
Aplikace matematiky

Jiří Jan
Recursive algorithms for solving systems of nonlinear equations

Aplikace matematiky, Vol. 34 (1989), No. 1, 33–45

Persistent URL: http://dml.cz/dmlcz/104332

Terms of use:
© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104332
http://dml.cz

34(1989) APLIKACE M A T E M A T I K Y No. 1, 33—45

RECURSIVE ALGORITHMS FOR SOLVING SYSTEMS
OF NONLINEAR EQUATIONS

JIRI JAN

(Received July 10, 1987)

Summary: A way of generalizing onedimensional root-finding algorithms to the multidimen
sional case by means of recursion is shown and means to make the algorithm robust are discussed.
In the second part, the algorithm is modified so as to exploit sparsity of large systems of equations
for reducing the recursion depth and consequently decreasing the computational requirements
of the method.

Keywords: recursion, nonlinear equations, root-finding algorithms.
AMS Classification: 65H10.

INTRODUCTION

It is generally believed that most reliable methods to solve onedimensional equa
tions of the type f(x) = 0, i.e. bisection and regula falsi, cannot be generalized
to the multidimensional case (where / i s a vector function of a vector argument JC),
as the sign function on which the both methods rely is not defined for vectors.
Nevertheless, a different approach to the multidimensional generalization of one
dimensional algorithms has been pointed out, which consists in their recursive use
[1 — 3]. At the time of its first descriptions, no programming languages allowing
the recursive call of procedures were available so that the method had to be described
by less sophisticated programming means that made it difficult both to understand
and to program.

This contribution deals with the exploitation of the abilities of the PASCAL
language to express the true recursion and to define special nonnumerical types
of data, in such a way that the basic structure of the algorithms is simply described
and easily understood. It will also be shown how a failure of the root finding algorithm
can be prevented. The second part of the paper is devoted to exploiting the sparsity
of many practical systems of equations (e.g., systems modelling electrical circuits)
to speed up the process of solution substantially. The algorithms are presented
in the usual form of procedures in order to make them selfcontained and selfexplain-
ing as much as possible; practical implementations may, of course, differ in some
details in order to simplify the complete program structure.

33

No attention is paid here to the questions of automatic compilation of equations
on the basis of circuit description; this was the subject of part of the report [2].
Sufficient conditions (not necessary, but fulfilled in most electrical circuits) for the
algorithm to converge are discussed also in [2], and a straightforward physical
interpretation of the algorithm when used to analyze electrical circuits is included
in [5]. The work [4] applies the recursive approach to the problem of solving systems
of nonlinear differential equations.

1. RECURSIVE METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

1.1. Principle of the method
Let us have a system of nonlinear algebraic or transcendental equations

(1) f(x) = 0,

i.e.
fi(xux29...,xn) = 0
f2(xux2, ...,xn) = 0

fn(x1,x2,...,xa) = 0 .

A root x = (xu x2,..., xn) of the system is to be found in the region Q,

Q: xje^xj^xj}, j = l , 2 , . . . , n .

Without losing generality we will suppose that

VI e <1, n} , °Xj = x0j - r , lXj = x0j + r

where x0 = (x0l, x02,..., x0n) is an initial estimate of the root and r is a chosen
constant (labeled "radius") so that Q is a (hyper) cube with a side 2r.

The recursive method can be described as follows:
There are n iteration levels for n unknowns. On the k-th level the vector

(xl9 x29..., xfc-i) is constant during each complete iteration on this level as it is
given from the (k — l)-st level. The root xk of the equation

(2a) fk{xi,x2,...,xn) = 0

is found by onedimensional iteration in the course of which the vector
(xk+1, xk+2,..., xn) which is a function of xk is being determined repeatedly before
each calculation of a value of the function fk by means of the same algorithms
used on the levels (k 4- 1), (k + 2),..., n.

Comment . This means that the equation (2a) can be rewritten as

(2b) fk(xl9 x2,..., xk„l9 xk, xk+1(xk), xk+2(xk+1(xk)),..., x,I(xn_J(x/,„2(...)))) = 0

34

The dependence of x-components is given implicitly by means of equations similar
to (2b) on lower levels, e.g., xk+1 as a root of fk+i on the level (k + 1).

It is obvious that if the equation (2) has been solved by this method, the
(rj — k + l)-dimensional system

(3) fk(xu...,xn) = 0
f/c+1(x1? ...,x„) = 0

fn(xu...,Xn) = 0
has been solved as a whole.

If k = 1, the given system has been completely solved.

