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DYNAMIC VON KARMAN EQUATIONS INVOLVING 

NONLINEAR DAMPING: TIME-PERIODIC SOLUTIONS 

EDUARD FEIREISL 

(Received October 8, 1987) 

Summary. In the present paper, time-periodic solutions to dynamic von Karman equations 
are investigated. Assuming that there is a damping term in the equations we are able to show 
the existence of at least one solution to the problem. The Faedo-Galerkin method is used together 
with some basic ideas concerning monotone operators on Orlicz spaces. 
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When dealing with damped transversal vibrations of a thin plate occupying 

a bounded domain Q a R2 with a regular clamped boundary dQ, we are led to the 

problem 

(E-) u" + p(u') + ax A2u - [u, <P] = / on Q x Rl , 

(E 2) a2 A2<P + [u, w] = 0 on Q x R1 , 

(B) \u• = — = * = — = 0 on dQ x R1 

X J l dv dv 

where au a2 > 0, u' = dujdt, v is the outward normal to dQ, and 

r -iHpf d2u d2v d2u d2v 
\u, vY = + - 2 
L ' J ~ .2 *>..2 ^ 2 * 2 

d e f _ д 2 w <Э2v <Э2w д2v л 5 2u O"2v 

O"x2 дy2 5y2 O"x2 ðл; <3y 5x 5 j 

Here the unknown functions u, <P of (x, y,t)eQxR1 are interpreted as the trans

versal displacement and the Airy-stress function, respectively. 

Our aim is to establish the existence of at least one time-periodic solution to the 

above problem with the period co > 0, i.e. 

(P) u(x, y,t + co) = u(x, y, t) , (x, y,t)eQ x R1 

provided that (of course) the right-hand side / satisfies (P) as well (see Theorem 1 

in Section 1). To this end, the function /? is supposed to satisfy some "reasonable" 

conditions among which monotonicity plays an essential part. 
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First of all, let us remark shortly on some works related to the subject. If ft is 
linear in u' (or /? = 0), we refer to Lions [4], Morozov [6], von Wahl [13], Stahel 
[11] for the corresponding initial-boundary value problem and to Morozov [6], 
Vejvoda et al. [12] (see also the literature listed in this book) if the time-periodic 
solutions are concerned. 

Involving the nonlinear damping term p(u'), the problem resembles an analogous 
task for the telegraph equation (see e.g. Prodi [8], Prouse [9], Haraux [2], Nakao 
[7]). Unfortunately, there seem to be obstacles to exploiting these methods in 
a direct fashion. 

In this paper, we make use of the classical method of Faedo-Galerkin in order 
to obtain a sequence of approximate solutions (Section 2). In Section 4 we will carry 
out the corresponding limit passage taking advantage of a priori estimates derived 
in Section 3 and some basic ideas connected with monotonicity. Finally, to remove 
the inherent difficulty of this method — the lack of continuity of the solution in 
a corresponding energy space, the regularization technique is employed (see Section 
5) due to Lions-Magenes [5]. 

Seeing that no essential differences occur in comparison with the general case, 
we confine our attention to the situation at = a2 = 1, co = 2%. 

From now on all strictly positive constants will be denoted as ct or ct(L), where 
the latter symbol should emphasize the dependence of ct on the quantity L only. 

1. FORMULATION OF THE MAIN RESULT 

To be&'m witVi, \et us mention the function spaces which will be useful throughout 
the later discussion. Denote by F the unit sphere in R2 identified with [0, 27c]/{0, 2n) 
in a standard way. Further set Q = Q x F. 

The symbols Lq(K), 1 ^ q ^ + oo are reserved for the ordinary Lebesgue spaces 
of integrable functions on the sets K = Q, Q with the norms | \q, [ Jq, respectively. 

More generally, the Orlicz spaces LG(K) are considered where G is a convex, 
coercive function. When we set 

G*(v*)def = sup {v*v - G(v) | v G R1} 

— the Legendre-Fenchel transform of G, the space LG(K) coincides with the dual 
space to EG*(K), the Banach space FG*(K) being determined as the closure of all 
bounded functions in LG*(K). We will refer systematically to [3] concerning this 
subject. 

