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DYNAMIC VON KARMAN EQUATIONS INVOLVING
NONLINEAR DAMPING: TIME-PERIODIC SOLUTIONS

EDUARD FEIREISL
(Received October 8, 1987)

Summary. In the present paper, time-periodic solutions to dynamic von Karman equations
are investigated. Assuming that there is a damping term in the equations we are able to show
the existence of at least one solution to the problem. The Faedo-Galerkin method is used together
with some basic ideas concerning monotone operators on Orlicz spaces.

Keywords: Dynamic von Karman equations, time-periodic solution, nonlinear damping.
ASM classification 35Q20, 35B10.

When dealing with damped transversal vibrations of a thin plate occupying
a bounded domain Q = R? with a regular clamped boundary 99, we are led to the
problem

(E,) u + Bu)+ ay Au—Ju, @] =f on QxR',
(E,) a, A*¢ + [u,u] =0 on Qx R',
(B) iu:fz=(b=a—(p=0 on 0Q x R

av v

where ay, a, > 0, u’ = du/dt, v is the outward normal to 92, and

0%u 0*v  0%*u 0% 5 o’u 0%

def __ e
[u,v] T A242 A 2A2 PP
0x* 0y 0y* 0x Ox 0y 0x Oy

Here the unknown functions u, @ of (x, y, t) € @ x R' are interpreted as the trans-
versal displacement and the Airy-stress function, respectively.

Our aim is to establish the existence of at least one time-periodic solution to the
above problem with the period @ > 0, i.e.

(P) u(x, y,t + o) = u(x,y,1), (x,y,1)eQ x R

provided that (of course) the right-hand side f satisfies (P) as well (see Theorem 1
in Section 1). To this end, the function f is supposed to satisfy some “reasonable”
conditions among which monotonicity plays an essential part.
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First of all, let us remark shortly on some works related to the subject. If f is
linear in u’ (or B = 0), we refer to Lions [4], Morozov [6], von Wahl [13], Stahel
[11] for the corresponding initial-boundary value problem and to Morozov [6],
Vejvoda et al. [12] (see also the literature listed in this book) if the time-periodic
solutions are concerned.

Involving the nonlinear damping term B(u’), the problem resembles an analogous
task for the telegraph equation (see e.g. Prodi [8], Prouse [9], Haraux [2], Nakao
[7]) Unfortunately, there seem to be obstacles to exploiting these methods in
a direct fashion.

In this paper, we make use of the classical method of Faedo-Galerkin in order
to obtain a sequence of approximate solutions (Section 2). In Section 4 we will carry
out the corresponding limit passage taking advantage of a priori estimates derived
in Section 3 and some basic ideas connected with monotonicity. Finally, to remove
the inherent difficulty of this method — the lack of continuity of the solution in
a corresponding energy space, the regularization technique is employed (see Section
5) due to Lions-Magenes [5].

Seeing that no essential differences occur in comparison with the general case,
we confine our attention to the situation a; = a, = 1, = 2m.

From now on all strictly positive constants will be denoted as ¢; or ¢,(L), where
the latter symbol should emphasize the dependence of ¢; on the quantity L only.

1. FORMULATION OF THE MAIN RESULT

Yo begin with, let us mention the function spaces which will be useful throughout
the later discussion. Denote by I' the unit sphere in R* identified with [0, 27}/{0, 27}
in a standard way. Furtherset Q = Q x I.

The symbols Lq(K), 1 £ g £ + o are reserved for the ordinary Lebesgue spaces
of integrable functions on the sets K = Q, Q¢ with the norms [ [q, [ }]q, respectively.
More generally, the Orlicz spaces LG(K) are considered where G is a convex,

coercive function. When we set

N G*(v*)%" = sup {v*v — G(v) | ve R"}
— the Legendre-Fenchel transform of G, the space L;(K) coincides with the dual
space to Eg.(K), the Banach space Eg.(K) being determined as the closure of all
bounded functions in Lg«(K). We will refer systematically to [3] concerning this
subject.