The corresponding algorithms can be seen in tab. I.
The procedure "rootn" looks for a root of an N-dimensional system, given by

component functions which are all described in the body of the parameter function
"vectorf", which has the basic form

function vectorfl ({variable:} x: vector; {level:} k: integer);
begin case k of

1: vectorfl := "expression giving value of f t(x)";
2: vectorfl := "expression giving value of f2(x)";

N: vectorfl := "expression giving value of fN(x)";

end;
end.

The data type "vector" is defined as
type vector = array [V *N] of real;

The procedure "rootn" makes use of the initial estimate X0 of the root and delivers
the resulting root as the variable parameter X. In accordance with the above described
method, the body of "rootn" consists of a single statement solving the first equation.

The core of the algorithm is the function "root" which is a quite ordinary one-
dimensional root-finding routine except for the first row of its body where the initial
limits of the root are calculated in terms of the level-corresponding component
of X0. The rest of the body is completely independent of the level. Its substantial
feature is that it calculates the value fk (on the k-th level) by means of the function
,,valuef" which is the only one that communicates with the vector x, and before
calculating the value fk it calls the solution on the next lower level (if it exists).
This most important statement is marked by an arrow.

The basic algorithm, as described, has two major disadvantages: It is unreliable
with certain systems of equations, as the solution fails if on any level the function
is not defined somewhere within the starting interval or has not different signs
at the ends of the interval; it will be the subject of Chapter 1.2 how to cure it generally.
The other difficulty is that the algorithm is of explosive complexity as the amount

35

of calculations needed to find a root depends exponentially on the depth of the
recursion n. The basic algorithm is thus suitable for systems with only a small number
of equations (which is mostly not the case with circuit analysis). Chapter 2 presents
a modification which utilizes the sparsity of practical systems of equations to decrease
the recursion depth substantially.

Tab. I.

procedure rootn ({of} function vectorf: real; {with}
N {dimensions}: integer; {in surroundings} radius: real;
{around initial estimate} x0: vector;
{result:} var x: vector);

function root ({level:} k: integer): real;
var xb, xr, xl: real; s, si, sr: boolean;
function valuef (xk: real): real;

begin x[k] := xk;
if k< > N then x[k + 1] := root (k + 1);
valuef := vectorf (x, k);

end; {valuef}
begin {the following can be any algorithm solving the equation

"valuef (x) = 0"; to be concrete, bisection is shown:}
xl := x0 [k] — radius; xr := x0 [k] + radius;

{initializing bisection:} si := valuef (xl) > 0; sr := valuef (xr) >
if si = sr then halt;

{bisection:} repeat xb := (xl + xr) * 0-5;
s := valuef (xb) > 0;
if si = s then xl : = xb

else xr : = xb
until abs (xr-xl) < = IE - 7 * abs (xl);

root := xb
end; {root}

begin
x [l] := root (l)

end;{rootn}

1.2. Causes of failure and the corresponding precautions

When deriving the basic algorithm in Chapter 1.1 we assumed that the function f
is defined everywhere in Q and also that there always exists a root in any equation
of the type (2). This is not always fulfilled in real systems as even the component

36

Tab. II.

{label 1, 2, 3; and var fail: boolean; dx: real; have to be decleared}
function valuef (xk: real): real;

label 4;
begin x[k] := xk; fail ':= false;

if k < > N then x [k + 1] := root (k + 1);
if fail then goto 4;
valuef := vectorf (x, k);

4: end; {valuef}

{more sophisticated "initializing bisection'' follows:)
dx := radius * 4.0; {search for a point where value f(x) is defined:}
repeat dx := dx * 0.5; x := xl + dx * 0.5;

repeat s := valuef (x) > 0; if not fail then goto 1;
x := x + dx

until x > xr
until dx < 0.05 * radius;
goto 3; {3: end of root, failure on the h\el k)

1: {1-st point found; search for a point with opposite sign of valuef:}
dx := dx * 0.5; xl := x — dx; xlr := x; xrl := x; xr := x + dx;
repeat x := (xl + xlr) * 0.5; si := valuef (x) > 0;

if fail then xl := x else
if si = s then xlr := x

else begin xr := xlr; xl := x; goto 2 end;
x := (xrl + xr) * 0.5; sr := valuef (x) > 0;
if fail then xr := x else

If sr = s then xrl := x
else begin xr := x; xl := xrl; si := s; goto 2 end

until (xlr — xl) < 0.05 * radius;
fail := true; goto 3; {3: end root, failure on the level k]

2: {bisection: (xr and xl have oppossite signs of function values)

functions fk are sometimes defined only in a part of Q (and the subregions for different
k differ, having only a small intersection in a close vicinity of the root). But even
more important, some of the equations of the type (2) often have no solution on the
level k which in turn means that on the higher level the function "valuef fc+1"
is not defined. If formulated as in Chap. 1.1, the algorithm is rather fragile because
the nonexistence of a function value or of a root on any level immediately causes
failure of the whole solution.