Next we make use of the Sobolev space H^(Q) obtained as the completion of the 
set of all functions being both smooth on Q and satisfying (B), with respect to the 
norm ||v|| = |Av|2. Now we can (and will) identify H%(Q) with a subspace of its dual 
H~~2(Q) via the relation 

H2
0(Q)QL2(Q)QH~2(Q) 

where the duality pairing as well as the inner product on L2(Q) are denoted as ( , ). 
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As remarked earlier we look for time-periodic solutions and so the spaces L^(F, B), 
C(r, B) of periodic functions ranging in a Banach space B are of interest. The former 
is provided with the norm 

M^r,B) = ($r\v(s)\ldsy\ 

the latter being equipped with 

\v\c(r,B} = sup ( |v ( s ) | B | s eF} . 

We refer to [12] for precise definitions and basic properties of these spaces. 
At this stage, we proceed to the definition of the weak solution of the problem 

given by (E t), (E2), (B), (P). A pair of functions u, <£> is called a weak solution if 
u,<PeC(r,H2

0(Q)), u'eC(r,L2(Q)), p(u') e LX{Q\ and 

(1.1) J r - (u'(s), <p'(s)) + (P(u'(s)), <p(s)) + (Au(s), Acp(s)) -

- ([u(s), 4>(sJ], <p(s)) ds = j> (f(s), <p(s)) ds , 

(1.2) (A$(t), A<p(t)) + ([u(t), u(t)], <p(t)) = 0 t e F 

for 2L\\<peL2(r,H2
0(Q)), <p' e L2(F, L2(Q)) . 

We are about to formulate the existence theorem whose proof forms the bulk 
of the paper. 

Theorem 1. Let /? e C(RX) be an odd increasing function satisfying 

(1.3) - v P(v) - B(v) > 0 for all v, \v\ ^ v0 

P 

where p > 2 is a fixed number and 

B(v)"s{ = fo P(') ^ • 

Then there exists at least one weak solution to (E^, (E2), (B), (P) whenever 
feL2(r,L2(Q)). 

Remark . The result claimed above is by no means the best possible. For instance, 
p is supposed to be odd so that the Orlicz space theory might be used directly without 
any modification. Actually, the oddness is not really necessary. 

Let us pause to list some observations related to the function p. The condition (1.3) 
can be traced back to the paper [10] of Rabinowitz, who also showed that 

(1.4) B(v) ^ ct\v\p - c2, veR1 

provided (1.3) holds. 
Passing to the conjugate function B*, we get 

B*(p(v)) - (l - -) /T W ) /%) = - » P(») ~ BOO • 
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Setting v* = /?(v), the inequality (V3) takes the "conjugate" form 

B*(v*) = ( 1 - - j p~ l(v*) v* for all v*9 \v*\ = v* . 

Accordingly, in view of [3], the function B* satisfies the A2-condition, i.e. 

(1.5) B*(2v*) S c3 B*(v*) + c4 , v* e R1 . 

Consequently, we are allowed to identify (see [3]) 

(1.6) EB.(K) = LB*(K). 

2. THE FAEDO-GALERKIN APPROXIMATION 

In this section, the original problem will be replaced by a system of ordinary 
differential equations. For this purpose consider a sequence {ej}f=l of linearly 
independent smooth functions from H%(Q), span{e,-}JLi being dense in H%(Q). 

For a fixed integer n, we look for a vector function un = un(t) e span {el9..., en} 
satisfying 

(2.1) 

(«;(<) + /?(«;(.)), p) + (Au„(t), AV) - ([«„(/), * . (0] , v) + - (p(un(t)),v) = (f(t), v) 
n 

for all v e span {el9 ..., ^„}, t e [0, 2n~, 
(2.2) 11,(0) = un e span {e1?..., en} 

<(0) = uiespa.n{ei9...,ett} 

where ^„(t) = ~A~2[un(t)9 un(t)~ (A~2 is the inverse operator to A2 in Q with the 
boundary conditions (B)). 

