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PROJECTION PURSUIT QUADRATIC REGRESSION —
— THE NORMAL CASE

FRANTISEK STULAITER
(Received July 6, 1987)

Summary. The model of quadratic regression is studied by means of the projection pursuit
method. This method leads to a decomposition of the matrix of quadratic regression, which
can be used for an estimation of this matrix from the data observed.
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1. INTRODUCTION

The projection pursuit (PP) methods belong to those methods of analysis of data
which have been developed for data analysis by computers. These methods are widely
used in applications of some nonlinear statistical methods. The aim of this paper
is to study the PP-method for the solution of problem of quadratic regression. The
theory of quadratic statistics (estimators), in particular for normally distributed
random vector, which has been developed recently, can also be used for the solution
of the problem of quadratic regression by the PP-method. As we will see, under
the assumption of normality, the exact mathematical model for this problem exists
and provides a guide for the special methods of data analysis by computers.

2. PP-METHOD IN REGRESSION ANALYSIS

This part of the paper is based on the work of Huber [2]. Let us assume that
X = (Xy,...,X,) is a d-dimensional (d = 2) random vector and let ¥ be a random
variable. It is well known that f(X) = E[Y| X] — the conditional expectation of Y
given X is the best (in the mean square error sense) nonlinear estimator of ¥ based
on the random vector X. The main statistical problem is that the function f defining
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E[Y| X] is a nonlinear function of d variables which depends on the distribution
of the random vector (X’, Y)'. However, in statistical problems we do not know
this distribution and consequently we do not know the function f.

The projection pursuit method in regression analysis is based on successive approxi-
mations of the random variable f(X) by random variables which are computed
from the projections of the random vector X on (one-dimensional) subspaces of R

d
Let ae R? be a d-dimensional vector. The random variable a’X =Y a,X; can
i=1
be regarded as a projection of the random vector X to the (one-dimensional) sub-
space of R generated by the vector a. The random variable E[Y| a’X] = g,(a'X),
i.e. the conditional expectation of Y given a’X, is the best approximation of the
random variable E[Y| X] given the random variable a’X.
Let a; € R? be such a vector that

E[/(X) — E[Y|a; X]]* = n:ll;: E[f(X) — g (a'X)]>.

Now, let R, = Y — E[Y|a{X] = Y — g,(a;X), where we have used the notation
g, instead of g,,, and let f;(X) = E[R, | X]. Then we have

fi(X) = E[Yl X] - E[E[Y| a,X] ‘ X] = f(X) — g,(a;X).

The best approximation of E[R, | X] based on the random variable a’X, a € R?
is the random variable E[R, | a;X] = g,(a,X), which satisfies

E[/,(X) = g:(@X)]? = min E[/,(X) — E[R, | «X]]".

We proceed further by analogy, and in the m-th step we get the random variable

Rm = Rm—l - E[Rm—l [ a,’”X] = Rm—l - gm(ar’nx) =Y- z g](a‘,,x) Let fm(x) =
j=1

= E[R,, | X]. Then we have

m m

FulX) = 1(X) = 2, 9,(@;X) or f(X) = [u(X) + 3 9,(a;X).
j=1 j=
Under the assumption that for some m either

E[fm(x) - gm+1(a;n+1x)]2 =0
or
m+1

E[R, | X] = E[R, | a,.(X] wecan write f(X) =Y g,(a;X).
i=1
In this case E[Y’ X7 can be expressed as the sum of the best approximations
g;(a;X), j=1,2,...,m + 1 which are computed from the orthogonal projections

a}X of the vector X.
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3. PROJECTION PURSUIT QUADRATIC REGRESSION

We shall now apply the PP-method to the problem of quadratic regression. Let X
be a d-dimensional N,(O, X) (normally) distributed random vector with E[X] = O
and with a regular covariance matrix X, Let

d
Y=XAX+5=3 X.X;A; +¢,

i,j=1

where A is a d x d symmetric matrix and ¢ is a random variable with E[¢] = 0

and D[e] = ¢?; let X and ¢ be independent. It is clear that under these assumptions

f(X) = E[Y| X] = X’AX. We will show using the PP-method that the equality
d

X'AX =} g;(a;X) holds.
i=1

To find the functions g;, j = 1,2,...,d we have to compute E[Y|a’X] and
E[R;|a’X] foranyae R?and j = 1,2, ...,d — 1. This can be easily done by virtue
of the assumption that the vector X has the normal distribution.