37

Th is problem can be solved in a simple way by using again the recursive approach,
which means that the attention must be paid just to the onedimensional root-finding
algorithm and the precautions are automatically distributed to all levels by the
recursion. On a particular level k, two contingencies must be taken into account:

a) the function "valueffc"(xfc) is not defined everywhere in the interval <x0/c — r,

*o/c + r};
b) the function "valueffc"(xfc) has no root in the interval for either of the follow

ing reasons:
i — the function is not defined in the interval at all,

ii — in the interval of definition of the function, there is no change of sign and
consequently no root.

As the onedimensional root-finding algorithm needs two initial estimates of xk

with opposite signs of "valuef", its start must be preceded by an algorithm providing
them. This can be done in two steps:
— first, to treat the contingency a) the interval must be searched through in order

to find a point x* where the function "valuefk" is defined. If no such point is
found then it means failure on the level k (contingency b{).

— second, searching among the points already checked with undefined "valuefk",
lying in a neighbourhood of the point xfc, another point x** must be determined
for which

sign (valueffc(x**)) 4= sign(valuefk(x*)).'

If this search is unsuccessful (contingency bH), it again means level-k-faiiure, else
the root-finding algorithm can start.

In Table II the changes are presented that have to be made in the original algorithm
(Tab. I) to incorporate the above mentioned search. The flag "fail" is established
which is reset at each entry to the function "valuef"; it may be set by a failure either
on the lower level k -f 1 or during the evaluation of ffc, in both cases inside the body
of "valuef". The text of the lower part of Tab. II realizing the above mentioned
two steps should replace the lines in the body of function "root" marked "initializing
bisection". This part of program utilizes the information contained in the flag after
each call of the function "valuef", and in turn sets the flag in the case of the level-k-
failure.

2. MODIFICATION OF THE METHOD FOR SPARSE SYSTEMS

2.1. Principle of minimization of the recursive depth

As follows from the description of the basic algorithm, in the general case, when
all functions ffc, k = 1, ... , n depend on all variables xk, k = 1, ..., n, the recursion
depth is n. Nevertheless, most of practical systems of equations are sparse in the
sense that each particular function fk depends on only a small number of variables.

38

Without a substantial loss of generality we will suppose that the equations are
reciprocally dependent, i.e. iff. depends on xj9 then alsof,- depends on xk, and that
the equations are so arranged that fk depends on xk for all k. (This is the case e.g.
with the models of electric circuits with structurally reciprocal elements.) Even if
there are some unidirectional dependences in the system, they can be regarded as
bidirectional with zero transfer in the opposite direction. The structure of such
a system can be visualized in the form of an incidence graph in which the vertices
correspond to the individual equations and edges express the mutual dependences
(see an example in Fig. 1).

a)

3
/ X 1

/ \ l
5 2 6

b)

Fig. 1. Example of a system of equations:

fi(xi9x39x6)= 0

f2(x2>x3> xd = °
f3(xu x2,x3,x4, X6) = 0
f4V^'2> -^3? ^4? ^ 5) = 0

f5(>4, x5) = 0
f6(xu x39 x6) = 0

a) Incidence graph
b) Controlling tree

As the order of equations in the system is irrelevant, any of them, say k-th, can
be chosen to be solved on the highest level of recursion and thus to be superior
to all the others. The variable xk is then constant during each calculation of "valueffc"
(xk), that is, during solving the system consisting of all equations except the k-th.
This inferior system can be described by the graph in which the vertex k and all its
edges are deleted. It is possible that then the reduced graph is formed by several
subgraphs which are not interconnected, which means that they are relatively (under
the condition xk = const) independent and may be solved separately (systems
[2, 4, 5] and [V 6] in Fig. 1 after removing the vertex 3). The same process can
then be applied recursively in the subsystems.

The vertices removed from the graph according to the previous paragraph are
compiled into another graph, called a controlling tree, which reflects the consecutive
dividing of the original graph into hierarchicaly organized subgraphs. The tree is
later used to control the multidimensional root-finding algorithm.

