (3.1) and |r;| < const . | ?m+2,
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Proof. We can write the conditions that make the coefficients of h2/' ... h2in
in Lemma 4 equal to zero:
Lwiy = =Gy, x€Q; w;=0, xel.

Then, according to Lemma 1, the functions w;; are successively determined for l;l =1
to |j| = m and belong to C*"~ 2 *2+4(@),

3.3. Approximation of the boundary condition. Now let PeQ, ,. We shall
calculate the value v{P) with the help of Lagrange’s interpolating polynomials
starting with the values of v on the boundary I' and at some points of @, , ([1]).
First, in a way analogous to [1] consider the quantity

» 2m 1 ;
B(d) =Y (2m  d ,
k=1 k1 (2m — k) d + k

We observe that Bid) decreases when d decreases and tends to zero when d tends
to zero. So there exists d > 0 such that

B(d)<B%) <1, d<3.

s

A ™
-

d>0.

LT

N \

Fig. 1.

Let Pe Q, ;. Consider a fixed point P’ (fig. 1) of ,,. As the grid is uniform
along each coordinate direction, the line PP’, which can but need not be parallel
to a coordinate direction, passes through many equally spaced grid points of &, ,.
Let 5 be the distance between these equally spaced points. Denote by Pt the axis
obtained by orienting the line PP’ from the origin P to the exterior of Q. Let Q be
the intersection of Pt with the boundary I'. Let PQ = oy with some positive ¢. Let
w be the smallest positive integer satisfying p = ¢/6 and H = pn. Then PQ = dH
with d = ¢/u < 8. Consider the points on Pt with the abscissae

(3.2) —-2mH, —(2m — 1) H,..., —2H, -H,dH ,

under the assumption that all these points belong to Q. This assumption is satisfied
when h is small enough. Then these points belong to Q, , U I
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Now let w(7) be a smooth enough function on [ —2mH, dH]. Consider the inter-
polating polynomial P,,(1) of degree 2m at the nodes (3.2), so that

P,,(—kH) = w(—=kH), k=1,...,2m; P,,(dH) = w(dH).

Then we get
w(P) = w(0) = J, w(0) + A, w(dH) + R(0),
where
2m 2 )| d
Jow(0) = 3 (=1 2mt - w(—kH),
0 =2 )mum—@!d+k (=kH)
, 2m k
AygwldH) = Ay w = ——
« WdH) awi0) k;I d+ k

(The above formulae for the operators J,, A, have been introduced in [1].) Concern-
ing the remaining term R(0) we have

Lemma 6. If w(t)e CM*'[—2mH, dH], M < 2m, then \
d
R(O) £ HM*' = max |w™MD(y)].
l ( )l - M + 1:5[—2mH,dH]| ()l

The proof can be done by repeated application of Rolle’s theorem.
If P e Q, ;, we put, analogously to [1]:

o(P) = J,vP) + 4,0Q).
Then Lemma 6 yields
Lemma 7. If we CM*(Q), M < 2m then
w(P) — JywP) — A;w(Q) = H" " 'r,,

where |r,| £ const (independent of h).

3.4. The discrete problem. We introduce the following discrete problem:

(3.3) L,vP)=f(P), PeQ,,,
(3~4) U<P) =J, UiP) + Ay U(Q) , PeQy,,
(3:5) v(P) = g(P), Perl.

4. THE ASYMPTOTIC ERROR EXPANSION

4.1. Theorem 1, The discrete problem (3.3)—(3.5) has a unique solution v which
is the limit of v™ calculated by the iterations

L,o" = f(P), PeQ,,,
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o = g OTP) £ A0 TIQ). PE Dy,
v =g(P), Perl.
Proof. We have

(4.1) L") — ™) =0, PeQ,,,
(4.2) pvtH U(v) — Jd(l)(v) _ U(V"l)) , Pe Qh,ir .
We define the norms
Wl = max [w(P)], [w]. = max |w(P)|.
Peqy, PeQn,ir

By virtue of the maximum principle (Lemma 2) we deduce from (4.1), (4.2)
o = a0, 5 o = o, =
= Vo™ = o) = B0 = 0P
Therefore
3) o0 = 7] 5 ol = 0],
where ¢ = B() < 1.

Hence the discrete problem (3.3)—(3.5) has a unique solution which is the limit
when v — oo of v for any v(®.

4.2. Theorem 2. There exist functions w;;€ C*"~2**2*4Q), jel, |j| =k, k =
=1, ..., m, independent of h, so that we have the asymptotic error expansion

U(P)zu(P)+Sln+r59

where v and u are solutions of the discrete and differential problems, respectively,
S, has the form (3.1) and |rs| < const (independent of h). |h|*™*%.

Proof. From (4.3) we deduce

o+ = 0], 5 ot o

hence

o = oy 5 o — o,
Therefore

lo — ol T o = o,
and we choose

m
VO =u+ S, =u+Y Y hP.hw,
k=1 1=k

where wyj; are determined in Lemma 5 in which u is the solution of the differential
problem.

