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GLOBAL WEAK SOLVABILITY OF A REGULARIZED SYSTEM
OF THE NAVIER-STOKES EQUATIONS
FOR COMPRESSIBLE FLUID
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Summary. The paper contains the proof of global existence of weak solutions to the mixed
initial-boundary value problem for a certain modification of a system of equations of motion
of viscous compressible fluid. The modification is based on an application of an operator of
regularization to some terms appearing in the system of equations and it does not contradict
the laws of fluid mechanics. It is assumed that pressure is a known function of density. The method
of discretization in time is used and finally, a so called energy inequality is derived. The inequality
is independent on the regularization used.
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INTRODUCTION

Many works proving the local (in time) existence of solutions of a system of
equations of motion of viscous compressible fluid have been published (see e.g. [8]
and references at the end of this paper). The global (in time) existence of solutions
has been proved for example under assumptions of the type ‘“the initial conditions
are small enough” or ‘“‘the initial and boundary conditions are near enough to some
equilibrium state” (see e.g. [3]). In contradistinction to the Navier-Stokes equations
for incompressible liquid, the question of global existence of weak or strong solu-
tions in the case of viscous compressible fluid and general initial conditions remains
still open both in two or three space dimensions.

In this paper we deal with a barotropic fluid and prove the global existence of
weak solutions of the system of equations of motion with a certain regularization.
We also derive an inequality of the energy type which does not depend on the para-
meter h used in the regularization.

We use the relation

(0.1) p = Ke)
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between the pressure p and the density ¢. We assume that p is a nondecreasing
continuously differentiable function on (0, + ) such that p(0) = 0 and
a) there exist g; > 0, C; > 0 and o > 0 such that

(0.2) ple) £ Cio* for 0€<0,0,),
b) there exist ¢, > 0, C, > 0, C; > 0 and x € (1, 6) such that

(0.3) C,0* < plo) < Cy0* for ¢ = o,,

¢) there exists C, > 0 such that

(0.4) p'(o) £ Cuo*™! for o =o9,.

The tilda denotes the regularization. Its exact meaning is explained in details in the
following section, but already here we can say that j(g) (x, t) represents an average
of p(@) (-, t) considered with a certain smooth weight function on a neighbourhood
B,(x) of x. The radius h of this neighbourhood is a constant which may be chosen
arbitrarily small. The assumption concerning the barotropicity was used for example
in papers [6], [9] dealing with the equations of motion of viscous compressible fluid.
It is not quite correct from the physical point of view (see e.g. [2]) and so we must
not forget that our mathematical model is only an approximate reflection of the real
situation.
The system of equations we deal with has the form

(05) 0.+ (e#),; =0,
(0.6) (ous),e + (edjus) ;= —ple),i + dpuy i + puy gy (i =1,2,3)

where U = (uy, u,, u3) is the velocity of the moving fluid and p is the dynamic
viscosity coefficient. We assume that p is a positive constant. The notion of the velo-
city of the fluid at a point x is usually introduced in terms of an average of velocities
of all particles contained in a small neighbourhood of x. So if & is small enough,
il; is almost the same as u; from the point of view of mechanics.

In [5], R. Rautmann used a similar regularization in the Navier-Stokes equations
for the incompressible liquid in order to prove the global existence of strong solutions
in three space dimensions.

1. FORMULATION OF AN INITIAL-BOUNDARY VALUE PROBLEM

Assume that Q is a bounded region in R* with its boundary 8Q of the class C2*®
for some a € (0, 1). Let us choose h > 0 and put
Q, = {xeR? dist(x, Q) < h}.
Assume that Q has such a form that i can be chosen so small that 08, is also of the

class C?2* @,
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Put
() = Kyexp | — "ﬂi‘ for (eR?, ]Cl <h,
h? — [¢]?
() =0 for [eR®, [(|zh.
K, is a constant chosen so that
TBuoy ()4 = 1.
If fe L'(Q,), put
J(x) = fa, o(x = y)S(y) dy.
It may be easily shown that
i) fa.J(x) g(x) dx = o, f(x) §(x) dx
for f. g e L'(Q,);
ii) if f =0 ae. in Q, — Q then =0 on 0Q, and moreover, any derivative of f
is also identically equal to zero on 0Q,;
iii) if fe °H'(%,) then
a ~

_ (Y
Oxif B <6xi>

iv) there exists K; > 0 such that if f e [}(Q,) and Df represents any derivative of f
of an order less or equal to 3 then

(1.1) max ]Df(x)[ = Klnf“u(ﬂ;.r

xefdp

If f is defined in 2, x R! then we denote by f the function

J(x.1) = fa, o(x = ») f(y, 1) dy .

We shall often apply the regularization ~ to the components of velocity of the
fluid or to their approximations. Since they are defined only for the space variable
in ©Q, we shall always extend them by zero onto Q, — Q so that it will be possible
to use the properties from the points ii), iii).

Let T be a given positive number. Denote Q@ = Q x (0, T) and Qr ) = Q, x
x (0, T). We shall solve the equation (0.5) on Qy, and the system (0.6) on Qr. We
consider the boundary condition

(12) Ulo =0 (i=1,2,3)
and the initial conditions

(1.3) 2li=0 = o,

(1.4) (eui)li=o = 2otor (i =1,2,3).
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Let us assume that go and Uy = (ugy, Ug,, Ug3) are given functions such that g, e
€ H'(Q,), 0o Z 0 ae. in Qy, Uq € I2(Q)* and gguguo; € L'(Q).

The reason why we shall solve (0.5) on Qr, is that the functions #; appearing
in (0.5) are equal to zero on 8@, x <0, T) (which we shall use) while it is not possible
to say the same about their values on 0Q x <0, T).