It is well known (see [5], [6]) that if U is a N(0, 1)-distributed random variable,
then any random variable V satisfies N

E[V|U] = .ZOE[Vh,-(U)] . h(U),

where h; are Hermite’s polynomials, for which we have the identities

E[h(0) h(0)] = 20 hi) () —= eI du = 5,5, ) = 1,2, ..

J2n
It is well known that ho(u) = 1, hy(u) = u, hy(u) = (1//2) (w?* — 1),.... Using
this result for the random variables ¥ = Yand
U ax a’Xﬁ
JD[a'X] Ja'Za’

which has the N(0, 1) distribution, and taking into account the independence of X
and ¢, we get the equalities

E[Y|a'X] =iie[(xmx +6). h(ﬁ%ﬁ] . h,-(\/%) =

_ § E[X'AX . h(U)] . h(U).

However, E[X'AX . h(U)] = E[(X'AX — E[X'AX]). h(U)] + E[X'AX] . E[h,(U)]
is different from zero only for i = 0 and i = 2 if U = a’X/,/D[a’'X] (see [6]) and
thus we conclude

E[X'AX . hy(U)] = E[X'AX],
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E[X'AX . hy(U)] = E[(X’AX — E[xAx]). L (i"_l‘ﬁ - 1)] -

V2 \D[a'X]
1
= ————— Cov (X'AX; (a'X)?).
J@ blaX]
Using these results we obtain

X1 = B , Cov (X'AX; (a'X)?)
E[Y]a'X] = E[X’AX] + } (Dl X))

From the theory of quadratic estimation (see [3], [4], under the assumption that
X is an N4 (O, X) distributed random vector, it is well known that E[X'AX] =
= tr (AX) and Cov (X'AX; X'BX) = 2 tr (AZBX) for any d x d symmetric matrices
A and B, where tr denotes the trace of a matrix.

Hence we can write

2(D[a’'X])? = 2(a'2a)* = 2tr (aa’2aa’%) = D[X'aa’X] = D[(a’X)?].

((a'X)* — D[a’X]).

Using this result and the independence of X and ¢ we get the final form
for E[Y]| a'X]:
Cov (Y; (a’X)?)

E[Y] aX]=EY]+ D[(aX)7]

((@X)* — E[(a'X)*]).
Further, we have
(Cov (¥; (a'X)*))* _

D[(a'x)’]

E[E[Y| X] — E[Y| @'X]]> = D[X'AX] —-

’ 2
= D[X'AX] — 2(" ZAE“) ,

a'Xa

where we have used the equalities Cov (Y;(a’X)?) = Cov (X'AX; X'aa’'X) =
= 2tr (AZaa'Y) = 2(a’2AZa).
From this expression we can see that the problem of finding

a, = argmin E[E[Y| X] — E[Y]| a'X]? =
= arg min E[X"AX — E[X'AX | a'X]]?,
a
which is the first step of the PP-method in the regression analysis, coincides with

the problem of finding
<a’2AEa>2
arg max .

aeR4 a'la

Let us denote £'/2a = b. Then we have

'S AT\ b/ S12A1/2
max (L2250 _ ax BEAL B _ max (b'EY2AX2b)?
acré \ a'Xa beRd B]? Ibli2=1 '
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The solution of the problem of finding arg max (b'2'/2AX*/2b)? is now very simple.
Ibli2=1
Let us assume that {lj}‘}=1 are the eigenvalues and {bj}§=1 the orthonormal eigen-
vectors of the symmetric matrix X'/?A2'/?, and let |A;| = |A,] = ... = |4,]- Then
we have
d
IVZAZYV2 =¥ 5 bb,  max (BEVPAZV?b) = i2
ji=1 IIbll2=1
arg max (b'2'/2AX'?b)?> = b,

