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ON JOINT DISTRIBUTION IN QUANTUM LOGICS 
I. COMPATIBLE OBSERVABLES 

ANATOLIJ DVURECENSKIJ 

(Received February 24, 1986) 

Summary. The notion of a joint distribution in c-finite measures of observables of a quantum 
logic defined on some system of cr-independent Boolean sub-c-algebras of a Boolean cr-algebra 
is studied. In the present first part of the paper the author studies a joint distribution of compatible 
observables. It is shown that it may exists, although a joint observable of compatible observables 
need not exist. 
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AMS Classification: 03 G 12, 81 B 10 

This and the subsequent papers are devoted to the notion of a joint distribution 
of observables in a or-finite measure on a quantum logic for a given system of observ
ables defined on some collection of c-independent Boolean sub-d-algebras. 

In this paper we study the problem of existence of a joint distribution for mutually 
compatible observables in a measure. It is shown that in this case the joint distribution 
in a measure may exists; however, a joint observable need not exist. 

We postpone a detailed study of the existence of a joint distribution in a measure 
for noncompatible observables to a subsequent paper. 

1. PRELIMINARIES 

Assume that the set, J£f, of all experimentally verifiable propositions of a physical 
system forms a quantum logic. So, according to [1], we suppose that J§? is a er-lattice 
with the first and the last elements 0 and 1, respectively, with an orthocomplementation 
JL: a -> a1, a, a1 e SZ, which satisfies: (i) (a1)1 = a for any a e j£?; (ii) if a < b, 
then b1 < a1; (iii) a v a1 = 1 for any a e S£\ (iv) if a < b, then b = a v (b A 
a1) (the orthomodular law). 

In particular, the notion of an orthomodular lattice (abbreviation OML), that is, 
a lattice X with (i) —(iv) above, is also of interest. 
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Two elements a, be S£ are (i) orthogonal, and we write a JL b9 if a < b1; (ii) 
compatible, and we write a <-+ b9 if there are three mutually orthogonal elements 
al9 bu ce S£ such that a = ax v c, b = bl v c. It is known that a <-> b iff a = 
= (a A b) V (a A b1). 

Let cS7! and «̂ f2 be logics. A map h: S£\ -> S£2 is called a a-homomorphism of if t 
00 

into J5f2 if (i) h(l) = 1; (ii) h(a) 1 fc(6) whenever a ± b9 a9 b e &x\ (Hi) h( V <-i) = 
oo i = 1 

= V K a 0 f° r a ny ( a J i=i c -^i» a i -L aj> ' + F The kernel of a cr-homomorphism h 
i = l 

isthesetKcrh := {a e S£x: h(a) = 0}. 
An OML S£ (logic ĉ f) is called a Boolean algebra (Boolean a-algebra) if the 

distributive law holds on S£, that is, for all a, b, c e S£9 (a A b) v c = (a v c) A 
A (fe v c). Due to [1, Corollary 6.15], the notion of a Boolean algebra(cr-algebra) 
coincides with that in [2]. The notions of sub OML, sublogic subalgebra and sub-
cr-algebra of S£ are defined in a straightforward way, see [1, 2. 3], for instance. 

Physical quantities of physical systems are identified with the observables of 
a quantum logic. Let j / b e a Boolean algebra and S£ an OML. We say that a map 
x: st -* S£ is an stf-observable of S£ if (i) x(l) = 1; (ii) x(F) 1 x(F) whenever 
E A F = 0, E,Fesf; (iii) x(F v F) = x(F) v x(F) if E A F - 0, JE, F e ,^. 
If j?/ is a Boolean a-algebra and if is a quantum logic, then an ^-observable x 

of if is called an srf-G-observable of if if x( V ^i) = V x(^i) f° r a n v {^i}i=i ^ ^> 
i = i i = i 

Ff A Ej = 0, i 4= j . (Shortly observable, <7-observable, respectively, if st is clear 
from the context.) 

The case which is of great importance for the quantum mechanics occurs when stf 
is a Boolean (<r-)algebra of subsets of a set X, in particular, when X = Rl and 
$$ — M(R}) is the Borel <r-algebra of subsets of the real line R1. 

The range of an ^-(cr)-observable x, ffl(x) := {x(E): Ees/}, is a Boolean sub" 
(cr-)algebra of S£. A Boolean cr-algebra J* is separable if it is generated by countably 
many elements, ffl is a separable sub-cr-agebra of S£ iff there is a J^P^-cr-observable 
x such that J* = &(x) [1, Lemma 6.16]. 