By the weak solution of (0.5), (0.6), (1.2), (1.3), (1.4) we shall mean the couple
of functions U, g satisfying

(1.5) {U = (uy, uy,u3) e (0, T; °H1(Q?3),
0e L”(0, T; H'(2,)), ¢ 2 0 ae. in Qp,;
(1.6) 16 Jolowipi, + oilju; ; + ple) @i —
— Suu; 005 — g ;) dx dt = — g 0otto(@ii=o) dx
forall ¢ = (¢, @2, ¢3) € C*(Q;)* such that ¢ = 0 on 92 x <0, T and ¢|,_; = 0;
(1.7) §o §an {0 + oy ;} dxdt = — g, o(¥]i=0) dx

for all Y € C*(Qr ) such that y|,_; = 0.
Remark 1.1. In the next sections, we shall often use the function 2: <0, + oo) —
— R! which is defined in the following way:

(1.8) P(o) = af p—‘g—)ds for ¢ >0,
1

2(0) = lim Z(c) = 0.

=0+

It may be verified that the function £ has the following properties:

I) P(c) >0 for oe(l, +0);
II) there exists Cs > 0 such that
(1.9) P(o) 2 —Cs for‘ €0, +0©);
III) there exist C, > 0 and C, > 0 such that
(1.10) Ce0” < P(0) £ C,0* for oe{gy +0);
IV) there exist positive constants Cg— C;; such that if ¢ € L(€;), o(x) = 0 for a.a.
x € 2, then
(1.11) fo, 0 dx £ Cy g, Z(0) dx + Cy £ Cyg fo, @ dx + Cyy,
(1.12) fa, Ple) dx = Cq [q, Z(0) dx + Co;
V) limo 2?'(6) =0;
a0+
VI) o 2 (c) — P(c) = p(6) for oe(0, +0);
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VII) given > 0, there exists C, > 0 such that if { € L{(@,), {(x) Z n fora.a. x € Q,;

then
(1.13) Jou [P dx 5 ol
VIII) P(0,) (0, — 0,) = P(0,) — P(6,) for 06,,0,€(0, +0);
IX) 2"(6) = p'(0)Je 2 0 for oe(0, +»).

Let us point out that especially the property VI) is important. In fact, 2 was
defined in order to satisfy VI). We could choose any positive number instead of 1 as
the lower bound in the integral in (1.8) without any essential changes in the whole
paper. Sometimes we could even choose it equal to zero. However, we could then
have troubles with the integrability of p(9)[9* over (0, ¢) for example if p(9) =
= const. 9 for small 3.

Remark 1.2. We shall denote by ||, ||*]ls, ||*]o,s and ||| s the norms in
IX(Q)*, °HY(Q)?, I2(Q,) and H'(Q,), respectively.

2. TIME DISCRETIZATION

In order to prove the existence of U, ¢ satisfying (1.5), (1.6) and (1.7), we shall
use the method of time discretization. Let m be a natural number. Put t = T/m,
ty =kt (k= —1,0,1,...,m). Denote 0"V = g,, u{® = u,,; (i = 1,2,3) and let
U® = u®, ud, u), o® be the approximations of U, ¢ on the k-th time layer.
We approximate (0.5), (0.6) in the following way:

(2.1), o™ — g1 4 o(g®g) | = 0
(k=0,1,2,....m),
(22)k Q(k—l)u(ik) _ Q(k—Z)u(ik—l) + T(Q(k‘l)i‘"}k—l)u(ik)),j —
= —tH(e™),i + drpuf; + tpull);
(k=1,2,....m).

The corresponding weak formulation (i.e. the approximation of (1.5), (1.6), (1.7))
reads as follows: We look for ¢ € H(,), o® 2 0 ae. in @, (k =0,1,2,..., m)
and UW e °H'(Q)* (k = 1,2, ..., m) such that (2.1), holds a.e. in Q, (for k =
=0,1,2,...,m)and

e fo o0, — g0t —
= VT U, — o je®) @y +
+ Jruuld; ; + tpuuld, [} dx = 0

holds for all & = (¢, ®,, #3) € °C*(2)* and k = 1,2,..., m.
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We shall often use
(2.3a), fo {o* VulPd, — o2y~ Dep, —
— 3[o* D — %I U, 4 ook DA VPP, —
- %Ig(kﬂ)a;k—l)ug_k)q,i,j _ rﬁ(g(")) D, +
+ Yrwle,  + e, Y dx =0
instead of (2.3),. (2.3a), results from (2.3), by adding the expression
fo (10D P, — 108U, +
1050, 4 g e ) dx

to (2.3),. (2.1),—, implies that this expression is equal to zero.
We shall further proceed in such a way that we shall successively solve (2.1),, -

(2.3); and (2.1),, (2.3a), and (2.1),, ...,(2.3a),, and (2.1),. In order to do that, we
shall solve some auxiliary problems first.

It will be useful to have t < 1. That is why we assume that T < m.

%
3. AUXILIARY PROBLEM I — AP. I
This problem is given by the equation ’
(3.1) 0 — 0%V + 1o@t;) ; = r o (in Q)
and by the boundary condition
(3.2) % =0.
v |s0,

v denotes the outer normal vector on 0Q,. First we assume that » > 0 and o* ™V
and U = (uy, u,, us) are known functions such that ¢* Ve C”(Q,), o* "V 20
in Q,, UeI}(Q,) u; =0ae. inQ, — Q(j =1,2,3). We also assume that

(33) K, U]

IIA
A=

K, is a positive constant which will be specified later in this section. Now we only
suppose that

(3.4) K, = max {3K,, K, Cg} .

