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NUMERICAL ANALYSIS FOR OPTIMAL SHAPE DESIGN 
IN ELLIPTIC BOUNDARY VALUE PROBLEMS 

ZDENĚK KESTŘÁNEK 

(Received July 28, 1987) 

Summary. Shape optimization problems are optimal design problems in which the shape of 
of the boundary plays the role of a design, i.e. the unknown part of the problem. Such problems 
arise in structural mechanics, acoustics, electrostatics, fluid flow and other areas of engineering 
and applied science. The mathematical theory of such kind of problems has been developed 
during the last twelve years. Recently the theory has been extended to cover also situations in 
which the behaviour of the system is governed by partial differential equations with unilateral 
boundary conditions. In the paper an efficient method of nonlinear programming for solving ** 
optimal shape design problems is presented. The effectiveness of the technique proposed is 
demonstrated by numerical examples. 

Keywords: optimization, elliptic boundary value problems, nonlinear programming, finite 
element method. 

AMS Subject classification: 49A22, 49A29, 49D37, 65N30. 

1. INTRODUCTION 

Shape optimization problems are optimal design problems in which the shape of 
the boundary plays the role of a design. Such problems arise in structural mechanics, 
acoustics, electrostatics, fluid flow and other areas of engineering and applied 
science. 

The mathematical theory of such kind of problems has been developed during 
the last twelve years [7], [8], [10]. Recently the theory has been extended to cover 
also situations in which the behaviour of the system is governed by partial differential 
equations with unilateral boundary conditions [ l ] , [3], [4], [9], [11], [14]. The relat
ed problems are treated in [13], [15], [16]. 

In the present paper we focus our attention to finding an efficient method of non
linear programming for solving the optimal shape design problems. A numerical 
study is presented for several types of optimal shape design problems. Some compar
ison is made of the exact and the numerical initial values of the cost functionals. 
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2. OPTIMIZATION PROBLEMS 

be a domain (see Let us consider the following model problems. Let Q(v) 
Fig. 1) with the following geometrical structure: 

Q(v) = {0 < xt < v(x2), 0 < x2 < 1} , 

dQ(v) = r1Kj r(v) , the boundary of Q(v) with 

r , = dQ(v) - F(v), 

F(v) = {xe R2, x1 = v(x2), 0 ^ x2 = 1} 

where the function ve Co,1(<0, 1>), i.e. a Lipschitz function, is to be determined 
from one of the domain optimization problems 

(Pi) min Jt(y(v), v) , i = 1 , 2 , 3 , 4 . 
yel/ad 

X , 

Here 

Uad = {»eC O J ( {0 , 1 » , 0 < a S v(x2) rg /?, 

\dvjdx2\ g C., \lv(x2)dx2 = C2} 

where a, /?, C1( C2 are given positive constants, and the cost functionals are 

Ji()'(v), v) = Jfi(c) (X^))2 dx , 

J 2(>(», f) = 1/2 J-w Mt>))2 ds , 

J3(y(i;), ») = 1/2 j " f l ( l ) ) Vy(v)2 dx , 

J*(y(v),v) = \\dy(v)l8n\\ill23rw = |jw(j< )̂)}|f.«<;„> • 
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The function y(v) is the solution of the boundary value problem (the state problem) 

(SPi) ~ A j / = f in Q(v), 

y = 0 on F(v), 

dyjdn = 0 on Fx(v) = dQ(v) - F(v), 
or 

(SP2) - A > l = f in Q(v), 

y = 0 on Fi(v) = 8Q(v) - F(v), 

y _0, dyjdn ^ 0 , y dyjdn = 0 on F(v) 

for a given function fe I^(Qp), where Qfi = (0, p) x (0, 1) and dyjdn denotes the 
derivative with respect to the outward normal to F(v). 

In variational formulation, ( S P j reads: 
Find y = y(v) e V(v) such that 

(VPi) W > Vy Vw dx = \Q{v)fw dx Vw e V(v) 

where 
V(v) = {we H\Q(v))9 w = 0 on F(v)} . 

We denote by Hk(Q) the Sobolev space W^k)(Q) with the usual norm \\'\\k>Q, 
H° = L2, with the scalar product ( \ ')0>Q-

The symbol ||U>/dn|| -i/2,T(t;) represents the norm of the boundary flux in the space 
H~1/2(F(v)) - [H1/2(F(v))]' (dual space). For details we refer to the paper [2]. 