An ^/-observable x and a J^-observable y are compatible if x(F) <-> y(F) for any 
Ee s/, Fe@. It is known [1, Lemma 6.14, Corollary 6.15] that if xt is an stft-
(cr-)observable of S£ and {xt:te T} are mutually compatible observables, then 
there is a Boolean sub-(cr-)algebra of S£ containing all ranges &(xt), t e T 

We shall identify physical states with measures. A map m: S£ -> [0, oo] is a measure 
00 00 

if (i) m(0) = 0; (ii) m( V #0 = X m(ad whenever at J_ a,-, i # j . A measure m is 
i = i i = i 

(i) finite if m(l) < oo; (ii) a state if m(l) = 1; (iii) a-finite if there is a sequence of 
00 

mutually orthogonal elements of S£9 {ai}^=1, such thatV^i = 1 and m(at) < oo 
i = i 

for any i ^ 1. In the sequel we shall use only measures with m(l) # 0. An observable 
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x is cr-finite with respect to m if there is a sequence {Et} ?Ll c s4 such that J5f A E} = 
oo 

= 0 whenever i * j , V E( = 1, and m(x(Ei)) < oo, i *> 1. 

We say that a system { ^ : / e T} of Boolean sub-(cr-)algebras of a Boolean 
(cr-)algebra ja/ is independent (o-independent) if for any finite (countable) subset 
a a T 

(1.1) A ^ t + O 
tea 

for any 0 =j= At e s£t and any t e a. 
For example, let (Xt, Sft) t e T, be a measure space, that is, £ft is a (cr-) algebra 

of subsets of a set Xt 4= 0. Denote by K the Cartesian product of all spaces Xt, 
i.e., the set of all co = [a>t: te T}, cof eXt for f e T Let nt be the Mh projection 
function of X onto Xt, that is ntco = co„ coe X, Let ^ * : = {n^\A): Ae^t}9 teT 
Then Sft is (cr-)isomorphic to ^ * . The minimal sub-(cr-)algebra of X generated 
by all ^ * is denoted by ST = ] ] ,9%, and the system {/^*: teT} of Boolean sub-

*6T 

(cr-)algebras of £f is (cr-)independent [2]. 
Let { j / r : t e T } be a system of (cr-)independent Boolean sub-(cr-)algebras of 

a Boolean (cr-)algebra srf. Denote by 2 the system of all Boolean rectangles /\ At 
tea 

defined for any At e stft, t e a, and each finite a c T. As in the Cartesian product 
of (cr-)algebras of subsets of Xt, one may verify that the minimal subalgebra 01 
of s#, generated by all s/t, t e T, consists of all finite joins of orthogonal elements 
from <2>. The minimal sub-o~-algebra of ssf generated by all sub-cr-algebras {s/t: t e T} 
is denoted by J ] s/t. 

2. JOINT DISTRIBUTION OF COMPATIBLE OBSERVABLES 

One of important problems of the quantum logic theory is the determination 
of a joint distribution for noncompatible observables, as is indicated in [4, Problem 
VII]. Following Gudder [5] we give the following generalization of the notion of 
the joint distribution. 

Definition, Let m be a measure on a quantum logic !£. We say that (i) a finite 
system xt, . . . ,x„, where xt is an sira-observable of <£, i = 1 , . . . , n, and s/x,... 
...,s$n are independent Boolean sub-a-algebras of a Boolean o-algebra s/, has 
a joint distribution in m if there is a measure \i on the minimal Boolean sub-a 
algebra sd\ x . . . x s$n of s$ generated by stfu ..., s#n such that 

(2.0) / i ( A ^ ) = m(Ax,(Af)) 
i = 1 i = 1 

for any A% e si'h i — 1, .. . , n; 
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(ii) an infinite system {xt:teT}, where xt is an s4\-a-observabls, t e T, and 
{s4t: te T} are a-independent Boolean sub-a-algebras of a Boolean a-algebra stf, 
has a joint distributitn in an m if {xt: tea} has a joint distribution in m for any 
finite a c T 

S. P. Gudder introduced the notion of a joint distribution only for ^{R^-a-
observables and states. Necessary and sufficient conditions for the existence of a joint 
distribution for ^(R1)-a-observables in a given state may be found in [5—11]. 
The case of a cr-finite measure, including also a logic S£ = £?(H) of a separable 
Hilbert space H, is investigated in [12], 

It is known [6, 7] that the existence of a joint distribution in a measure closely 
depends on mutually compatible cr-observables of some quantum logic. Therefore 
in this section we concentrate ourselves on the study of a joint distribution of mutually 
compatible observables. 