It is a consequence of Theorem 3.2 in [1], p. 179 that (3.1), (3.2) has a unique
solution ¢ € C2*@(@,) if and only if the homogeneous boundary value problem
given by the equation

(3.5) ¢ + t(et;) ; = rdo (in Q,)
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and the boundary condition (3.2) has only the trivial solution in C2 +(a)(gjl). Suppose
that ¢ is a solution of (3.5), (3.2) in C2*(&,). If we multiply (3.5) by ¢ and integrate
over Q,, we can derive the inequality

(3.6) fo, (1 + 47di; ;) 0> dx £ 0.

(3.3) and (1.1) imply that
T max |ii; (x)]| <
xen

N

and so

(3.7) L+ dvd; (x) 2

Bl

for all x € @,. Hence it follows from (3.6) that ¢ = 0 in Q, and consequently, the
problem (3.1), (3.2) has a unique solution ¢ € C**(Q,).
Suppose that x, € Q, is such a point that

0(xo) = min o(x) .
XENp
It is possible to show that

o(xo) — "7 V(x0) + T o(xo) #;,;(x0) = rd 0(x0) Z 0,
o(xo) [1 + 7 i1 j(xq)] Z 0% V(x) 2 0.

Due to (3.7) we have ¢(x,) = 0, which means that g(x) = 0 for all x € Q.
If we multiply (3.1) by ¢, integrate over @, and use the Green formula, we get

1, T, 2 1 (k—1)2 L k-1)2
-+ - ;le* +-(e—0 + rg jo ;% dx = ~o*™ D2 dx .
Jarim]essememr oo |

Since

1 . 1 3 1

5t 2 il; {x) z 5 ETKl”UHo = 57 K, [[Uo »
we have
(38) b = 1Ko Ullo] Ja, 0® dx + Jo, (e — o~ V)* dx +

+r jlfl;. Q,;0. ; dx £ jﬂx, %,Q(k—l)z dx .

Similarly, multiplying (3.1) by —4¢ and integrating over @, we can derive that
there exist K5 > 0 and K, > 0 (depending on K,) such that

fon300.:dx + fo,4(0; — 5 ) (0 — V) dx +
+ r fq, (40)* dx < Kst [, 00, dx HUHO +

+ [0, 2070 T dx + Kyt Jq, 0* dx U, .
Assume now that
(3.9) K, = max {3K, + K4, K3, K,Cg} .

395



If we add the last inequality to (3.8) and use (3.9), we Obtain
(3.10) [+ = e Ka|Uo] fleli s + e — ¢“7 R +
+ 7 fo, (d0)* dx = 3" V[T,

Suppose that ¢ > 0. Let us multiply (3.1) by 2'(0 + c¢) and integrate over Q,-
We have

o, 2 (e + ¢) (0 — o* ) dx + 7 fo, Z(¢ + ¢)(el}) ;dx =
=71 (g, 2?0 + ¢) 4o dx,
fa. 20 + ¢) (0 — 0" V)dx + 1 [q, 2'(¢ + ¢) il ; dx +
+ 1t fo, P(0+ c)ou;dx = —r o, 2"(@ + ¢)e0,;dx £ 0,
fa, (@ + o) [(e + ¢) = (7" + ¢)]dx +
+ 7 [0, 2(0 + ¢)oi; ;dx — T [o, P(¢ + ¢)il; ;dx £ 0.
According to VI) and VIII) (see Sec. 1), we have
o, 2(0 + ¢)dx — [, P(e"“ ™" + ¢)dx +
+ 1 fo, Ple + ¢) il ;dx — 1 [o, P (e + ¢)@i; jdx 0. *
If ¢ » 0+, we get
(3.11) fan 2(e) dx + [, T p(0) #;,; dx £ [q, 2(e% V) dx .
Using (1.1), (1.12 abd (3.3), we can also derive

(3.12) %j‘f P(0) dx gj P(e"* V) dx + KiGy
2 o 4K

2

Remark 3.1. The dependence of the solution ¢ of A.P. I on U may be expressed
by the relation ¢ = A(U). It is possible to show that 4 is a continuous operator from
the set {U e I2(Q)*; U satisfies (3.3)} into H'(£,).

Remark 3.2. If ¢* Ve H(Q,), ¢*™" =2 0 and r = 0, we can use a sequence
{o%~ P} of functions from C*(@,) such that ¢¢*"" 2 0 in Q,, o™ — o*~ in
H'(Q,)ass > + o0, and a sequence {r,} of real numbers such that 7, \, Oas s — + oo,
in order to get a sequence {g,} of solutions of (3.1) and (3.2), corresponding to {o{*~ "}
and {rg}. g, satisfies (3.10) (with r, instead of r), hence there exists a subsequence (we
shall denote it by {o,} again in order not to complicate the notation) and ¢ € H'(,)
such that o, — ¢ as s — + 0. It can be easily shown that g satisfies (3.1) (with r = 0),
0 = 0in Q, and moreover, o satisfies (3.8) and (3.10) (with r = 0).