R e m a r k 2.1. The problem (VPX) has a unique solution for any v e Uad. 
The state problem (SP2) can be formulated in terms of a variational inequality as 

follows. 
Find y = y(v) e K(v) such that 

(VP2) j Q ( v ) Vy V(z - y) dx ^ \Q{v)f(z - y) dx Vz e K(v) 

where 
K(v) = {ze Hl(Q(v)), z = 0 on rx(v)9 z ^ O o n F(v)} . 

R e m a r k 2.2. The problem (VP2) has a unique solution for any v e Uad. 

Theorem 2.1. The problems (Pf) for the cost functionals J{ (i = 1, 2, 3) with the 
state problem (SP2) have at least one solution. 

Proof. See [1], Th. 1. 

Theorem 2.2. The problems (P{) for the cost functionals J( (i = 3, 4) with the 
state problem (SP^ have at least one solution. 

Proof. See [2], Th. 2.1. 
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R e m a r k 2.3. The existence theorem for the problem (P4) for the cost functional J4 

with the state unilateral problem (SP2) has not been proved yet. A closely related 
problem has been considered in [12]. Nonetheless, the numerical results of this 
optimal shape problem are presented in Sec. 4. 

3. APPROXIMATE SOLUTION 

3.1. The Primal Finite Element Method 

The problems (Pj), i = 1,2, 3 with the state problem (SP2) or (VP2) can be solved 
by the "displacement" finite elements making use of the primal variational formula
tion. To this end we follow the approach of [ l ] , transforming each of the problems 
(Pi), i = 1,2,3 into an equivalent one with the state problem defined on a fixed 
square domain and then employing bilinear finite elements on a uniform mesh. 
The unknown part of the boundary is sought among continuous piecewise linear 
functions. Thus, let N be a positive integer and h = l/N. Denote by ej, j = 1, ..., N 
the interval <(j — 1) hjK) and introduce the set 

^ad = {Wh e Uad> Wh\ej *- * \ - Y/} 

where Px denotes the space of linear polynomials. 
Let Qh denote the domain bounded by the graph rh of the function wh e Ujd, 

i.e. Qh = Q(wh). 
We define 

a = (o, i) x (o, i ) , 
Kl7 = < ( i - l)h,ih} x < ( ; - l)h,jh), 

ctfh = [Kijjij:sl , 

Fk: a -> Q„ , Fh = (Flh, F2h), 

(3,1) Flh(^, *2) = *. Wh(<t2), 

P2h\*l, *2) = * 2 9 

Ku = Fh(Kij) Vi, j , 

^h = {Kij}i,j=l • 

Note that each K^- is a trapezoid and 

PhUij e Qt x Q! 

where d = [p, p = p(^1? A2) = a00 + a10^j + a0i*2 + ^11*1*2} denotes the 
space of bilinear polynomials. 
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Let us consider the problem (VP2) on the domain Qh. To approximate K(wh) v/e 
introduce the set 

Kh = {Z„, zh e K(wh) n C(Qh), zh 0 F^., e Qx Vi,j} . 

Let us define the solution of the approximate state problem as 

(SP2)
ft the solution yh e Kh of (VP2) on Qh for any zhe Kh. 

Instead of (VP2), however, it is more suitable to solve numerically an equivalent 
problem on Q, which is obtained by the transformation (3.1) of the integrals in (VP2) 

The cost functionals Jh i = 1, 2, 3 will be replaced by the approximate functionals 
Jh

h i = 1, 2, 3. Then we will solve the problem 

(Pi)" min Jl(y{vh), vh) , . = 1, 2, 3 . 
VheUadh 

R e m a r k 3.1. A subsequence of solutions of (Pj)ft exists and converges in some 
sense to a solution of the continuous problem (Pj), i = 1, 2, 3, if h tends to zero (see 
Th. 3.1 in [1]). 

3.2. The Dual Finite Element Method 

Since the cost functionals Jh i = 3, 4 are expressed in terms of the gradient Vy 
and not in terms of the function y itself, it seems to be of advantage to employ the 
dual variational formulation of the state problem. Thus we shall calculate the gradient 
Vy directly. 