IIbjI2=1
which implies
’ 2
a, = arg max aIAZa\" r-12p,
aecR4 a'la

and
E[E[Y| X] — E[Y]| a;X]]* = D[X'AX] — 24} =
d
=2t ((ZV2 AP -2 =2) 2%,
j=2
The next step of the PP-method is to consider the random variable R, =
=Y - E[Y]a}X].
We can write
E[Y]aiX] = E[Y] + A,((aiX)* — E[(a1X)]),
since
Cov (Y; (a;X)?) aiZAXa,
D[(ayX)*] (a1Xa,)?

= b\ XV2AZY2b, = ], .
Next, we have
Ry = X'AX — 1, . X'aa X — (E[Y] — X E[(a’IX)Z]) + &=
= X'(A — 1,a,a}) X — (E[Y] — 2, E[(a}1X)*]) + &,

where E[Y] = tr (AZ) = tr (X'/2A2'/?) =§: A5 Ay E[(a1X)?*] = Ay(a}Za;) = 4, and
thus !
E[Y] — 4, E[(a;X)?] =.i2)hj = tr ('?A,2'?) = tr (A,X) = E[ XA, X],
where A; = A — A,a,a;. j
Thus we have shown that

Ry =XAX—E[XAX]+¢e; A =A—laa].
Making use of this expression for R; we can write

E[R, | X] — E[R, | @'X] = XA, X — E[X'A,X | a'X],
from which it can be seen that the second step of the PP-method, which consists

in finding the vector
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a, = arg min E[E[R, | X] — E[R, | a'X]]* =
aeR4

= argmin E[X'A; X — E[X'A, X | a'X]]?,

acR4

coincides with the first step with the matrix A, instead of the matrix A. We must
find the eigenvalues and the eigenvectors of the matrix X*/2A,X'/2, However,

SU2A B2 = $V2(A — jia,a)) SV? = FU2ARY? _ ) 5V2q,a\ 5V =
d d
=Y A;b;b} — A,b,by =Y A,b;b,
j=1 ji=2

from which it is clear that ,,...,4, (|4;] = |43| = ... = |4,|) are the eigenvalues
and b,, ..., b, are the eigenvectors of the matrix A, and we conclude :

a, = argmin E[E[R, | X] — E[R, | @'X]]* = £~ "/?b,.

We proceed by analogy in the subsequent steps. It is clear that the PP-method
of quadratic regression has only d steps. The equality

d
AR = glzjbjb;.

i
yields the following expression for A:
4 4
A= 3 4EmpEE - L,
i=1 . i=1
wheter the vectors a; = X~'/?b; satisfy the equalities ajZa; = 1.

A=<§f)

The matrix A has the eigenvalues a; = 4 and «, = 2, and the orthonormal eigen-

L, 1 (1 Vo L( 1)
1 \/2 1 ’ 2 Jz _1 .
2
We can write A = ) av,vj, viv; = 6,5, i,j = 1, 2.
j=1
10
z= <0 4)‘

10 /16
1/2 1/2 1/2 _
T _(02), $U2A% —k64>'

This matrix has the eigenvalues 1, = 8-6847 and 1, = —3-6847 and the orthonormal

eigenvectors

Example. Letd = 2,

vectors

Let

Then
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0-6150 ' 0-7885
b = =
: (0-7885) and b, ~0-6150) '
We can easily compute :
a. = y-12p _ (06150 _( 07885}
! ! (0-3942 and a2 ={ _g.3075
We can see that 4; # o;, a; + v, i = 1,2, a, and a, are not orthogonal, but

