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FORCED PERIODIC VIBRATIONS OF AN ELASTIC SYSTEM
WITH ELASTICO-PLASTIC DAMPING
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Summary, We prove the cxistence and find necessary and sufficient conditions for the uni-
queness of the time-periodic solution to the equation u,, — A u 4 F(u) = g(x, ?) for an arbitrary
(sufficiently smooth) periodic right-hand side g, where A, denotes the Laplace operator with
respect to x€ 2 = RN, N> 1, and Fis the Ishlinskii hysteresis operator. For N = 2 this equation
describes e.g. the vibrations of an elastic membrane in an elastico-plastic medium.
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Hooke’s law for elastico-plastic (or non-perfectly clastic) materials in the sense
of Ishlinskii is described by a hysteresis scheme which is commonly considered to
be sufficiently realistic for ,,not too large” frequencies of motion ([2]). The basic
theory of the Ishlinskii operator was introduced in [2].

In this paper we investigate the existence and uniqueness of weak w-periodic
solutions (with respect to f) to the problem

(1) Uy — Au + Flu) = g(x,1), xeQ@<R", teR',
(2) u(x, 1) =0, xedQ,

where N > 1, o > 0 are given, @ = R" is a bounded open domain with a Lipschit-
zian boundary, A, is the Laplacian with respect to x € Q, g is a given w-periodic
function and F is the Ishlinskii operator. For example, the system (1), (2) for N = 2
describes the forced vibrations of a membrane in an elastico-plastic medium. Other
problems connected with partial differential equations with hysteresis can be found

e.g.in [7], [8], [4].
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1. FUNCTION SPACES

We introduce the spaces:
L2, 1 £ p < oo: the Lebesgue space of all measurable w-periodic function v:
R' - R! such that

lol,

[ 1/p
(J |o(t)| dt) <o “for p< ®
0

and

|| = supess{|o(t)],teR'} for p= 0,
with the norm Hw
C,: the B-space of all continuous real w-periodic functions with the norm |+|,.
In the sequel, 2 = R" is a bounded open domain with a Lipschitzian boundary.
We denote by
IP(Q;L%),1 < p < o0, 1 =g = oo the space of all measurable functions u: Q x
x R' — R' such that u(x, +) € L% for a.e. xe Q and

|ul,, = (f |u(x, )|z dx) < o, with the norm ||, ,;

%
for p = g we write simply L2(Q);
I(Q; C,), 1 < p < oo: the subspace of all functions u e IP(Q; L7) such that
u(x, +) € C, for almost all x € Q.
The spaces IP(Q; LY) are Banach spaces (cf. [1]) and the same is true for I(Q; C,,)
which is a closed subspace of I7(Q; LY);

Z,(Q) = {ueL3(Q); u,e I}(Q; L), Vu e (L3(Q)"},

v.= (2.2,
0x, OxXy

ful: = luloz + Judas + [Vate]l2z s where -],

where

with the norm

denotes the norm in (L2(Q))".
Let {e,k =1,2,...} be the complete system of eigenfunctions of —A, in Q
with zero Dirichlet boundary condition on 0, i.e.

(1.1) —Ae, =ve, e(x)=0 for xed, 0<v, <v, <.
We define

_ /sin(ujlo)tel(x), k=1, j=1
(1.2) ij(x, t) = <COS (21Tj/w)tek(5€) L k>1, j< 0°

We denote by Z3(Q) the closure of the linear hull of {wj, k natural, j integer}
in Z,(Q).

146



2. ISHLINSKII OPERATOR
We recall here the properties of the Ishlinskii operator (cf. [3], [4]). Throughout
the paper ¢, ¢, denote any independent positive constants.
(2.1) Fis an odd continuous operator C,, — C,,,

(2.2) ¢: (0, 0) = (0, o0) is a given twice continuously differentiable function such
that

(i) @ is increasing, (0+) = 0,0 < ¢'(0+) < 0,

(i) ¢@(h) £ c(h® for some o€ (0, 1) and every h > 0,
(iii) 9(r) = c2r*72 for some Be(0,a], ro > 0 and every r > r,, where y(r) =
=inf{—¢"(h),0 < h <7},

(2.3) |F(u) — F(v)|o, < 20(|u — v|,,) forevery u,veC,,

(2.4) j:wF(u) dt s - %;y(|v|w)'[:|v']3 dat

for each v e C, such that v” is absolutely continuous. These properties are proved
in [4]. From (2.19) and (2.24) of [4] we immediately derive

(2.5) Let ve C, be given. Then for an arbitrary real constant z the difference
F(v + z) — F(v) is independent of ¢ for t = w and

W(o0.2) = Flo + 2) (1) = F0) (1) =

=sign (1 + 2) [o(A + |u + 2[) = @()] = sign (1) [o(4 + |u]) — @()] ,
where
p = }(maxv + minv), A= }(maxv — minv).