21




In order to evaluate [[o" — v ][, we write
Ly = f(P), PeQ,,,
o' = J, 0 (P) + 4,09(Q), PeQ,,.
On the other hand, by Lemma 5 we have
L, = Lfu+S,)=Lu+ry.
So putting o' — '@ = z we have
Lz= ~-ry;, PeQ,,,

T 0 O(P) + A v(Q) — v(P), PeQ,.,.

Since v'” = u + S,, we have at Pe Q, ,,

z

Il

m

z = Jyu(P) + A,u{Q) — u(P) + Y Y h/t ... h} x
k=1 j]=k

x (Jowpn(P) + A wi(Q) = win(P)) -
Then, taking into account the smoothness of w;; and Lemma 7 we have at P ¢ 2, ,,
(4.4) z=r, |r] £ const.|n]?*".
So z satisfies
Lz=a, PcQ,,,
z=r1r, PeQ,,
z=0 Pel,
(4.5) lof < e |n>m+?
where

¢ = const (independent of h) .

Let us put
(4.6) z=1z, + z,
with
(4.7) Lz, =0, PeQ,,,
(4.8) zy=r, PeQ,;,; z;=0, Pel,
(4.9) Lz,=0a, PeQ,,,
(4.10) 2,=0, PeQ,,UT.

By the maximum principle (Lemma 2) we get from (4.7), (4.8)
(4.11) Izl = [l -
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To evaluate z, we consider the differential problem
Lw= -2, PeQ,
w= 2, Pel.

Thus w exists by Lemma 1 and

(4.12) 0 < w < K = const (independent of 1) .
At the same time

(4.13) for h small enough

we have

Lw< -1, PeQ,,,
wz 1, PeQ,, ul.
Now we consider another differential problem

LW= —2K', PeQ,

W= 2K, Pel
where
(4.14) K' = max |«(P)|, PeQ,,.
So W exists and, in view of (4.12),
(4.15) 0< W< KK .

At the same time under the condition (4.13) we have

LW< -K', PeQ,,,
W= K, PeQ,url.
Therefore (4.9), (4.10) give

L(W+z,) <0, PeQ,,,

Wtz, 20, PeQ,,vl.

By the maximum principle we have
W+2z,20, PeQ,,
that is, in view of (4.15),
|z, S W< KK', PeQ,.
Taking into account the relations (4.14) and (4.5) we get
(4.16) |z2]s < const. [n|>"*+*.
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Finally, the relations (4.6), (4.11), (4.4), (4.16) give
|z]ls = const (independent of h) . |h|2m+2

and the theorem is proved.
Note 1. If p; = const then the restriction (4.13) is not necessary.

Note 2. The previous results still hold in the case when the term qu in Lu is
replaced by g(x, u) where g is smooth enough and dg/ou > 0.
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Souhrn

O VICEPARAMETRICKYCH ROZVOJICH CHYBY U SITOVYCH METOD
PRO LINEARNI DIRICHLETOVU ULOHU

TA VAN DiNH

Prace je vénovana studiu diferen&ni aproximace Dirichletovy okrajové ulohy pro eliptickou
parcialni diferencidlni rovnici druhého fadu v n-rozmérné oblasti.

K nejjednodusS§imu diferenénimu schématu odvozuje autor obecny rozvoj chyby, v ndmZz
jako parametry vystupuji kroky (#-rozmdrné) obdélnikové sité ve smérech jednotlivych soutrad-
nicovych os. Predpoklada se pritom dostateéna hladkost oblasti, koeficientdl rovnice, pravé
strany a okrajové podminky.

Pe3iome

O MHOI'OITAPAMETPUYECKIX ®OPMVIJIAX JJIs ITOTPEINTHOCT METOIA
CETOK IT1PU PEIIEHMU JIUHEVMHOW 3AJAYU OUPUXJIE

Ta VAN DINH

CTaThsl MOCBSLLEHA KOHEYHO-PA3HOCTHOM aNIpPOKCHMaUMK KpaeBoit 3anayu JIupuxie 1s 3Jinin-
THYeCKOTO TuddepeHIMaTBHOTO YPAaBHEHHS BTOPOTO MOPSAKA HA H-MEPHOI 00JacTH.

Hcnonb3ysi npoCTeiilnyto Pa3HOCTHYIO CXeMy Y IIPEArnoiaras [OCTaTOYHYIO INAIKOCTh 00nacrtu,
K03pHUIMEHTOB ypaBHEHUs!, IPABO YAaCTH M KPACBOT'O YCIIOBUs, aBTOP BBIBOAMT OOIIyI0 hopmyIty
JI7151 IOTPEMIHOCTH, B KOTOPOIL B KA4YeCTBE MAPaMETPOB BBICTYMAIOT INAary (2-MEPHOIL) IPSIMOYroib=
HOM CETKM IO HAIPAaBJICHUSIM OTIEIBHBIX OCEeH KOOPIMHAT.
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