To this aim we introduce the space of solenoidal (divergence-free) vector functions 

Q0(v) = {q e [L2(Q(v))]2, div q = 0 in Q(v), q. v = 0 on dQ(v) - F(v)} = 

= {qe [L2(Q(v))f, $Q(v) q.Vwdx = 0\/we V(v)} . 

Let us construct the vector field 1 = (lu 12): 

(3.2) . Uxux2)= -Sx
0
1f(t,x2)dt9 

l2 = o 

assuming that the integral has sense for x2 = 0, x2 = 1 and almost all x2 e (0, l) . 
It is readily seen that 

div 1 = dX1\dx1 = .—f in Qp , 

1. v = liv1 = 0 on dQ(i — rp 

where 
rp = {(xt,x2)9 x, = / ? , x2 - ( 0 , 1 ) } . 
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Then a suitable dual formulation of the problem (SPX) or (VPj) is 

(3.3) to find q(v) e Q0(v) such that 

(<l(v), P)o.n(v) = - ( ^ fOo-A<*) Vf> e Q0(v) . 

Remark 3.2. There exists a unique solution of (3.3) and 

1 + q(v) = Vy(v) 

holds. Henceforth 1 denotes everywhere the restriction of the vector field (3.2) onto 
the domain under consideration and y(v) is the solution of (VPj). 

The cost functionals Ju i = 3, 4, can be rewritten as 

Js(y(v), v) = \\1 + q(v)\\2
0Mv) = Jt(q(v)) 

and 

(3.4) J4(y(v),v) = \\u(<,(v))\\l*aw = Jt(q(v)) 

where 
u = u(q(v)) is the solution of the auxiliary problem 

u e Vc(v) , 

Uv) (Vfi • Vw + uw) dx = JO(l0 ((1 + q(v)) . Vw - wf) dx Vw e Vc(v) 
where 

Vc(v) = {we H^iQ), yw = 0 on G-.Q - F0 , 

7 is the trace operator, F0 is an "extension" of F such that F c F0 c 3Q, F0 is 
connected and open in dQ}. 

For the proof of (3.4) see [2]. 

Remark 3.3. Theorem 2.1 in [2] yields the existence of a solution of the equivalent 
optimization problem 

min Jf(q(v)), i = 3, 4 . 
veUad. 

The domain .Q^ will be divided into triangles by the moving mesh technique as 
follows (Fig. 2). 

We choose a0 e (0, a) and introduce a uniform triangulation of the rectangle 
R = <0, a0> x <0, 1>, independent of vh if h is fixed. In the remaining part Qh — R 
let the nodal points divide the intervals <a0, vh(jh)} into M uniform segments, where 
M = 1 + int ((/? — a0) N) ("int" denotes the integer part of the number). One can 
easily find that then the segments parallel to the x^axis are not longer than h and 
shorter than h(a — a0)/(/? — a0). One also deduces the following estimate for the 
interior angles OJ of the triangulation: 

tg to l> (a - a0)/(jff ~ a0) (1 + Ct + Cf)'1 . 

Consequently, one obtains a regular family {&~h(vh)} of triangulations, with 
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max (diam K) S h/sin co0 , 
Ke3Th(vh) 

OJ^CD0 = arctg ((a - <x0)l(P - «o) (1 + Q + ^ i ) " 1 • 

Let us consider the space Jfh(vh) of piece wise linear solenoidal (divergence-free) 

functions on the triangulation ZTh and define ([17]) 

Sh = JTh(vh) n Q0(vh) = {qh e Jf(vh), qh . v = 0 on 3Qh - F„} . 

cx0 a [3 *! 
Fig. 2 

Instead of the problem (SP t) or (3.3) we solve the aproximate problem 

(SPj)* to find q ^ v j e Sfc such that 

R e m a r k 3.4. There exists a unique solution of (SP})* for any h and any vh e Uh
d, 

R e m a r k 3.5. The cost functional Ji9 i = 3, 4, will be replaced by approximate 
functionals J*h, i = 3, 4, and we then solve the problem 

(p.)Ä min J?h(q(v„), vh). 
fhel / ad h 

The approximate solutions of (Pj)* converge in some sense to a solution of the con
tinuous problem ( P j , i = 3, 4 (see Th. 5.1, 6.1 in [2]). 

3.3. Algorithm 

The problems (P{)
h have to be solved iteratively. Let vk e UJd be a given function. 