The function ¥(v, +) is continuously differentiable and for every v e C, and z, z, z, €
€ R' we have

(i) |lﬁ(u, Zl) - ‘/’(Ua Zz)l = 2‘0(%21 - Zzl) >
(i) (9/02) ¥(o. 2) 2 ¢ (ol + |2])
(i) ¥(»,0)=0.

Further we have (cf. [3], [5])

(2.6) Let u, ve C, be absolutely continuous. Then

J:O)(F(u) — FO) W~ o) dr 2 0.

If moreover

20
J (F(u) — F(o) (W' — v')dt =0, then u' =10 ae.
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The next property is obvious (cf. also [7] for another type of hysteresis opzrators):

(2.7) For u e IZ(Q; C,,) we define F(u) (x, t) = F(u(x, +)) (¢) for a.e. x & Q and evary
te R'. We have

F(u)e IP'*(Q; C,) and [F(u) — F(0)|,a,0 < Clu — vf} o
for every u, ve I7(Q; C,). .

3. EXISTENCE THEOREM

Theorem. Let ¢ = 41 and N = 1 be given. Let B (cf. (2.2) (iii)) be arbitrary for
N < 2and greater than (TN — 16)/(7N — 8) for N = 3. Then for each g € L}{(Q; L%),
q = (4 — 2p)/(3 — 2PB), such that g,, € I*(Q; L}/*) there exists at least one u € Z2(Q)

such that for every w e Z3,(Q) we have
2w
(3.1) f J- (—uw, + {V,u, Vow) + e Flu)w — gw)dtdx =0,
2J)o

where {+, +> denotes the scalar product in R".

Remarks. (i) The term F(u) is meaningful, since the space Z,(Q) is (compactly)
embedded into IF(Q; C,) for p = 4 — 2B (see Appendix).

(ii) In fact, for v e C,, F(v) is @-periodic for ¢t > w. For this reason we integrate
from w to 2w. In particular, the equation is sastisfied for ¢t = .

Proof. We make use of the classical Galerkin method. Put
wtt(x, 1) =k21 2 upwi(x, 1),
=1 j="m

where w, are given by (1.2). The real numbers u;;, have to satisfy the system

20
(3.2) ff (mttye — Ax ot + € F(uu) — g) wjdxdt =0,
2Jo

j=-m,...m, k=1,...,m.

We first derive apriori estimates (cf. [4]): we multiply (3.2) by (2nj/w)® u_j, and
sum over j and k. We get (using (2.2) (iii))

(3.3) Ly([mu(x, ) f :[,,,u,(x, O d dx < 4 L f :lg,,(x, o) Jote(x, )] dt dx .

From the Holder inequality

[ ([t ) s 5 ([ 6thato o)™

. (L)’(mu(x, ')Iw)ﬂ)lmut(x, )* dt dx>2/3
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and (3.3) we have
(3.49) lnttd2,5 £ (1 + |au]sZ55 ) -

Similarly, multiplying (3.2) by u;, and summing over j and k we obtain

20 20
Vel = s + [ [ bl o + [ [ ol .
hence by (3.4), (2.1) (ii),
(3.5) ”Vx mu”2,2 <l +

mul‘lt:gﬁlz,oo + Imulg-l—-'-laﬂ),/qz) + |mullll-/—22ﬂ,oo .

Notice that for p = 4 — 2§ we have 0 < £ — (1/p) < (4/7N). On the other hand,
lntt]: < e(|lntte|2,3 + | Vi mit])2,2). Therefore (3.4), (3.5) and the embedding theorem
(A.l) (see Appendix) imply [,,,u|4_2‘,;,00 < ¢, where cis independent of m. Consequently
|n|: < c. This estimate implies the solvability of (3.2) for arbitrary m (cf. [4]).
Moreover, since the corresponding embedding is compact, there exists a subsequence
{su} = {,u} and u € Z(Q) such that ,u — u in Z,(Q) weak and ,u - u in I!(Q; C,)
strong. We now pass to the limit in (3.2) for n — oo and conclude that u satisfies
(3.1). Theorem is proved.