Now we are going to show that g satisfies (3.12). In order to do that, it is suf-
ficient to prove that
(3.13) lim (g, 2(0,) dx = [q, Z(0) dx .

s+ 0
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Let ¢ > 0 be given. There exists 6 > 0 such that if g € L"(Q,,), 0<g=<dae. inQ,
then
fon|2(9(x))] dx <ce.
There also exists # > 0 such that if 6, 20,06, =0,06, =26 or o, =6, E€R! is
such a number that
P(a;) — P(o,) = 2'(&) (02 = 01),

then ¢ = 5. Let us now divide @, into two parts: Q} , (where 0s < 6 and ¢ < 9)
and Q; , (where g, = J or ¢ = §). We can write

|2, P(e;) dx = Jo, 2(2) dx| = [a, .« [2(es) — 2(e) dx +

+ fan 0 [2(05) — 2(0)| dx < 26 + [q, .5 |2'(()] o5 — 0| dx <

< 28  (Jar |20 )% (g, o, — o] dx)1.
0s — ¢ in L(Q,). {, is a function with values between the values of ¢, and ¢ and such
that {; = n a.e. in @ ,. Hence, using (1.13), we get

lim sup |fo, 2(05) dx — [q, ?(0) dx| < 2¢.

s= + oo

Since ¢ was chosen arbitrarily, we get (3.13).
It is also possible to show that

fon 7 plog) @; ;dx = [o, T p(e) #; ;dx as s— +o0
in an analogous way. It is only necessary to use (0.4) instead of (1.13). Thus,
o satisfies (3.11), too.

4. AUXILIARY PROBLEM II — AP. II

We look for U = (uy, u,, u3) € H'(Q)* such that

(@) fo (6 Vb, — oDV, -
—4[e* " = * P ud; + dre* P A Vu, @, —
- %TQ(k_l)af'k—”“i‘pi,j -1 13(9) P+
+ dtpu; ;@ + tpu; ;@ ;3 dx =0

for all @ = (&,, ®,, P;) e °H'(Q)>. We assume that ¢, ¢* ™", o*~2, UKD =
= (D, uf "D, uf ™) are known functions such that g1, o*"2 e C*(Q,),
0%V 20in Q,, 0* 2 0inQ, 0e (Q,), 0 = 0 ae. in Q, U¥ Ve }(Q).

Denote

FI(U) ((p) = IQ {Q(k—l)uiqji - %[Q(k—l) - Q(k_z)] u;P; +
+ %TQ(k—l)aﬁ'k_l)ui,j‘pi - %TQ(k_l)ﬁ(jkﬁl)ui¢i,j +

+ Stpu; @, ; + tau; @, ) dx .
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It can be proved that
(4.2) Fy(U)(®) < const. |U||, ||®], -

Due to the Riesz theorem, given U € °H'(Q)?, there exists G(U) € °H'(Q)* such that
F,(U)(®) = (G(U), @)) (where ((+, -)) denotes the scalar product in °H'(Q)?).
(4.2) implies that G is a bounded linear operator from °H'(Q)? into itself. Moreover,
the inequality

((G(U)s U)) = Ja (30" Vugu; + 3% Puu; +

+ Yt u ; + tau jug ) dx 2 const. [U|
implies that the range of G is the whole space °H'(Q)>.
Denote

FZ(‘D) = IQ {Q(k”Z)u(ikﬂl)(pi + 7 ﬁ(Q) q)i,i} dx .

F, is a bounded linear functional on °H'(2)?, hence there exists Ve °H*(Q)® such
that F,(®) = ((V, ®)). Denote by U such an element of °H'(Q)* that G(U) = V.
Then ((G(U), @)) = ((V, ®)) for all ® € °H'(Q)*. It means that U is a solution of

(4.1).

If we put @ = U in (4.1), we obtain
(4.3) Jo {3 Puu; +

3%, — V] [, — ] -

(k—Z)u(_k—l)u('k~ 1)
i i

+

~Jeo — v plo)ui +
+ dtp(u; ;)? + tpug ju; ;) dx = 0.
Using the estimates (0.3) and (1.11), we can write
fotple)u;;dx < [odtu(u; ;) dx +
+ tconst. [o pl)? dx = [o dru(u; ;)* dx +
+ 1K s([a, Z(0) dx)* + K5
for some K5 > 0. Substituting this estimate into (4.3), we get
(4.4) fo (3% Vuu; +
+ 30% 2 [u; — wl V) [u; — u¥ V] + tpu, ju, ;) dx <
< Jo 30 Pult " Dul "D dx + 1K (fo, Z(0) dx)* + K5 .

Remark 4.1. It follows from (4.4) that there exists a constant K4 > 0 such that

@s5) |l = %{1 + o 30% 2t Dt Vdx + 3, 2(0) dx + v
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Since ||U], = |U]lo. U satisfies (3.3) if
(46) V) KaKo{l + Ja 1o 200 DuED dx 4 3 [, #(0) dx + V() < 4

Remark 4.2. Let us denote by U = B(Q) the dependence of the solution U of
A.P.1I on the function ¢. B is an operator from L*(£,) into °H'(Q)>. It follows from
(4.5) and (1.11) that B is bounded. It is possible to show that B is continuous, too.

5. AUXILIARY PROBLEM III — A.P. IIT

We look for U = (uy, uy, u3) € °H'(Q)* and ¢ € H'(Q,) such that (4.1) holds for
all ® = (&, ®,, #;) e "H'(Q)%, ¢ = 0 ace. in Q, and

(5.1) 0— 0%V + 1(od;) ; =rde (inQ,),
(5.2) 1 _y.
0V |oq,,

First we assume that r > 0 and U*™D = (u{ "D uf™ 0w~ 1), ok~ p*=2) are
known functions such that U%*"Ve*(Q), o* 2 eC™(@,), o* Ve C”(Q,),
0% > 01in @,, ¢*“ Y = 0in Q,. We also assume that

(5.3) \/(T)KzKe{l + I!z %Q(k—Z)u(ik—l)u(ik—l)dx n

K, C
+ fo, 2(* V) dx + 4K9+V/T}§%.

Let U, be such an element of °H'(Q)> that

1
(5:4) Ui = P K.