39

The crucial part of the algorithm is the procedure "compstep" which on each
level communicates with an appropriate "treecomponent" to which the input param
eter "totreecomponent" points. It selects the superior vertex out of the vertices
contained in the set "totreecomponenVf.graph" (that has to be assigned before
"compstep" starts) and realizes the decomposition of the "graph" into subgraphs
that are then assigned to the newly established graph — parts in the inferior "tree-
components" beloging to the level k + 1. These are arranged in a stack to the top
of which the pointer "tosub" points, while inside the stack the components are
connected by means of pointers "tonext". In the body of "compstep" the recursive
call of the same procedure on the lower level (accented in Tab. I l l by an arrow)
ensures that the whole analysis is expressed in a very simple way. The complete tree
as the result of the procedure applied to the incidence graph of Fig. 1 is shown
in Fig. 2.

ver tex :

graph :

| t o t o p

1 , 2 , 3 , 4 , 5 , 6

t o s u b

4

2 , 4 , 5 t o n e x t

t o s u b

t o n e x t

T
n i i

2

2

T"
ni I

1

1,6

i o sub

T
ni I

n i l

Fig. 2. Representation of the controlling tree as a PASCAL pointer structure.

2.3. Tree controlled recursive root-finding algorithm

The tree controlled algorithm must obey the same rule as the simpler one, described
in Chap. 1.1, that is, before a function value on a certain level k can be calculated,
all the inferior equations must be solved. While in the former case it meant just
to call recursively the root-finding algorithm on the next level, now all the immediately
subordinate equations need to be solved, which means to make the recursive call
in a cycle until all the vertices immediately inferior to the k-level vertex have been
treated. Inside the cycle, further nested recursive calls are done in the frame of lower

41

Tab. Ilia .

procedure compiletree ({incidence matrix:} incmat: array [node] of vertset;
{pointer to root of tree:} var totop: pointer; N {vertices}: integer);

function vertsin (graph: vertset): integer;
{determines the number of vertices in the graph}

procedure findmaxverts (var maxverts, {of} graph: vertset);
{finds the set of vertices with maximum of links}

procedure formsubgraph (var {first} subgraph, {of} graph: vertset);
{finds the first connected subgraph of the graph and moves its vertices from graph

to subgraph}
procedure divide.. .
procedure compstep. . .

{both described in detail in tab. Illb}
begin new (totop);

with totop t do {initialization of root-treecomponent}
begin graph : = = [] ; tonext := nil;

for i := 1 to N do graph := graph + incmat [i] ;
end;

compstep (totop)
end; {of compiletree — the tree is established]

Tab. Il lb.

procedure divide (inputgraph: vertset; {removing} k: node;
{pointer to 1-st subgraph:} var tosub: pointer; var criterion: integer);
var count, verts, max: node; this: pointer;
begin {pushes individual subgraphs of inputgraph into a stack}

inputgraph := inputgraph — [k]; tosub := nil; count := 0; max := 0;
while inputgraph < > [] do

begin new (this);
formsubgraph (this | . graph, inputgraph);
verts := vertsin (this | . graph);
if verts > max then max : = verts;
count : = count + 1;
this f. tonext := tosub; tosub := this

end;
criterion := 1000 * count + N — max;

end; {divide}

42

procedure compstep (totreecomponent: pointer);
var max, p: integer; i, max: node; mxv: vertset; heap: pointer;
begin while totreecomponent < > nil do

begin with totreecomponent f do
begin {selection of the optimal vertex:}

flndmaxverts (mxv, graph); {rule A}
max : = 0; for i : = 1 to N do (rule B and C}

if i in mxv then
begin mark (heap); divide (graph, i, tosub, p); release (heap);

if p > max then begin max : = p; i max : = i end
end; {i}

vertex := i max; {optimal vertex found}
{establishing lower level of tree:}
divide (graph, i max, tosub, p);
compstep (tosub); {compilation on the inferior level} <*>

end; {with}
totreecomponent : = totreecomponent | . tonext

end; {of while}
end; {compstep}

level root-finding procedures till the leaves of the tree are reached; then the control
returns to higher levels.

The corresponding procedure "rootnsparse" is only slightly modified in comparison
with the previously described "rootn"; the changes can be seen from Tab. IV. As
there is one more input data structure for the procedure "rootnsparse" — the
controlling tree, a new value-parameter "totop" appears which is pointing to the
highest level (root-) component of the tree. Instead of having directly the level k
as the parameter of the function "root", rather the pointer to it is used, and con
sequently at the beginning of the body of "root" the appropriate vertex number
must be assigned to k. Also the statement in the body of "rootnsparse" must be
arranged accordingly, i.e. with the pointer parameter and the pointer chosen index,
respectively.