4. UNIQUENESS THEOREM

Theorem. Let the assumptions of Existence Theorem be fulfilled. Then the solution
u € Z(Q) of (3.1) for an arbitrary righ-hand side g is unique if and only if ¢ = +1
or ¢'(0+) < v, (cf. (1.1),(2.2) (i)).

Proof. Letu, v € Z2(Q) be two solutions of (3.1). We put z(x, t) = v(x, 1) — u(x, ?).
For arbitrary w € Z3(Q) we have

1) j J:”(_z,w, (V.2 Vowy + o(F() — F(u)) w)di dx = 0.

Let g€ C,, (—o0, ) be an even nonnegative function, supp ¢ = (—0/2, ©/2),
" o0
J o(s) ds = 1, and put
o0

e IRCED eSO

n = 1,2,.... Relation (4.1) holds in particular for w = ,w,. Notice that ¢’ is odd,
hence for arbitrary f € L} we have

,[:J':Q’(n(t - ) f(1) f(s)dsdt =0,

(2o}

00Q(s) z(x, t — s/n) ds,

consequently

J J :w(F (v) — F(u)) ,w,dtdx = 0.
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T his yields, forn — oo,

(4.2) J'QJ:{D(F(v) — F(u)) (v, — u,)dtdx = 0.

B y virtue of (2.6), (2.5) z is independent of t and F(v) (x, t) — F(u) (x, t) = y(u(x, *),
z(x)). We have z € W}"*(Q) and from (4.1) we obtain for each w e W,'*(Q)

(4.3) jﬂ((sz, Vo) + e g(u(x, *), z('x)) w(x))dx = 0.

We distinguish three cases:
(4.4) (i) e = +1. We put w = z in (4.3) and from (2.5) (ii), (iii) we immediately
obtain z = 0.

(i) e = =1, ¢'(0+) < v,. We put again w = z in (4.3).

We have

j {V,z,V,z)dx = vlj‘ z*(x) dx
Q 2

and
‘Lt,b(u(x, *), z(x)) z(x) dx < JL)2]Z(x)| Y(3|z(x)]) dx .

(cf. (2.5) (1)) On the other hand, ¢(h) < ¢'(0+) h for every h > 0, hence z = 0.

(i) e= —1, ¢'(0+) > v;. We put g =0 in (3.1). Then u = 0 is a solution
of (3.1) and (4.2), (4.3) imply that v # u is a solution of (3.1) if and only if v(x, 1) =
= z(x), where z € W,**(Q) and

.5) jg((sz, Vawy = (0, 2(x)) w(x) dx = 0

for every w e W,**(Q).

Let us define G(z) = 4 [ (V,z, V.z) dx — [, [§ 4(0, {) d{ dx for z e W;%(Q).
We find § > 0 such that ¢’(§) > vy, and 7 > 0 such that n max {|e;(x)|, x e @} < 6.
From (2.5) (ii), (iii) we obtain G(e;) = (3n%v; — 3n* ¢'(8)) [q €i(x) dx < 0. On the
other hand, (2.5) (i) and (2.2) (ii) yield |[q [ (0, &) d{ dx| £ ¢ [q |2(x)]* ** dx
for arbitrary z € W, *(Q). This inequality implies that there exists R > 0 such that
G(z) > 0 for ||z]| > R, where ||-| denotes the norm in W,**(Q). The functional G
is weakly lower semicontinuous in Bg = {ze€ W,"*(Q), |z| = R}. Consequently,
there exists z, € By such that G(z,) = inf {G(z), z € By} < 0. In particular, z, (and
also —z,), is a nontrivial solution of (4.5).

APPENDIX. AN EMBEDDING THEOREM

The following theorem is not explicitly proved in [1], but the proof we sketch
here is based on the same method.
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(A.1) Theorem. Let 0 < 3 — 1/p < 4/IN, N = 1, and let Q@ = R" be a bounded
open domain with a Lipschitzian boundary. Then the space Z,(Q) is compactly
embedded into I7(Q; C,).