2
Denote by E the compact embedding of °H'(Q)* into I*(Q)*. (5.4) implies that
lEU.[o =
Put ¢, = A(EUl) and U, = B(o;) = B(A(EU,)). It follows from (4.5), (3.12)
and (5.3) that

U, < Ks {1 + Jo 4 PulDu "V dx + 3 o, 2(0)) dx + 1} <
Eé {1 + IQ%Q(k—Z)uEk—I)uEk—l)dX + [o 9’(@("“)) dx + 12( 5

Y

+\/r}§

I —
= 41K,

7.
Hence B * A * E is the compact operator from the ball By (0) in *H'(2)* into itself.
According to the Brouwer theorem, this operator has a fixed point U in this ball.

The functions U and ¢ = A(EU) are the solution of A.P. III.
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It follows from (3.10) and (3.11) that

(5.5) [3 = Ko |Ullo] flell . + 3o — o*~ Vi +
+ rfdefg < e VI
(5.6) §on 2(0) dx + 7 g, p(0) #; ; dx < [o, 2(e* V) dX
We can obtain one more estimate putting & = U in (4.1) and adding (5.6):
(5.7) fo (30" Vuu; =

+ 30%P[u; — u [ [u; — u® D] +
+ You(u; ;) + tpugju ) dx + fo, P(e)dx £

< fo 3" Pu Dy dx + [q, P(e* V) dx -

Remark 5.1. Using a similar approach as in Remark 3.2, we can show that A.P.
IIT has a solution U, ¢ also in the case when ¢%~2 and o~V belong to H'(Q,)
only instead of C*(Q,), o Pu{*"Vu Ve }(Q) and r = 0. U, ¢ satisfy (5.5)
(With r =0), (5.7) and

(5.8) [ull, = =K.

6. SOLUTION OF (2.1)g AND (2.3a);, (2.1), FOR k= 1,2,...,m

Suppose that 7 is so small that
(6'1) TKzHUo”o £1,
(6.2) J(z) K:Ks {1 + Jo 3oottoitto; dx + $fa, P(00) dx + zll—%g—g + \/T} <4i.
2

The results of Section 3 imply that (2.1), has a solution ¢(® e H1(0,), satisfying

63 [ = KaUolo] o ]us + He® — eollia £ 4ol
(64 o, 2(0”) dx 5 [, Ple0) dx + 712,

It follows from (6.2) and (6.4) that

(6.5) /(2) K1Ks {1 + fa 30 Vu®u® dx + o, 2(0) dx + K1Co | \/T} <1
2

By virtue of the results of Section 5, the problem (2.33)1, (2.1); has a solution
U® = (uf, us®, ul?), o, satisfying
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(6.6) [4 = Ko [UP o] e [1 +
Ho® = o1 h = 2|30
(67) Jo {2 OuOu +

+ 30T V[ = u®] [ — u®] +

+ Yop(u§')? + tpulut} dx +

+

Li%ig)
+ fo, 2(e™M) dx £ [o 30 VulPul® dx + [g, 2(0¥) dx
(6.8) KU = 4.

It follows from (6.5) and (6.7) that

K,C
(6.9) (1) KyK¢ {1 + fo 20 ulPult dx + [go, 2(0™) dx + 4;{ ° + \/T} <41
2
and hence the problem (2.3a),, (2.1), has a solution U® = (u”, u§”, u$?), o'?.
We can continue in this way so that we finally get sequences {U'}, {¢“'} of solutions
of (2.3a),, (2.1),. and the estimates

(6.10), 3 = K| UR o] e®]F 0 +
%HQ(") — o~ I)H%.h > 1ok~ 1>”%,h’
(6.11), fo (3o® Dufou® 4+

+ Lot Zb[u(.k) _ (.k—l)] [ugk) _ u(ik—l)] I
1

+ 3rp(u$9)? + ruul} dx +

'J L,

+ fo, 2(e®) dx £ o 30" Pul " Duf "D dx +
+ j“Qh y(g(k‘l)) d-x 0

(6.1.2)k TKleU(k)Hl <3

for k=1,2,....,m

Starting from these inequalities and using the standard technique, we can derive
also the following inequalities:

(6.13) [0 (30%~ Du®u® +
%‘_Lk: (s— 2)[u(is) _ u(is—l)] [u(is) _ u(is‘l)] +
+ %ruZ( N2+ Ty Z ulu®} dx +
s=1

+ _[Q;. g’(Q(k)) dx = 59 Yoougittg; dx + [q, 9’(@0) dx
(k=1,2,....,m),
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(614 o1+ 3, lo® ~ Vi =
< Ks|Uollos faottoitio; dx, leollsn) (k=0,1,2,...,m).

Ky is a positive function of three variables, nondecreasing in each of these variables.

7. AN APPROXIMATE SOLUTION OF (1.6), (1.7) AND ITS ESTIMATES
Put
(7.1) mQ(t) =g(k) for te(tk! tk+1> (k = _‘],0,1,...,"’1 - ])
mU(t) = U for te(ti.ty, > (k=0,1,2,...,m—1).
It follows from (6.14) that there exists Ky > 0 such that
(7.2) 1"l zeco, 71100y S Ko -
If ' €(0, T) then there exists ke {1,2,...,m} such that '€ (t,_y, ). Using
(6.13) and (7.1), we can derive the inequality
(7.3) fod ™o ™u;™uili=r, dx + [o, P("0)|i=r,dx +
+ fo Jo {3u("uj )? + pug;muy 5} dx dt <
< fa dootoitio; dx + [, Z(00) dx +
+ Ja, [2(e*77) — 2(™)] dx .
Due to (1.11), the inequality % < 6 and (6.14), the term
fon [2(e%77) — 2(e®)] dx

may be estimated from above by some constant which does not depend on k or m.
This fact, (7.3), (1.9) and (1.10) imply that there exists K,, > 0 such that