Lemma 2.1.If xh i ^ 1, are mutually compatible @t{X)-a-observables of a quantum 
logic S£, where X is a complete separable Banach space and ${X) is the Borel 

oo 

a-algebra of subsets of X, then there is a unique Y[ &(X)-a-observable x of 5£, 
i = i 

with 

x(n7cr1(£,)) = A *,(£,) 
tea iea 

for any Ei e 3${X), i e a, and any finite subset a of {1, 2, . . .}. Here Tct denotes the 
ao 

i-th projection function from f ] X onto X. 
.•=i 

Proof. According to P. Ptak [13] there is a J'^-cr-observable z of <£ and Borel 
measurable functions fn: X -> X such that xn(A) = z(f~1{A)) for any Ae@l{X). 

Define / ( 0 = (/i(0,/2(0—-) : X ^f[X. T h e n z' B ^ x{f-\B)), Bef[<%(X) 
f = i i = i 

is the desired cr-observable. Q.E.D. 

Theorem 2.2. Let {s4t: t e T} be a system of a-independent free Boolean sub-
a-algebras with countable generators of a Boolean a-algebra stf. Let xt be an 
s/t-a-observable of a logic S£, te T. If {xt : te T} are mutually compatible ob
servables and at least one of them is a-finite with respect to m, then {xt: te T} 
have a joint distribution in m. Moreover, there is a unique a-finite measure pi on 
\\stft with 
teT 

(2.1) n(AAt) = m(Axt(At)) 
tea tea 

for any Ate s/t and any finite subset 0 4- a c T 

Proof, (i) First of all we show that if xt is an ^-observable of if, te T, where 
{srft: t e T} is a system of independent Boolean subalgebras of a Boolean algebra s4, 
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and {xt: t e T} are mutually compatible, then there is a unique ^-observable x 
of S£ such that 

(2.2) x(AA f) = Axr(A f) 
tea tea 

for any At e stft and any finite subset a c T Here 0t denotes the minimal Boolean 
subalgebra of s4 containing all s$t, teT. 

Notice that any two Boolean rectangles A At and A Bs
 c a n be assumed to have 

tea, se0 

the same finite index set a u /?. Indeed, if we put Af = At if t e a, Af = 1 if t e /? — a, 
and B? = Bt if t e p - a, Bf = 1, t e a, then A At = A {A.*: f e a u £}, A #s = 

fea se,9 

= A {B?: t e a u /?}. Therefore (i) A -4f = 0, Alf e <*/„ f e a, iff at least one Af = 0; 
tea 

(ii) 0 * A At < A Bt iff At < Bt for any t e a; (iii) 0 # A -4, = A -5, iff -4, = Br 
tea tea tea tea 

for any t e a. 
Hence, the map x defined via (2.2) is well defined on the set 2f of all Boolean 

rectangles. Using the remark on the form on the minimal subalgebra 0t containing 
all stft, t e T, and the fact that there is a Boolean subalgebra of S£ containing all 
ranges &(xt) [1], x may be uniquely extended to an ̂ -observable of S£. The uniqueness 
of x follows from (2.2). 

(ii) Now we show that if xt is an es/r(7-observable of a logic S£ and {$tt\ t e T} 
are cr-independent free Boolean sub-c-algebras with countable generators of a Boolean 
a-algebra stf and {xt:teT} are mutually compatible cr-observables, then for an 

oo 

^-observable x of S£ we have: if An e 0t, n ^ 1, and A = V An e ffl, then 
= 1 

(2.3) *oo = v * K ) . 
11 = 1 

Since any free Boolean cr-algebra stft with a countable generator is cr-isomorphic 
to B(Rt) [16, p. 335], (2.3) follows from Lemma 2.L 

(iii) Let x be the ^-observable on S£ whose existence is guaranteed by the first 
part of the present proof. Let m be a measure on S£ fulfilling the conditions of 
Theorem 2.2. Then, due to (i) and (ii), \i(A) := m(x(A)), A e M, is a a-finite a-additive 
measure on 01. Using the well known Caratheodory extension method concerning 
the extension of a cr-additive cr-finite set function defined on an algebra of subsets 
to a measure defined on the minimal cr-algebra generated by the algebra [17], we 
obtain the analogous result also for a Boolean subalgebra 01 and Yl^t [18]. It is 

teT 

clear that \i is the joint distribution of {jcr: teT} in m, and the proof is complete. 
Q.E.D. 