Proof. Let P: W'/3(Q) - W* 2(R") be the linear continuous prolongation operator
(cf. [6], p. 75), and put Q u(x, t) = P u(-, 1) (x) for u € Z,(Q). Repeating the proof
of Theorem 3.9 of [6], Chapter 2 we see that Q is a linear continuous prologation
operator Z,(Q) — Z,(R"). Further, for o€ (0, 1), (x,f)e 2 x R%, set

(A~2) ua(X, t) = O'_Z_NJ‘ ] (u ) = t) li(y, s) dyds,
RN +1 g

(2

where A >0, @ = Qu, and ¢ is a C®-function such that supp ¢ = (=1, [)¥ x
x (02, 0[2),
o€, 'c) dédr =1,
RN+1
We have
—Qu"(x,t)za""’1 ls_,t(p y—x’s—t iy, s)dyds +
il 4 I a*

RN+1 a

- — — ¢
+ G‘N"*f <y x(p(y x’s . >, v, i(y, s)> dyds.
RN +1 o [ g

For0 < « < f < 1 we obtain

(A3) W(x, ) = e, ) < 4 f

y — % 32 \2/3 /o 1/3
J (f s<p< , s) ds> <j iy, s)|? ds) dy do +
RN R! (2 0
8 _ _ 2 \1/2/po 2 \1/2
+J‘G_N_M2J. u(p<y x,s) ds) (f ds) dydo.
a RN Rt g g 0

Put 2 = 6/7,% = 4/7 — N(} — 1/p) > 0. We use the Young inequality ([1]):
Letv € /(R"), we L(RY), 1/q + 1/r = 1. Then the function z given by the formula
2(x) = [~ v(y — x) w(y) dy belongs to I*(RY), where 1/p = 1/q + 1/r — 1, and
Izl, = |olla - |w[l.» where ||-||, denotes the norm in IZ(R™).
We put ¢ = 2, 1/r = 1/p + %, p being given. From (A.3), the Young inequality
and the continuity of the prolongation operator we conclude

v, @(y, s)

|uB - “ulpyoo = CI“IZ'

] v 3/2 2/3 r 1/r
(L]
RN \J« R! o
B y [y 2 \1/2 v
[l e o))
RN @ RrR1|O (o2
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Let wus write N +3/7=(N+3/T)o+ (N +3/7)(1—¢), where o=
=1 —3%)(r—1)/((1 —x)r +N) (notice that (N + 3/7)(r/(r — 1)) =1 — =,
(N+3/7)(1 —o)r =N + 1 —x). The Holder inequality yields

' B
[if — u|,, < clul, J oV do £ (B — o) |ul, .
a

We see that {u°} is a fundamental sequence in I7(Q; C,) as ¢ — 0, therefore there
exists w € I7(Q; C,,) such that [u® — w|, ,, — 0. On the other hand, u” — u in L2(Q),
hence u = w. Moreover,

[t]pe S ¢ 0™|ul, + ||, 0 £ c(o*|u|, + 0*|u|s,,) forall 6e(0,1),

where c is independent of ¢. The proof now follows immediately from the compact
embedding of Z,(Q) into L3(Q).
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Souhrn

VYNUCENE PERIODICKE KMITY PRUZNEHO SYSTEMU
S PRUZNE PLASTICKYM TLUMENIM

PAaveL KRrEICi

V ¢lanku je dokdzéna existence a odvozena nutnd a postacujici podminka pro jednozna&nost
casové periodického feSeni rovnice u,, — A, u 4 F(u) = g(x,t) pro libovolnou (dostate¢n€ hladkou)
periodickou pravou stranu g, pfi¢emz A, je Laplaceliv operator vzhledemk x € 2 = RV, N=1,
a F je I3linského hysterezni operdtor. Pro N = 2 rovnice popisuje napf. kmity pruzné membrany
v pruzné plastickém prostiedi.
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Pesiome

BBIHYXXJEHHBIE ITEPUOJVWYECKUE KOJIEBAHUS VIIPYIOM CUCTEMBI
C VIIPVT O-IVIACTUYECKUM JEMII®VIPOBAHUEM

PAVEL KREICE

B paGoTe 10Ka3LIBAETCS CYNIECTBOBAHME W HAXOASTCS HEOOXOIMMbIE M JIOCTATOYHBIC YCIIOBUS
JUIst ONHO3HAYHOCTH TIEPHOJMYECKOTO IO BPEMEHH PEINEBHs YPAaBHERUs U, — A u 4 F(u) = g(x, t)
JiIs TIPOM3BONILHOK (ZIOCTATOYHO IJIaJIKOI) NePHOAMYECKON MPaBOW YacTH g, IpHYeM A, 0603Ha-
yaeT onepartop Jlamiaca oTHocuTensHo x € 2 < RN, N > 1, u F-ructepesucHsiii onepaTop Wmmms-

ckoro. [yt N = 2 3TO ypaBHEHHME ONHCHIBACT Hamp. KoneGaumsl ynpyroii MemOGpaHBI B ynpyro
IUTACTHYECKOM cpene.
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