In fact, (2.1) together with (2.2) is nothing else but a Cauchy problem for a system 
of ordinary differential equations which is known to possess a unique local solution 
on some interval [0, tn~. 

First of all, we are going to show, by virtue of a priori estimates, that tn = 2%. 
Then the existence of a 27i-periodic solution will be established via the Poincare 
method, i.e. by finding a fixed point of the translation operator 

T:(M„°,«^(«„(24«;(2;r)). 

Note that we have added the term (1/n) (3(un) in (2.1) in order to obtain decay esti
mates of the function un in a certain energy space. 

We start with inserting v = u'n(i) + S un(t) in (2.1). With the relations 

(2.3) -(W0>^(0].<(0) = 27ll^(0«2> 
4 at 
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(2.4) -([«„(o,^„(0],«B(t))=ll^(OI!2 

in mind (see [4]) it is a matter of computation to get 

(2.5) £ E„(«„(o, «;(0) + 25E„(«„(o, «;(0) = -<5|W012 + I o(0 
d t y=i 

where (cf. [12]) 

Fn(u, v) = |v|2 + ||u||2 + i ||A-2[u, u]||2 + - \B(u)\t + 2<5(u, v) , 
2 n 

rt(o = 4^|«;(o|2
2 - i(P(<(t% «:(0)> 

r2(o = 4,52(«;(o> «„(0), 

r3(0=^(|BM0)|i-^K(0).«.(0)). 

r4(o = 2(/(o, «;(t) + s «„(0) - K0« ( t ) ) , w-'.(0). 

r s (0 = _ Al (1 - i) (p(u„(t)), «„(0) - (i8(«;(0), «;(0) - - W a o ) . «„(0) -
n \2 pj 

It follows from (1.3), (1.4) and the inequality ab < a2/2 + b2\2 that 

(2.6) i r,(0 S 5 F„(«„(0, «;(0) + c5 
J = I 

^ > 0 being chosen small enough. 
Next, the term r4 can be treated as 

r4(o s \ i/(on + s2(k(oi2 + %(OID - ^ M O I ; + ,̂ «> o. 
Taking e > 0 sufficiently small, we therefore see that 

(2.7) r4(0 g c8 |/(0|2 + 5 E„(«„(t), «;(0) + c9 . 

Finally, taking advantage of the Fenchel inequality, we get 

r5(0 g 25(c10(e) |B-0(«;(O))|. + e|B(«„(0)|i + eu) -

- ()8(«;(0), «;(t)) - - (\ - -) (/iWO), ««(0). 
n \,2 pj 

(1.5) being taken into account. 
Setting consecutively 0 < e(n) < 2(i — l/p)/n, 0 < £>(«) < l/(2c10(e)) we obtain 

(2-8) r5(0 S c12 • 

Thus combining (2.6) —(2.8) together with (2.5), we conclude 
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(2.9) e2» Fn(un(t),u'n(t))^ 

<, Fn(u°„, ul) + j< e2fc(c8|/(s)|2 + 5 E„(M„(s), u'„(s)) + c13) ds . 

By virtue of the Gronwall lemma, we arrive at the desirable relation 

(2.10) E„(u„(0, u'„(t)) 5 e-st E„(u„°, ul) + c1 4([ j]2) . 

As a consequence we have tn = In. Moreover, there is Q > 0 such that the mapping 
T transforms the set 

NQ = {(u, v) | u, v G span {el9 ..., ej, Fn(u, v) ^ Q] 

into itself. Since N^ is homeomorphic to the unit ball in R2n (cf. [12]), the existence 
of at least one 27r-periodic solution to the equation (2.1) is ensured via the famous 
theorem of Brouwer. 

3. A PRIORI ESTIMATES 

Up to now, only one estimate has been obtained concerning the periodic solution 
un9 namely (2.10). Unfortunately, its dependence on the number n prevents us from 
using it in a limit passage. To remove this difficulty, a priori estimates of un will 
be deduced independent of the value n. 