Next we make use of the Sobolev space Hj(R2) obtained as the completion of the
set of all functions being both smooth on @ and satisfying (B), with respect to the
norm ||v| = |Av|,. Now we can (and will) identify H3(®) with a subspace of its dual
H™%(Q) via the relation

H3(@) Q L(2) G H (@)

where the duality pairing as well as the inner product on L,(®) are denoted as ( , ).
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As remarked earlier we look for time-periodic solutions and so the spaces Lq(l", B),
C(I', B) of periodic functions ranging in a Banach space B are of interest. The former
is provided with the norm

[olegcrmy = (Ir [o(s)[5 ds)™
the latter being equipped with
|olcermy = sup {[o(s)]s | se I} .

We refer to [ 12] for precise definitions and basic properties of these spaces.

At this stage, we proceed to the definition of the weak solution of the problem
given by (E,), (E,), (B), (P). A pair of functions u, ® is called a weak solution if
u, ®e C(I', HY(Q)), u' € C(I', L,(Q)), B(u’) € Ly(Q), and

(1.1) fr =@ (s), ¢'(s) + (B(w'(s)), o(s)) + (Au(s), Ap(s)) —
= ([u(s), 2(5)], @(s)) ds = [r (f(s), @(5)) ds,
(1.2) (AD(1), Ap(1)) + ([u(r), u(t)], (1)) =0 tel

for all 9 € Ly(I', HY(Q)), ¢ €L,(I, L,(Q)). -
We are about to formulate the existence theorem whose proof forms the bulk
of the paper.

Theorem 1. Let f € C(R') be an odd increasing function satisfying

(1.3) —l-vﬁ(v) — B(v) >0 forall v,v|Z v,
p

where p > 2 is a fixed number and
B(v)®" = {? B(s) ds.
Then there exists at least one weak solution to (E,), (E,), (B), (P) whenever
feLy(I, Ly(Q)).

Remark. The result claimed above is by no means the best possible. For instance,
f is supposed to be odd so that the Orlicz space theory might be used directly without
any modification. Actually, the oddness is not really necessary.

Let us pause to list some observations related to the function . The condition (1.3)
can be traced back to the paper [10] of Rabinowitz, who also showed that
(1.4) B(v) = ¢;o]” — ¢;, veR!

provided (1.3) holds.
Passing to the conjugate function B*, we get

B¥(5(0)) — (1 - ;) B1(B(0)) B(v) = ; B) — B).
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Setting v* = B(v), the inequality (1.3) takes the “conjugate” form
p 1
B*(v*) = (1 - ~> B~ (v¥)v*  forall v*, |v¥| = vg .
p

Accordingly, in view of [3], the function B* satisfies the A,-condition, i.c.
(1.5) B*(20%) < ¢3 B*(v*) + ¢,, v*eR'.
Consequently, we are allowed to identify (see [3])

(1.6) EgfK) = LK)

2. THE FAEDO-GALERKIN APPROXIMATION

In this section, the original problem will be replaced by a system of ordinary
differential equations. For this purpose consider a sequence {e;}7-, of linearly
independent smooth functions from HJ(Q), span {e;} 7., being dense in H(Q).

For a fixed integer n, we look for a vector function u, = u,(t) € span {ey, ..., e,}
satisfying

(2.1)
(un(r) + Blun(1)), v) + (Auy(t), Av) = ([u,(1), @.(1)], v) + % (B((1)). v) = ((1), v)

for allvespan {eq, ..., e}, 1 € [0, 2n],

(2.2) u,(0) = ug € span {e,, ..., ¢,}
u,(0) = uy espan {e, ..., e,

where &,(1) = —A~?[u,(t), u,(1)] (A2 is the inverse operator to A* in Q with the
boundary conditions (B)).

In fact, (2.1) together with (2.2) is nothing else but a Cauchy problem for a system
of ordinary differential equations which is known to possess a unique local solution
‘on some interval [0, 1,].

First of all, we are going to show, by virtue of a priori estimates, that t, = 2.
Then the existence of a 2n-periodic solution will be established via the Poincaré
method, i.e. by finding a fixed point of the translation operator

T: (ul, uy) > (u,(27), up(2n)) .