The next result is a simple consequence of the Theorem 2.2 (see Preliminaries). 

Corollary 2.2.1. Let xt be an Sf t-G-observable of a quantum logic S£, teT, and 
let xt <-> xsfor any s, teT, where S£t is BOY el a a-algebra of subsets of a complete 
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separable metric space Xt. If at least one of x/s is a-finite with respect to m, 
then {xt: t e T} has a joint distribution in m, and there is a unique a-finite measure 
ji on \\S£t with 

n(nn;1(Et)) = m(/\xt(Et)) 
tea tea 

for any Et e Sft, t e a, and any finite subset 0 #= a c T. 

We note that for the ^-observable x of S£ with (2.2) there may exist no extension 
of x to a f|j/f-(7-observable of S£. To establish this interesting fact, we need the 

teT 

following notions. Let stf be a Boolean c-algebra. A non-empty subset / c stf 
00 

is said to be c-ideal if (i) An e / , n ^ 1, implies \f Ane #; (ii) if A < B and Be / , 

then Aef. The factor cr-algebra, s4\f, is the system of all [A.]^ := {Be si: 
B A A1 v A A B1 e / } , A e si. The Boolean operations in s£\# are defined via 
[A], v \B\, := [A v B\,, [A\$ : = [ 4 - ] , . 

E x a m p l e 1. There is a quantum logic S£ with a non-empty set of states (even 
with two-valued states), and with two compatible o--observables xx: Sf\ -> J5f, where 
5 ^ is a separable o~-algebra of subsets of a set Xi9 i = 1, 2, such that there is no 
&\ x c^V^-observable x of S£ with 

(2.4) x(E x F) = xx(£) A x2(F) , Ee&l9Fe£r2. 

On the other hand, x t and x2
 n a v e a joint distribution in any er-finite measure m 

on S£. 

Proof. Let C be some analytic subset of R1 which is not a Borel set. Let Xx = 
= R1 - C,X2 = R1said^i := ^(R1)n(Ri - C) := {B n C: B e ^(R1)},S£2 : = 
:= J^R 1 ) . It is clear that Sf\ and S£2 are separable cr-algebras of subsets, i.e., they 
contain generators with countably many elements. Denote by / ' the cr-ideal of the 
Borel cr-algebra &(R2) of the real plane R2 generated by all sets B x R1, where 
B e ,^(Rl) and B c C. Let us put i f - <f ( R 2 ) / / ' . The formulae 

xi(B n Ki) : - [B x R 1 ] ^ , , B e J*(R1), 

x2(B) : = [R1 x fl],,, B e ^(R1) , 

determine two compatible c-observables xt: Sf { -> S£, i = 1, 2. Moreower, xt is 
a or-isomorphism of Sf {into if. As has been shown in [18, p. 17; 2, § 37, Example A], 
there is no Sf x x 5^2-o--observable of S£ with (2.4). 

Now we will prove the second part of the proposition. Define the cr-ideal / of J^(R2) 
as follows: / = {Aeffl(R2): A c C x R1}. It is obvious that / ' c / . We show 
that / ' is a proper subset of / . If we had / ' =. / , then J^(R 2 ) / / would be cr-iso-
morphic to Sf = ^(R2)n((Rx - C) x R1) := {B n (R2 - C) x R1: Be J^R2)} 
(a (7-isomorphism h of J>(R 2) / / onto 5^ is defined by /i(B n ((R1 - C) x R1)) = 
= \B]f for any B e ^ ( R 2 ) ) . Consequently, S£ possesses the strong cr-extension 
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property (for definition see below or [2]) and, therefore, there is an x with (2.4) 
which contradicts the first part of the proof. 

Now we define an J^-cr-observable z of a quantum logic $£x := ^{Ri)l/ via 

-(M/,) = M/ . ^ e *(*-). 
The z is well defined because if [^ i ] / ' = [^2]/'* then Ax A A2 V A2 A A\ e #' c 
c / and [ i l j , = [ A ^ . 

Te logic S£x is cr-isomorphic to the cr-algebra of subsets, $(R2) n ((i*1 — C) x 
x R1), hence if x has an order determining system of states (and also an order 
determining system of two-valued states). (We recall that a system Jt of states on 
a quantum logic is order determining if m(a) ^ m(b) for any m e l i f f a < b.) 