We will denote the functions vk and the vectors {vk(jh)}N
=0, where h = 1/N, by the 

same symbol. 
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We want to find a new iteration, say vk + 1 e Uh

d, such that 

F(y(vk+1),vk+1)<F(y(v%vk) 

where 

F = j \ or J** . 

More precisely, the algorithm for solving the problems (P i)
/I reads: 

A l g o r i t h m 3.1. (Method of feasible direction [5], [6].) 

Step 0. Choose v° e U*d arbitrarily. Set k = 0, Qk = Q(vk). 

Step 1. Solve the state yk = y(vk) in the domain Qk from the problem (SPy)
ft, j = 1 

or 2. 

Step 2. Find a feasible direction of descent d e C o , 1(<0, 1)). If this is not possible 

stop, otherwise go to Step 3. 

Step 3. Find X > et such that 

Ѓ 
J&d 

F(y(vk + Xd), vk + Xd) < F(y(v% vk) - e2 , vk + Xd e Uh 

where e l 5 e2 > 0 are given constants. If this is not possible then stop, otherwise set 

vk+1 =vk + Xd, 

Qk+1 = Q(vk+1), 

k = k + 1 

and go to Step 1. 

A natural choice for the direction of descent is the negative gradient of the cost 

functional. 

Thus we are led to the following questions: 

— Do the gradients of the cost functionals exist? 

— How does one get the gradients of the cost functionals with respect to the func

tion v/c? 

Some answers to these questions are given in the paper [4], where the gradients 

are obtained in different ways. 

In the present paper we compute an approximate gradient of F by finite differences 

dF(y(v% vk)jdvk = (F(y(vk + tej), vk + Xe3) - F(y(vfc), vk))\X 

where 

j-th 

ej = ( 0 , . . . , 1 , . . . , 0 ) , 

X = 0-001 (for example) . 

R e m a r k 3.6. Note that the function vk -> J^(vfc), vk) need not be convex. 

Consequently, Algorithm 3.1 cannot guarantee obtaining more than a local minimum. 

However, in many practical applications this suffices to improve the performance 

of a system. 
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Remark 3.7. The approximate problem (Pi)ft, i = 1,2, 3, 4, is a nonlinear program
ming problem with constraints. One possible approach to solve it is to use Algorithm 
3.1. The state problem (SP2)* can be solved by the primal finite element method 
(see sec. 3.1) with the SSOR and the projection method [18]. 

4. NUMERICAL TESTS 

Several numerical tests carried out in order to study the performance of the 
method proposed. 

The results of the shape optimization problems (Pi)*, i = 1, 2, 3 or ( P ^ with the 
state problem (SP2)

fc or (SPi);i have been presented in [4] and [7], respectively. 
Therefore we focus our attention to the problems (P4)

h and (P3)
h with the state 

problem (SP2)
ft and (SPi)'1, respectively. The functional J4 has been replaced by 

Jl(yh, vk) = H (dy„ldn)2 dx2 . 

The results are presented in Table 4.1. 
In the first five examples we solved the shape optimization problem (P4)

ft with the 
state problem (SP^* using the primal finite element method (Sec. 3.1). The right 
hand sidef of the (SP2)* was either 

(3.5) / . = - 1 

or 

(3.6) f2 = 4 sin 2nx2 , 

(3.7) f3 = 8 sin 2nx1 sin 2TTX2 , 

(3.8) f4 = 2((l/v + vfx\jv3) x2(x2 - 1) + 

+ (1 - 2x2) x\v'\v2 + Xi(*i/i> - 1)), 

(3.9) f5 = 5 sin 2nx1 sin 7ix2 . 

We chose the constants a = 0*5, /? = 1*5, Cx = 1, C2 = 1. The domain Q(vk) 
was divided into 128 (h = 1/8) triangles. The initial value of the unknown boundary 
was chosen to be v° = 1. 

The final three applications test the shape optimization problem (P3)* with the 
state problem (SP-J*. In this case we applied the dual finite element method (Sec. 3.2). 
The right hand sidef of the (SPi)* was either (3.5) or 

(3.10) f6 = -x2
2(l - x2f (2jv2 + 6v'2x\y) + 

+ 8v '*i/v3(x2 - x2) (1 - 2x2) + 

+ 2(1 - 6x2 + 6x\) (1 - x\\v2), 
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Table 4.1 Numerical Tests (vm i n = vmin(jh() 

Nro. Jh. 
J i 

(SP,)Л / Jh. . тexact 
^LЛnit Jh. • 

° i,min 
CPU [s] 

1 Ѓ 
JĄ 

( S P 2 ) Л (3-5) 0-0451 - 0-0451 12 

vfn = 1., 1., 1., 1., 1., 1., 1. 1., 1. 