Note that we have added the term (1/n) B(u,) in (2.1) in order to obtain decay esti-
mates of the function u, in a certain energy space.
We start with inserting v = u,(t) + 6 u,(t) in (2.1). With the relations

(23) ~([un). 2,00, 1500) = 5 T [0,
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(2.4) ([0 2], 0, (0) = 2,0

in mind (see [4]) it is a matter of computation to get
5 R0 10) + 26700 () = 0O + %10
where (cf. [12])

Ffu,0) = ol + Jul? 2 a2, + 2 |80, + 25(u,0)

ri(t) = 40[u,(1)]3 — H(B(un(1)), us(1)) ,
ro(t) = 46%(u, (1), u, (1)),

m»=90mumh—HmmmwmQ,
n p
ra(t) = 2(f(1), u(t) + S u,(1)) — (B(un(1)), un(1)),
45 /1 1 , , , \
"S(I) = - ; <'_ - ~) (B(un(l))> un(’)) - (ﬂ(un(t))’ "n(l)) - 25(5(11"(0)’ un(l)) -

2. p
It follows from (1.3), (1.4) and the inequality ab < a?/2 + b?*|2 that
3
(2.6) > i) £ 8 Fy(u,(t), un(t)) + cs
=1

é > 0 being chosen small enough.
Next, the term r, can be treated as

ralt) < 8_12 OR + (02 + dus() — colul(] + ¢z, 2> 0.

Taking ¢ > 0 sufficiently small, we therefore see that

(2.7) ra(t) £ el A(1)]3 + 6 Fu(u,(0), u(1) + ¢ .

Finally, taking advantage of the Fenchel inequality, we get

ri) = 26(e,ofe) BB + e|B )]s + 1) -
, , 46 /1 1 .
= () w50) = % (5 =) B0 ),

(1.5) being taken into account.
Setting consecutively 0 < &(n) < 2(3 — 1/p)/n, 0 < §(n) £ 1/(2¢,0(¢)) we obtain

(2.8) rs(t) < cpp .
Thus combining (2.6) —(2.8) together with (2.5), we conclude
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(2.9) e F(u, (1), ul(t)) <
§ F,,(u,?, u:) + H) ezas(CBIf(S)lg + 5 Fn(un(s)’ u,',(s)) + ¢y 3) ds.

By virtue of the Gronwall lemma, we arrive at the desirable relation
(2.10) F(u,(1), uy(t)) < e F(ul, uy) + c1a([f]2) -

As a consequence we have t, = 2rx. Moreover, there is ¢ > 0 such that the mapping
T transforms the set

NQ = {(u’ U) l u’ vespan {6’1, MRS en]’ Fn(u, U) g Q}

into itself. Since N, is homeomorphic to the unit ball in R*" (cf. [12]), the existence
of at least one 2m-periodic solution to the equation (2.1) is ensured via the famous
theorem of Brouwer.

3. A PRIORI ESTIMATES

Up to now, only one estimate has been obtained concerning the periodic solution
u,, namely (2.10). Unfortunately, its dependence on the number n prevents us from
using it in a limit passage. To remove this difficulty, a priori estimates of u, will
be deduced independent of the value n.

First we integrate (2.1) inserting v = u/(t). By the help of (2.3), we obtain
[ (Bun(s)). wn(s)) ds = [r (f(5), us(s)) ds .
Consequently, by virtue of (1.4),
(3.1) [r (B(ua(s)), uy(s)) ds < ¢y -
Using the Fenchel inequality, we derive
62) B + BB, < ere
(3.3) [4], < s .

Next, setting v = u,(1) in (2.1) again, we integrate from sto t, 0 < s < t < 2.
Denoting

E1) = [0 + [l + 1.0 + > [Bu(o)]

we get
Et) = E(s) = 2005 (1(2), u,(2)) — (B(us(2), us(2)) d2)

and consequently, due to (3.1),
(3.4) E(1) = Es)| < c15, s.teT.
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Finally, taking (2.4) into account, we can substitute v = u,(t) in (2.1):

69 5o B + [0, + L (B 1,60 05 =
= T () 16D = () 15 s + [l

The hardest term to estimate seems to be
(3-6) |§r (B(un(s)), ua(s)) ds| = [B(u)]y [u].e -
Since Hy(Q) Q C(Q) (see [12]), it follows easily
[u,J2 < ciosup {E,(s)|seT}
(by the mean value theorem)

< crosup {|E(s) = E&)] | seT} + —21; rE,(s)ds

(according to (3.4))

(3.7 < cyo JrE (s)ds + ¢y .
Combining (3.2), (3.3)—(3.6) with (3.7) leads to

(3:8) [rEy(s)ds < 32
which, together with (3.4), yields

(39) sup (E(S) | s T} = crs.