Most of the changes due to the control by the tree are concentrated in the body
of the function "valuef". First, the control goes down the tree using the pointer
field "tosub" of the current "treecomponent", and then a cycle for all lower-level
parallel tree-components is organized using their "tonext" pointer fields. The cycle
can be interrupted prematurely as it has no sense to continue solving parallel systems
when the solution of one of them has failed; the failure must then be treated on the
current level as described in Chap. 1.2.

43

Tab.IV.

procedure rootnsparse (• • {the same parameters as for rootn] • •,
[pointer to the top of controlling tree:} totop: pointer);
function root ({pointer to the appropriate component of tree:}

tok: pointer): real;
label 1, 2, 3;
var xb, xr, xl, xlr, xrl, dx: real;

s, si, sr: boolean; k: node;
function valuef (xk: real): real;

label 4; var ptosub: pointer;
begin x[k] ;= xk; fail := false;

ptosub := tok j . tosub;
while ptosub <) nil do

begin x [ptosub j . vertex] := root (ptosub);
if fail then goto 4;
ptosub : = ptosub | . tonext

end;
valuef : = vectorf (x, k);

4: end; {valuef}
begin k := tok f . vertex;

• {the same as before}
end; {root}

begin
x [totop f . vertex] : = root (totop)

end; {rootnsparse}

CONCLUSION

The above described algorithm in its robust version proved to converge and
to find a root under very general (and sometimes unfavourable) conditions. In
comparison with conventional methods (Newton-Raphson iteration, iteration by
components) it has some advantages: no need for calculating and inverting Jacobi's
matrix, and for special means against divergence. It is relatively slow but when
utilizing sparsity it is reasonably applicable even to larger systems. It seems to be
a good tool in complicated cases when there is little a priori information on root
location.

References

[1] J. Jan: Recursive method of numerical analysis of inertialess nonlinear circuits (in Czech).
Library of research and scientific writings, Technical University Brno, B-57, 1975.

44

[2] J. Jan, J. Holčík, J. Kozumplík: Recursive method and general purpose program RANC
to analyze nonlinear circuits (in Czech). Research report, project no. 111-3-1/1, Technical
University Brno, 1975.

[3] J. Jan, O. Gotfryd, J. Holčík, J. Kozumplík: Analysis of nonlinear circuits by means of the
generalized recursive method. Proc. of the Il-nd Int. Conference on Electronic Circuits,
Prague 1976.

[4] P. Hladký: Use of the recursive method in analysis of transients in nonlinear circuits (in
Czech). Thesis, Dept. of Computers, Technical University of Brno, 1976.

[5] J. Jan, O. Gotfrýd, J. Holčík, J. Kozumplík: Recursive analysis of nonlinear circuits (in Czech).
Slaboproudý obzor 39, 1978, no. 1.

[6] J. Jan: Recursive algorithms to solve systems of nonlinear equations. Proc. of the 7-th Euro
pean Conference on Circuit Theory and Design, Prague 1985.

Souh rn

REKURZIVNÍ ALGORITMY PRO ŘEŠENÍ SOUSTAV
NELINEÁRNÍCH ROVNIC

JIŘÍ JAN

Je ukázán způsob zobecnění jednorozměrných algoritmů pro nalezení kořenů na mnoho
rozměrný případ pomocí rekurze, a jsou diskutovány prostředky, umožňující dosáhnout robust
nosti. V druhé části je algoritmus modifikován tak, aby využíval řídkosti velkých soustav rovnic
k redukci hloubky rekurze a tím ke snížení rozsahu výpočtu.

Р е з ю м е

РЕКУРСИВНЫЕ АЛГОРИТМЫ ДЛЯ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ
УРАВНЕНИЙ

31М ^АN

Указан способ обобщения на многомерный случай при помогли рекурсии одномерных
алгоритмов для определения корней и рассмотрены средства для достижения робастности.
Во второй части работы приведен алгоритм, использующий разреженность больших систем
уравнений для уменьшения глубины рекурсии и тем самым для уменьшения объема вычисле
ний.

Ашког'з аМгезз: Оос. 1п§. ЛН ^ап, С8с, Кагес1га 1ёкагзке е1ек1готку V^Т, Ригкупоуа
95 В, 612 00 Вгпо.

45

		webmaster@dml.cz
	2020-07-02T06:49:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