First we integrate (2.1) inserting v = un(t). By the help of (2.3), we obtain 

h(K<(s%<(s))ds^^r(f(s)9u
f
n(s))ds. 

Consequently, by virtue of (1.4), 

(3-D SM«'J(s)),u'B{s))ds£c15. 

Using the Fenchel inequality, we derive 

,(3.2) {B(u'n% + {B*(f}(U'n))l 51 c16 , 

(3-3) [«;]„ 5 c„ . 

Next, setting v = u'n(t) in (2.1) again, we integrate from s to t, 0 <£ s < t g In. 
Denoting 

En(t) = \K(t)\l + \K(t)\\2 + i\\<Pn(t)\\
2 + 2- \B(un(t% 

n 
we get 

E„(t) - E„(s) = 2(JI (f(z), Un(z)) - (P(u'n(z)), u'n(z)) dz) 

and consequently, due to (3.1), 

(3-4) \E.(t)~EJ(s)\£clt, s,ter. 
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Finally, taking (2.4) into account, we can substitute v = un(t) in (2.1): 

(3.5) JY |K(s)| |2 + \\<Pn(s)\\2 + - (p(un(s)), un(s)) ds = 
n 

= JV (f(s), un(s)) - (/ ,(«#)), u„(s)) ds + {u'nf2 . 

The hardest term to estimate seems to be 

(3.6) |J r (P(<(s% u„(s)) ds| ^ [/?(<)], [«„]„ . 

Since H2
0(Q) Q C(0) (see [12]), it follows easily 

[ « J i g c 1 9 sup {E„(s) | s e E } 

(by the mean value theorem) 

S c19 sup {|E„(s) - E„(£)| I s e r) + 1 J- E„(s) ds 
Z7T 

(according to (3.4)) 

(3.7) ^c 2 0 j ' r F f , (S )d5 + c2i. 

Combining (3.2), (3.3)-(3.6) with (3.7) leads to 

(3.8) \rEn(s)dsSc22 

which, together with (3.4), yields 

(3.9) sup{F n (s ) |SeF} ^ c 2 3 . 

The estimates (3.1), (3.9) are crucial in the limit process. One observes easily that 
the corresponding constants do not depend on the number n. 

4. PASSING TO THE LIMIT 

4. A Compactness. For convenience of notation we still denote any subsequence 
of {u„}%L!l by the same symbol, {un}™=l being the sequence of time-periodic solutions 
obtained in Section 2. 

The estimates (3.1) —(3.3) and (3.9) allow us to suppose 

(4.1) un -> u weakly-star in L ^ F , H2
0(Q)) , 

(4.2) ®n -> <£> weakly-star in L ^ F , H2
0(Q)), 

(4.3) u'n -* u' FB*(e)-weakly in LB(Q), 

(4.4) p(u'n) -> h FB(g)-weakly in EB.(Q) 

and so, according to [5], 

(4.5) u e C(r, L2(Q)). 
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Making use of the symmetry of [ , ] , we are able to pass to the limit in (2.1), the 
underlying idea stemming from [4]. The sequence {un}n

x>
=1 being bounded in LJ(Q), 

the term \jn(p{un(t)), v) disappears in the final expression. Thus, we finally take 
(2 . i ) tobe 

(4.6) JY -(u'(s), <p'(s)) + (h(s), <p(s)) + (Au(s), A<p(s)) -

- ([u(s), *(s)l <p(s)) ds = ir (f(s), <p(s)) ds 

where <p is as in (VI). Further, we easily verify that (V2) holds. 
Since h e L2(F, Li(-3)), we deduce 

(4.7) u'eC(r, H~2(Q)) 

as a consequence of (4.3), (4.6). 
At this stage, to prove that u, <P is a weak solution to the problem in question, 

we have but to prove 

(4.8) p(u') = h . 

5. B Monotonicity. To show (4.8), we need 

(4.9) lim J r (P(u'n(s)), K(s)) ds = J r (h(s), u'(s)) ds . 
n~* so 

Note that the right-hand side has sense due to (4.3), (4.4). To undertake the final 
step from (4.9) to (4.8), the standard Minty's trick can be used. 