The estimates (3.1), (3.9) are crucial in the limit process. One observes easily that
the corresponding constants do not depend on the number n.

4. PASSING TO THE LIMIT

4. A Compactness. For convenience of notation we still denote any subsequence
of {u,,},‘,":, by the same symbol, {u,, .= being the sequence of time-periodic solutions
obtained in Section 2.

The estimates (3.1)—(3.3) and (3.9) allow us to suppose

(4.1) u, — u weakly-star in L (I, H3(Q)),
(4.2) @, — ¢ weakly-star in L (I', H3(Q)),
(4.3) u, — u’ Eg.(Q)-weakly in Ly(Q),
(4.4) B(uy) = h Ex(Q)-weakly in Ej.(Q)
and so, according to [5],

(4.5) ueC(I, L,(Q)).
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Making use of the symmetry of [ , ], we are able to pass to the limit in (2.1), the

N ®©

underlying idea stemming from [4]. The sequence {u,},~; being bounded in L_(Q),
the term 1/n(B(u,(1)), v) disappears in the final expression. Thus, we finally take
(2.1) to be

(46) Jr =@ () #'(5) + (h(s). 0(s)) + (Aus), Ao(s) -
— ([u(s), (5)]. 0(s) ds = [ (). 0(5)) s

where ¢ is as in (1.1). Further, we easily verify that (1.2) holds.
Since h € L,(T, L,(R)), we deduce

(4.7) u'e C(T', H*(Q))

as a consequence of (4.3), (4.6).
At this stage, to prove that u, @ is a weak solution to the problem in question,
we have but to prove

(4.8) B =h.
5. B Monotonicity. To show (4.8), we need

(4.9) lim [ (B(un(s)), up(s)) ds = [ (h(s), u'(s)) ds .

n— oo

Note that the right-hand side has sense due to (4.3), (4.4). To undertake the final
step from (4.9) to (4.8), the standard Minty’s trick can be used.
To demonstrate (4.9), we set v = u,(1) in (2.1). After integrating we easily see

(4.10) lim o (B(u(5). (5) d5 = [ (£(5) w(5) .

As a rule, the second step — inserting (forma]ly) @ = u’ in (4.6) would represent
a rather technical matter.
Pursuing [5], consider a function g,: I' —» R* such that

Qk(S) = Q.t.(zﬂ - S) s
yr Qk(s) ds=1,

supp ¢x < O,l V] 2n—1,2n , k=1,2,...
k . k

Now, we set ¢ = W, = u’ * g, * ¢, in (4.6) where * denotes the convolution on I
Following [4], we have

fr = (W' (s), () + (Au(s), Ayy(s)) ds = 0.

Consequently, to achieve the desirable result
(a.11) fir (h(s), w'(s)) ds = Jr (/(s). (s)) ds
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we are to prove both

(4.12) fim f; ([u(s), #(5)] () s = 0

and
(4.13) lim {r (h(s), Yu(s)) ds = [ (h(s), u'(s)) ds .
k—
Arguing as in [4], we get successively

[, u] € Lo(T, Ly(Q)) Q Lo(T, H'75(Q)), &> 0.
Consequently, @ e L, (I, H3™%(Q)), Dide L (I', H'"%(Q)). Due to H' Q)
QG L,,(Q) and (3.3) we have
@10l ) 9] ) 8 = e [0 36w s

seeing that the right-hand side is well defined.

On the other hand, repeating the same regularization procedure we can show
that the right-hand side of (4.14) equals zero, which proves (4.12).

As to the relation (4.13), the following auxiliary result will be of interest.

Lemma 4.1. Consider a function v € Ly(Q).
Then v(+, *, t + 5) > v(+, *, 1) EgQ)—weakly whenever s — 0.