2 1 л 

^ 4 
(SP2У (з-б) 0-0351 - 0-0318 301 

vfП - 0-98, 0-99, 1-05, 1-04, 1-01, 0-97, 0-98, 0-98, 0-97 

3 Ѓ 
J 4 

(SP2)
f t (3-7) 0-0918 - 0-0155 387 

v Ш І П = 0-97, 1-10, 1-22, 1-10, 0-97, 0-93, 0-87, 0-88, 0-89 

4 1 Й 

J 4 

(SP2)
A (3-8) 0-0259 1/30 0-0168 370 

vf" = 0-83, 0-95, 1-06, 1-10, 1-10, 1-07, 1-00, 0-88, 0-86 

5 1 Һ 

J 4 
(SP2)» (3-9) 0-1872 2/TI2 0-1712 401 

min 
vj — 0-82,0-94, 1-03, 1-09, 1-11, 1-08, 1-02, 0-93, 0-80 

6 J3 ( S P j * (3-5) 4-8234 - 2-7298 520 

vfn = 1-40, 1-31, 1-11,0-91, 0-71, 0-51 

7 Ѓ Jз ( S P І ) Л (3-10) 0-0417 0-0123 0-0332 610 

vfn = 1-10, 1-01, 1-05, 1-04, 0-97, 0-77 

8 1л 

Jз 
( S P 1 ) , J (311) 0-0542 - 0-0520 605 

vfn = 0-92, 1-01, V06, 1-02, 0-98, 0-93 

^i.init r e s P - A*w\a ~~ t n e numerical resp. exact value of the cost functional for the 

initial value of v°, 

J i m i n — the numerical value of the cost functional for the value of vmm. 

331 



(3.11) f7 = -2x2(3*-. - 1) (2x2 - 3) - 6x\(xx - 1) (2x2 - 1) . 

The domain Q(vk) was divided into 50 (h = 1/5) triangles. The other constants 

used were the same as in the first ^VQ tests. 

By comparison we see that in the cases 4, 5 and 7 the method seems to provide 

reasonably good results of the exact and numerical values of the cost functional 

for the initial value of v° even for relatively coarse element mesh. 

Note that for other initial values of v° we can obtain lower values of the local 

minimum of Jt. 

The tests were carried out with ICL 2958 computer. 

5. CONCLUSIONS 

From the numerical study we have seen a good performance of the method 

proposed. As a summary we may conclude that the numerical gradient gives valuable 

results. It is a most straightforward and widely used method in practice. 
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S o u h r n 

NUMERICKÁ ANALÝZA PRO OPTIMÁLNÍ NÁVRH OBLASTI 
V ELIPTICKÝCH OKRAJOVÝCH PROBLÉMECH 

ZDENĚK KESTŘÁNEK 

V článku je užito numerické analýzy k výběru vhodné nelineární optimalizační metody pro 
řešení návrhu oblasti v eliptických problémech s jednostrannými okrajovými podmínkami. 
K aproximaci úlohy je užito primární i duální formulace metody konečných prvků. Na nu
merických příkladech je ukázáno chování navržené metody. 

Р е з ю м е 

ЧИСЛЕННЫЙ АНАЛИЗ ДЛЯ ОПТИМИЗАЦИИ ФОРМЫ ОБЛАСТИ 
В ЭЛЛИПТИЧЕСКИХ КРАЕВЫХ ПРОБЛЕМАХ 

7,ЭЕШК К Е З Т Ю ^ Е К 

В статье применяется численный анализ к определению нелинейного метода оптимизации 
формы области для эллиптических задач с односторонними краевыми условиями. Для 
аппроксимации задачи используются первоначальная и двойственная формулировка метода 
конечных элементов. На численных примерах показаны свойства указанного метода. 

ЛшНог'8 аййгехз: 1ШОг. Яйепёк Ке^гапек, С8с, Ууросетл! септтшп СКО РгаЬа, № НагГё 7, 
190 02Ргапа 9. 
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