(7‘4) HMU”LZ(O,T;"H1(9)3))‘Z§ Ko,
(7.5) "e|"U | oo, 1i210y) = Kio s
(7.6) HanL"“(O,T;L"(Q;.)) = Ky

By means of the Hoélder inequality, it can be also shown that there exists K;; > 0
such that

(7.7) |0 U Lo, 151270y = Kin s
(7.8) I"e "Ull 20, riw sty < Koy -

Ky, K, and K, are constants which do not depend on m.
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Before we derive further estimates, we introduce some functional spaces. If B,
and B, are Banach spaces then we put

H(R'; By, By) = {v; ve I(R'; By), |9]" 0 I(R"; By)}

where

0(9) = [fo e ™ (1) dt .
#(R"; By, B,) is the Banach space with the norm

“UHm(m;Bo,Bn = [HDHLZ«Z(RX;BO) + ” !91y ’A)HiRR‘;Bx)]”Z
We denote by Jﬂ(O, T; By, Bl) the Banach space of restrictions of all functions from
#'(R'; By, B,) onto the interval (0, T) with the norm
[v]l 570, 7:80,80) = Inf 1w (l v cr1:30,8:)

(where the infimum is considered over the set of all functions we #*(R'; By, B;)
such that w = v a.e. in (0, T)). The spaces #7(R'; By, B) and #7(0, T; By, B,) are
used for example also in [7].

Lemma 7.1. There exists K;, > 0 (not depending on m) such that if 0 <y < 1/2
then
(7.9) [™e "U||sevo, 5w s21@3,m- 1293 = Kz -

Proof. Due to (7.8), it is sufficient to show that there exists K;;3 > 0 such that

(7.10) I ’9|Y mW”Lz(R‘ n-wo) = Kis
where ™w coincides with "o "U a.e. i (0, T)and "w = O a.e. in R' — (0, T). We can
write

ma(s) = [t e —2mitd my(f) dt = [§ e 2" mo(d) "U(t) dt =
_ thk 1 -—21{1!‘) (k I)U(I)dt

m — H —_
_ Z |:—_ /17 (e,zmks _e 2,;,:,(_,.9)] Q(k Hyw

k=1 2mid

< 1. ™¥(9) can be easily expressed also in the

We shall use this form of '"W(9) i
following way:

(7.11) "(9) =

-1 .
N 1 mz e_zﬂltks[g(’()u(’é+l) _ Q(ILWI)U(k)] .
2mid k=1

[ —71!1’0(" (Obu(l) v2nitm3] Q(m-l)U(m) +
211:19
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If |3] < 1 then we have

“ ]9'7 W(S “H @y = “ ISI Z o 9[ =2nitiy __ e-zmk_ls] Q(k—1)U(k)HH~x(n): <
< const. [9[’ 'c“ Z IQ(""”U(")] ||Lu,7(m3 <
k=1
< const. ’9|y i T[(jg Q(k-1)6 dx)1/7 (jg Q(k—nlU(k)]z dx)6/7]7/12 <
k=1
< const. [9]" £ Ky .

If [9] > 1 then by means of (9.11) we get
I 18] ™#(9)][er-1(ys < const. |9]7~! le©UN | 10y +

+ const. [ [T VU i) +
m—1

+ const. |91 Y, [P = gE YWy 00 <
< const. |3/~ + const. ISIV”IAZI?ZHQ(’“”U(") -

— o UKoy £ COI]S‘-_I‘QP_I +

+ const. 97 3 (o0 67 0UN) s +

+ 1V 3e®) -1 + S| Vuf -1 +
+ | AUP g0y} = K871

K,, is a positive constant.

These estimates yield
118 ™) 7-1c01s = 97(9)

where g(9) = K14 for |8] = 1 and g(9) = K49 * for |8] > 1. Since y e (0, 1)2),
the function ¢? is integrable over R'. Thus, (7.10) and consequently also (7. 9) are

proved.
By a similar method it is possible to show that there exists K;5 > 0 (not depending
on m) such that

(7.12) 1"l avco,m5m1m L2 < Kis -

Remark 7.1. It is proved e.g. in [7] that if By, B and B, are Hilbert spaces such
that B, ¢ B < B;, the embedding of B, into B is compact, the embedding of B
into B, is continuous and y > 0, then the injection of #77(0, T; B, B,) into I*(0, T; B)
is compact. The proof can be modified in such a way that this result remains valid
also if B, is merely a reflexive Banach space.
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8. THE LIMIT PROCESS FOR m—- + o0

Itfollows from (7.4)that there exist U € I*(0, T; H'(2)*) and a subsequence of {"U}
(which will be denoted by {"U} again such that "U — U in I*(0, T; *H'(Q)?).

Similarly, it follows from (7.2) that there exist ¢ € L*(0, T; H'(2,)) and a sub-
sequence of {"g} (which will be denoted by {™g} again) such that {"¢} converges
weakly-+ to ¢ in L*(0, T; H'(Q,)). Denote g = max {x;2}. Since H'(2,) and
I*(Q,) are Hilbert spaces, X, = #7(0, T; H'(Q,), [*(Q,)) is a Hilbert space, too.
So, due to (7.12), there exists a subsequence of {"o} (denoted by {"¢} again) weakly
convergent to ¢ in X;. The embedding of H'(Q,) into I{€,) is compact, hence also
the embedding of X, into I*(0, T; I%Q,)) is compact. Thus, "¢ — ¢ inI*(0, T;
().