2
A=Y Jagd,.
i=1

4. APPLICATION OF THE PP-METHOD OF QUADRATIC REGRESSION
TO REAL DATA

Let us assume that (xj, y;), i = 1,2,...,n are independent observations of a
(d + 1)-dimensional random vector (X', Y)'. Let

Y= X'AX + ¢,

where A is an unknown symmetric d x d matrix, X is an N, (O, E) distributed
random vector with X > 0, ¢ is a random variable with E[¢] = 0, D[¢] = 0%, X and
¢ are independent. According to the results of the previous section we have A =

d
=) A;a;a;, where ajXa; =1, j = 1,2,...,d. By the PP-method we can estimate
i=1

the numbers 4; and the vectors a;,j = 1,2, ..., d from the data (x5, yi)’, i=12,...,n
in the following way:
Let
1&
S=-Yxx;

ni=1
and let a € R be a vector for which the equality a’Sa = 1 holds. Let us compute
the data (a'x;)%, i = 1, 2, ..., n. We approximate the data y;, i = 1,2, ..., n by the
usual regression line with respect to the data (a'x;)?,i = 1, 2, ..., n. Using a computer
we find such a vector “a; with *a;S “a, = 1 and a real number "1, that the equality

ii[}’i -y- A}~1((Aal1xi)2 - (_"’1")2)]2 =

= min Y [y; — 7 = *4,((a'x;)* = (Ta’x)?)]*> holds.
{a:a’Sa=1} i=1
Here

2= 5). (@) - (Caxp)
Saxr - Caxpy

Al =

a
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and
(Ca'x)? = 1 Y (a'x)*.
n i=1

Then we repeat the same procedure with the data (xj, r{"), i = 1,2, ..., n, where
rY =y, — 5 - *A((a\x;)?> — (Tax)?),i = 1,2,..., n. We get the vector “a, and
the number 1, and the data

r? =D — FD — ) ((ayx;)* — (Tayx)?), i=1,2,...,n.

These data together with x;,i = 1, 2, ..., n are used in the next step of the PP-method.
After performing d steps we get the estimators *A,,..., “4; of A,...,4; and
a;,...,"a,ofa,.., a,. Using these estimators we can construct the estimate

A
d

AA=Z/\Ai /\ai/\a;
i=1

of the unknown matrix A. In real situations the random variable X’ *AX can be

used as the first (quadratic) approximation of the unknown nonlinear dependence
of Yon X.
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Suhrn

METODY ANALYZY PROJEKCI{ V KVADRATICKEJ REGRESII
ZA PREDPOKLADOV NORMALITY

FRANTISEK STULAJTER

V ¢&lanku je Studovany model kvadratickej regresie metdédou analyzy projekcii. Pomocou
tejto metody je odvodeny rozklad pre maticu kvadratickej regresie. Rozklad je pouzity pre
odhad tejto matice z pozorovanych dat.
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Pesiome

METO/J AHAJIU3A ITPOEKINM B KBAIPATUYECKOW PETPECUU
JJIsI TAVCCOBCKOI'O CIIVUAS

FRANTISEK STULAJTER
B craThe H3y4aeTcs MOJEIb KBaAPATHYECKON PErPECCHM HAa OCHOBE METO/a aHajM3a NMPOEKUMH.
C noMo1o 3T0ro MeToa HaiIeHo Pa3IoKeHHe AJIsi MaTPHUIBI KBaAPATUYECKOM Perpeccuu, KoTopoe

TMO3BOJISIET JaTh OLECHKY 3TOH MaTpPHILbI, UCXOIs U3 HaOJTI0Ja€MBIX JaHHBIX.

Author’s address: Doc. RNDr. Frantisek Stulajter, CSc., Katedra tedrie pravdepod. a mat. §tat.
MFF UK, Mlynska dolina, 842 16 Bratislva.

212



		webmaster@dml.cz
	2020-07-02T06:37:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