Let m be a measure on $£l9 then m: a -> m(z(a)), a e if, is a measure on if. 
00 

Now let m be a cr-finite measure on 5£ and let \/ at = 1, at L aj whenever i 4= j, 
i = l 

ai e J£f, 0 < m(at) < 00, i ^ 1. Then mf(a) = m(a A a^), a e if, is a finite measure 
for any i ^ 1. Using the result of Duchori [15] we see that xl9 x2 have a joint distribu-

00 

tion in any mi9 i ^ 1, and consequently, in m = £ mt. 
i = i 

Motivated by the above we say that mutually compatible cr-observables xt: stt -* J£ 
of a quantum logic 5£,teT, where {sit: t e T} is a system of c-independent Boolean 
sub-cr-algebras of a Boolean cr-algebra si9 have a joint cr-observable if there is 
a Yl^t — cr-observable x of $£ with (2.2). Neither existence of joint-cr-observable 

teT 

nor joint distribution for compatible cr-observables in general case is not known 
to the author. 

Lemma 2.1 determines an important class of compatible observables which has 
a joint cr-observable. According to [2], we say that a Boolean cr-algebra si' has 
the strong cr-extension property if, for every Boolean cr-algebra si, every map / 
(from a set ^ cr-generating si) into si' satisfying the implication 

(2.5) AE.(O = 0, then A / W > = 0, 
i=l i = l 

for every sequence {Ei}fL1 c ^ and for every function e(i)e{0, 1} i = 1, can be 
extended to a cr-homomorphism h from J / into si'; here E° := E, E1 := E. 

Theorem 2.3. Let xt: sit-> $£, t e T, be compatible a-observables of a quantum 
logic $£, where {sft: te T} is a system of a-independent Boolean sub-a-algebras 
of a Boolean a-algebra si, and let the minimal sub-a-algebra of si generated by 
all ranges &(xt), te T9 have the strong a-extension property (in particular, it is 
a-isomorphic to some a-algebra of subsets). Then {xt: t e T) has a joint a-observable 
of $£. 

Proof. It follows immediately from [2, Theorem 37.1]). Q.E.D. 
In the frame of the study of a joint cr-observable of compatible observables, in 
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particular, in connection with Lemma 2.1, it may be interesting to note that P. Ptak 
[13] found the example of a quantum logic with two compatible ^(X)-cr-observables 
x and y such that the equalities x = Zo f " 1 , y = z o g ~x do not simultaneously hold 
for any two Borel mappings f, g: X -> X and any J(X)-cr-observable z of J£\ Here 
X is a Banach space of non-measurable cardinality, @l(X) is its Borel cr-algebra 
and ££ = Ĵ (X) x 0&{X). However, in this case there is a joint cr-observable of x 
and y, because x and y are induced by point transformations Tt: X x X -> X such 
that x = Tf\ >> = r2

_1. 
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Suhrn 

O ZDRU2ENOM ROZDELENI V KVANTOVYCH LOGIKACH 
I. KOMPATIBILNE POZOROVATEL'NE 

ANATOLIJ DVURECENSKIJ 

Studuje sa zdruzene rozdelenie v cr-konecnych mierach pre pozorovateIn6 kvantovej logiky, 
definovanych na niektorych systemoch cr-nezavislych volnych Booleovych pod-cr-algebrach 
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so sp ocitáte Inými generátormi Booleovej c-algebry. V tejto prvej časti práce sa študuje združené 
rozdelenie kompatibilných pozorovatelných. Dokazuje sa, že ono móže existovať, hoci združená 
pozorovatelná kompatibilných pozorovatelných móže i neexistovať. 

Р е з ю м е 

О СОВМЕСТНОМ РАСПРЕДЕЛЕНИИ В КВАНТОВЫХ ЛОГИКАХ. 
I. КОМПАТИБИЛЬНЫЕ НАБЛЮДАЕМЫЕ 

А.МАТ01Ш ^ V ^ К Е С Е N 8 К I ^ 

Изучается понятие совместного распределения в о-конечных мерах для наблюдаемых 
квантовой логики, определенных на некоторой системе с-независимых булевых <т-подал-
гебр булевой о*-алгебры. В настоящей первой части заметки мы изучаем совместное рас
пределение компатибильных наблюдаемых. Показано, что оно может существовать, хотя 
совместная наблюдаемая может и не существовать. 
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