Proof. First of all, note that [v(+, *, t + 5)|Lu0) = |9]Lnco) Since v{+, +, 1 + 5) > v

strongly in L,(Q) (see [1]), the lemma follows since L,(Q) is dense in E.(Q). Q.E.D.
Setting o, = g, * 0, We get

|fr (h(s), w'(s) — (u’ % 0,) (5)) ds| =
= | {r [r(h(s), (' (z + s) — u'(s)) ou(z)) ds dz .

By virtue of Lemma 4.1 the right-hand side tends to zero since |o,|.,(r, is bounded.
Consequently, (4.13) and thus (4.8) follow.

5. A REGULARITY RESULT
The underlying idea of this section is taken from [5, Chapter 3]. Combining (4.1),
(4.3) together with (4.5), (4.6), we obtain
(5.1 ue C,(I, H}(Q)),
(5.2) u' e C,(I, L,(Q))

where the subscript w indicates continuity with respect to the weak-topology on the
corresponding spaces (see [5]). To complete the proof of Theorem 1, we desire
to remove the letter w from the above relations.
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Consider a function @, such that
©; =0 on [t 2n],

1 on [6,1-4].
©; is linear and continuous on [0,5] U [r — §,1]. Setting ¢ = y;, = O5(O;u' *
* 0, * ¢,) in (1.1) and integrating over I', we get (cf. [5])

@[z + [Au()]5 = [w ()] + [Au(0)[3 +
+ lim lim [ (B(u'(5)) + [u(s), 2(s)] + £(5), ¥als)) ds .
k—=w 6-0

We are going to examine the term
[r (B'(5)): Wa(s)) ds = [ (O(s) B(u'(5)), (Ogu’ * 01 % i) (5)) ds .

One has 0; f(u’) = O, f(u’) in Ly(I', Lp(Q)), O > Ogu’ in L,(T, Ly(Q)) if 6 — 0.
Consequently O B(u’) * 0, = O f(u’) * ¢, in L (I, Ly(Q)). Thus

JimTim [ (5((5), V() ds =
= 1im J1-(04(s) A (5). (6,1 * 0, 00) (5) ds.

Using the same arguments as in Section 4, we conclude that

tim i (8u(5), Vals) ds = 5 (B9 w'(s) ds.

In a similar way we are able to show
(53) [ (D] + [Au()3 = [w(0)f; + [Au(0)]5 +
+ Jo (=B'(s) + [u(s), 2(s)] + f(s), u'(s)) ds .

As a consequence of (5.3) we deduce

(5.4) [ () + [u(-)]? e c(r. rY)
u and thus, using (5.1), (5.2),
(5.5) ueC(r, H}(Q)), u e (I, Ly(Q)).

Theorem 1 has been proved.
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Souhrn

DYNAMICKE VON KARMANOVY ROVNICE OBSAHUJICI NELINEARNI
TLUMENI{: CASOVFE PERIODICKA RESENI

EDUARD FEIREISL

V ¢lanku jsou studovana casové periodicka feSeni dynamickych von Karmanovych rovnic-
Za predpokladu, Ze rovnice obsahuji ¢len odpovidajici tlumeni, je dokazana existence slabého
feSeni ulohy. Je uzito Faedo-Galerkinovy metody a zakladnich poznatka teorie monotonnich
operatoru na Orliczovych prostorech.

Pe3rome

JIVUHAMUYECKUE YPABHEHUS KAPMAHA C HEJMHENHBIM 3ATYXAHUEM:
ITEPNOIMNYECKHME BO BPEMEHM PEHIEHMSA

EDUARD FEIREISL

ABTOp M3yyaeT NEPUOAMYECKMC BO BPCMEHM DPEICHMs JMHAMMYECKHX YpaBHeHuit Kapmana.
IIpenmosiarasi CylIeCTBOBAHME HEJMHEHHOro 3aTyXaHMsi, OH IIOJyYaeT IO KpaiiHell mepe onHo
peluesne npobiaemsl. OCHOBHbIE METOBI JOKA3aTENbCTBA — MeToA Pasno — TanepkuHa u Teopust
MOHOTOHHBIX OIIEPAaTOPOB B IpocTpaHcTBax OpJmnya.
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