The sequence {"g "U} is uniformly bounded in X, = #7(0, T; W,),(2)*, H™(Q)?).
X, is a reflxive Banach space, hence there exists a subsequence of {"¢ "U}(which
will be denoted by {"¢ "U} again) and Ve X, such that "¢ "U — Vin X,. The in-
jection of X, into I*(0, T; I*(2)%) = I*(Qy)* is compact, hence {"¢ "U} converges
strongly to Vin I*(Q,)>.

It may be easily shown that "¢ "U — ¢U in I*(Qy)*. It means that V = U and
s0 "o ™U — oU in I*(Qr)’.

The functions ™o, ™U satisfy (1.6) and (1.7) approximately with some errors
(which will be denoted E, and E,):

(8.1) §6 S {0 Mups + "0 A uip; , + B("0) @i —
= I "ug 05 — 1My e, ) dx de =
= — [ 0oto@i|i=0) dx + E{("0,™U, @)
for all ¢ € C*(Q7)* such that ¢ = 0 on 92 x <0, T), ¢|,-r = 0, and

(8.2) §6 fon {"0¥ + "o i ;) dx dt =
= —fa, 00(¥|i=0) dx + E;("0,"U, ¥)
for all Y € C*(Qy,) such that y,-7 = 0.

If we use all types of convergences of {"g} to ¢, {"U} to U and {"¢ "U} to QU
mentioned in this section we can prove that if ¢,y are given functions with all
the required properties then the left hand sides of (8.1) and (8.2) converge to the
same expressions containing ¢, U instead of g, U as m — 4+ co. In order to prove
that o, U satisfy (1.6) and (1.7), it is sufficient to show that if ¢ and y are given
functions with the properties mentioned above then El("‘g, "U, (p) — 0 and
E,("0,"U,y) > 0 as m — +oco. Indeed, the functions E, and E, satisfy these
conditions, although the complete proof is long and labourious from the technical
point of view. However, its main idea is quite simple. For example, (8.1) can be
written in the form
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m

(83) Z t: 1§ {Q(k 1)u(k)(/)l +Q(k 1)N(k)u(k)(/)zj

+ pe* V) o — 3o, . — e, ;) dx dr +
+ fa0ottod@i]i=0) dx = E{("0,™U, ¢) .

The left hand side of (8. 3) may be decomposed into two parts — the first part has
the form

,Zl fo {e* "ul o= ) — e®ul* Ve 0) +
-

+ TQ(k-“~(-k7”u(,~k)((f)i,j|:=r,:) + Tﬁ(Q(k)) ((pi,ilt:rk) -
— 3N i il i=n) — 1l (i =)} dx dr .

It is equal to zero due to (2.3), (k = 1,2, ..., m — 1). The second part is of the type
O(t'?) as © —» 0+, i.e. of the type O(m~'/?) as m — +oo. It is necessary to use
(6.13) and (6.14) in order to verify this fact. We believe that the reader interested in
details can do it himself.

It is also obvious that U, ¢ satisfy (1.5). The condition ¢ = 0 a.e. in Qy , follows
immediately from the inequalities ¢ = 0 a.e. in Q, (k =0, 1, ..., m).

Thus, the following theorem holds:

Theorem 8.1. Let gg€ H'(Q,), 00 2 0 a.e. in @, Uy = (g, gy, tgs) € L(Q)°,
gouOinieLl(Q). Then there exists a solution U, g of the problem given by (1.5),
(1.6) and (1.7).

9. THE ENERGY INEQUALITY

Let us now turn our attention to the inequality (7.3). If we put "o(x, t) = ¢"™(x)
for x e @, and te (T, T + 1), we write it in the form

(9'1) fn 3™ "u; mui!t=t , dx + j..Q,, y(mQ)lt:t%: dx +
+ o fo (3w ) + pug u ) dx de <
< foYoouqiig; dx + Ja. ?(0) dx .

Lemma 9.1. Suppose that M < (0, T), u,(M) > 0 (where u, denotes the one-
dimensional Lebesgue measure). Then

92) § o fa (3(u; ) + g ju g} dx dede’ <
< liT sup (o f6 Jo {(3u(™u; ;)% + p™u; ;mu; ;} dx dede .
Proof. Assu':ne :ohat (9.2) does not hold. Then there exist 4 > 0 and mye N
such that
(93) §ae o fo (3n(u; ;) + puy ju 5} dx dede’ >
> [ (§6 Jo (3u(™u; )2 + p™uy;™u; ;) dx dt + 4)de
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for all m = m,. It means that if me N, m = mg then there exists M,, « M, M,
measurable, so that

(94) §o fo Uhuluy ;) + pugjug ;) dx de >

> {6 fo {3u(™u; j)* + p™u; ;g dx dt + 34
for all ' € M,, while the converse inequality holds for a.a. ' € M — M,,. There are
two possibilities:

(a) There exists & > 0 such that y,(M,,) > & for all m = m,
or
(b) lim inf y,(M,,) = 0.

m=+ oo
Wecan easnly geta contradiction with (9.3)in the case that(b)is valid. It is a consequence
of (a) that there exists an increasing sequence of integers {m};2 such that m, = m,
for all ke N and to
nNMm,, +0.
k=1

Let ' be an element of this intersection. Then (9.4) holds for this ¢" and all m = m,
(k =1,2,...). But this is not possible due to the weak convergence of {"U} to U
in I*(0, T; °H'(2)*). Hence (9.2) holds.

Theorem 9.1. Let all assumption of Theorem 8.1 be fulfilled. Then there exists
a solution U, ¢ of the problem given by (1.5), (1.6) and (1.7) satisfying the ine-
quality
(9:5) foSouitti] =y dx + fq, 2(0)]i= dx +

+ [o Jo {3nu; ;)° + pug ju; ;) dxde <
= jg 30oUoillg; dx + fﬂ;. y(@o) dx
for a.a. t' €0, T).

Proof. Let U, ¢ be the solution of (1.5), (1.6), (1.7) constructed in this and the
preceding sections. Assume that (9.5) is not true. Then there exists M < <0, T
such that u;(M) > 0, and the converse inequality to (9.5) holds for all t' € M. Thus,
there exists § > 0 and M; = M such that p,(M;) > % p;(M) and

j.Q ’lz‘Q”i“ilt=t’ dx + _‘.Q;. g’(Q)lr:t' dx +
+ 6 Jo {3 uu;;)? + pu;ju, ;) dx de >
> ,[Q 30oUoitho; AX + .’-Qh 9)(90) dx + 9
for all t' € M,. Integrating over M, we get
(96) de IQ %Quiui|t=t’ dx dt’ + _[M‘s 59h W(Q)|t=t’ dx dt’ +
+ Jars §6 S {3 ml(u; ;) + pugju, ) dx dede’ >
> #1(Ma) so Soougittg; dx + ﬂl(Ma) IQ,, W(Qo) dx + lh(Ma) J.
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As a consequence of the strong convergence of {"¢"U} to oU in I*(Q7)* and the
weak convergence of {"U} to U in I*(0, T; °H'(Q)?), we have

9.7) jMé jn %’Quiui\t=t’ dxdt =
= lim fy, o4 ™0 "u; "uy|,-, dx dt’.
m—+

Using a similar approach as in the proof of (3.13), we can also obtain

(9.8) s San 2(0) =0 dx dt’ = 1im [p, [a, 2("0)] = v s 7m dx dt’ .
m= + oo

By virtue of Lemma 9.1, we get

99) §1a §0 Jo {3 m(uy ) + puy juy ) dxdede <
< lim sup ur, 6 o {3 #("u;;)® + p™u; ™, ;) dx dede. .
m= + oo

It follows from (9.6), (9.7), (9.8) and (9.9) that there exists infinitely many me N
such that

(9.10) §ars fo 3 ™0 Muy "yl = dx 2 + [y, fo, P("0)| 1=+ 1ym dx dt’ +
+ fu, §6 fo {3 n(mu; ;)* + p™u;; ™u; ;) dx dedt’ >
> #1(Ma) fQ Yoouoithg; dx + ll1(M5) _“ﬂ;, g’(Qo) dx + 3} .“1(Ma) J.

However, if we integrate (9.1) over M,, we obtain an inequality showing that (9.10)
cannot be true. It is a contradiction with the assumption that (9.5) is false.

Remark 9.1. The inequality (9.5) may be called “‘the energy inequality” in ac-
cordance with an analogous inequality which is valid in the case of the viscous
incompressible liquid.

Remark 9.2. The presence of a body force in the system (0.6) does not cause any
difficulties if it is smooth enough. Hence also in this case results analogous to Theo-
rems 8.1 and 9.1 could be derived.

Remark 9.3. We will discuss what can happen if the parameter h in the regulariza-
tion ~ (see Section 1) tends to zero in the paper [4], which is in preparation.
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Souhrn

GLOBALNI SLABA RESITELNOST REGULARIZOVANEHO SYSTEMU
NAVIEROVYCH-STOKESOVYCH ROVNIC PRO STLACITELNOU TEKUTINU

JIRi NEUSTUPA

V praci je dokazana globalni existence slabych fefeni smiSené pocate¢ni-okrajové ulohy pro
jistou modifikaci systému pohybovych rovnic vazké stladitelné tekutiny. Modifikace spociva
v aplikaci regularizaéniho operdtoru na nékteré &leny vyskytujici se v systému rovnic a neni
v rozporu se zakony mechaniky tekutin. Pfedpokladame, Ze tlak je znamou funkci hustoty.
Je pouZzita metoda Casové diskretizace a v zavéru je odvozena tzv. energetickd nerovnost. Tato
nerovnost je nezavisla na pouzité regularizaci.

Pesrome

[JIOBAJIBHASL CJIABASL PA3PEIIMMOCTD PEI'VJISIPU3MPOBAHHON CHUCTEMBI
VPABHEHMI HABBE-CTOKCA [JISI COKUMAEMOW XUJIKOCTU

Jiki NEUSTUPA

B pa6ore 10Ka3aHO ri106anbHOE CYIIECTBOBAHME CIIAGBIX PEIICHHH CMEIIAHHON HAYaJIbHO-KPAeBOM
3allayd JJIS ONpeesIeHHON MoauduKauvM CUCTEMbl YPaBHEHHH IBMXKCHMS BA3KOM CKHMaeMOi
KUAKOCTH. Moaudukanus COCTOMT B NPUMEHEHUHM OIEpaToOpa PeryJsispH3alui K HEKOTOPBIM
YIEHAM CHCTEMbI YPaBHEHWI ¥ HE MIPOTHUBOPEYUT 3aKOHAM MeXaHuKy xuakocreit. ITpeanomaraeTcs,
YTO [JaBJICHHE SIBJISACTCS M3BECTHOM OyHKUMeH miIoTHOCTH. ITpHMeHSIeTCS MEeTOX AMCKPeTU3aLuK
[0 BPEMEHU M B 3aKJIIOYCHHMHU BBIBEJIEHO TaK HA3bIBAEMOE IHEPreTHYECKOC HEPABEHCTBO, KOTOPOE
0Ka3bIBACTCS HE3aBHCHMBIM OT MCIIOJIb30BAHHON PETyJIpU3aLIMY.

Author’s address: Doc. RNDr. Jifi Neustupa, CSc., strojni fakulta CVUT - K 205, Suchbata-
rova 4, 166 07 Praha 6.
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