To demonstrate (4.9), we set v = un(t) in (2.1). After integrating we easily see 

(4.10) lim J r( /?«(s)) , u'n(s)) ds = J r (j(5), u'(s)) ds . 
n-»oo 

As a rule, the second step — inserting (formally) <p = u' in (4.6) would represent 
a rather technical matter. 

Pursuing [5], consider a function Qk: F -> R+ such that 

Qk(s) = Qk(2n - s) , 

Jr Qk(s) ds = I , 

supp Qk c 0, - u 2n , 2n , k = 1,2, ... 
L kJ L k J 

Now, we set cp — xj/k = u' * Qk * Qk in (4.6) where * denotes the convolution on F. 
Following [4], we have 

J f - (u'(s), iP'k(s)) + (Au(s), AUs)) ds = 0 . 

Consequently, to achieve the desirable result 

(4.11) Sr{h(s),u'(s))ds = Sr(f(s),u'(s))ds 
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we are to prove both 

(4.12) lim | r ([«(s), <P(s)l ijfk(s)) ds = 0 
k-+ao 

and 

(4.13) hm J r (h(s), фk(s)) ds = Jr (h(s), u'(s)) ds . 
7<~+co 

Arguing as in [4], we get successively 

[«, «] e Ljr, L,(Q)) G Ljr, H~ 1-%Q)) , e > 0 . 

Consequently, <P e Ljr, H*-'(Q)), D2

X<P e Ljr, Hl~°(n)). Due to H^'^O 
Q L2/£(f2) and (3.3) we have 

(4.14) hm J r [«(s), *(- ) ] , * t(s)) ds = J r ([«(s), <2>(s)], «'(s)) ds 
7<-+oo 

seeing that the right-hand side is well defined. 

On the other hand, repeating the same regularization procedure we can show 
that the right-hand side of (4.14) equals zero, which proves (4.12). 

As to the relation (4.13), the following auxiliary result will be of interest. 

Lemma 4.1. Consider a function v e LB(Q). 

Then v(*9 •, t -f- s) -> v(*9 •, t) EB*(Q) —weakly whenever s -> 0. 

Proof. First of all, note that |v(-, •, t + S)\LB(Q) = \V\LB(Q). Since v(-, •, t + s) -> v 
strongly in Lt(Q) (see [1]), the lemma follows since L00(g) is dense in Em(Q). Q.E.D. 

Setting ak = qk * Qk9 we get 

| J r ( / z ( 5 ) , u ^ ) - ( ^ * ^ ) ( ^ ) ) d ^ | = 

= I Jr JT (M5)' (WX^ + s)~ u'(s)) ak(z)) ds dz . 

By virtue of Lemma 4.1 the right-hand side tends to zero since |erk|Ll(r) is bounded. 
Consequently, (4.13) and thus (4.8) follow. 

5. A REGULARITY RESULT 

The underlying idea of this section is taken from [5, Chapter 3]. Combining (4.1), 
(4.3) together with (4.5), (4.6), we obtain 

(5.1) ueCw(r9Hl(Q))9 

(5.2) u> E Cw(r9 L2(Q)) 

where the subscript w indicates continuity with respect to the weak-topology on the 
corresponding spaces (see [5]). To complete the proof of Theorem 1, we desire 
to remove the letter w from the above relations. 
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Consider a function 0S such that 

Od = 0 on [t, 2TT] , 

1 on [O\ t - <5] . 

03 is linear and continuous on [0, S] u [t - O", t ] . Setting <p = \j/5k = 98(Odu
l * 

* £/c * £*) i n 0-1) a n d integrating over F, we get (cf. [5]) 

\u'{t)\\ + |Au(0| | = |u'(0)|2
2 + JAu(O)|l + 

+ lim lim lr (j8(u'(s)) + [u(s), *(s)] + / (s) , ^ k (s)) ds . 
/c->oo <5->0 

We are going to examine the term 

JY (P(U'(S)), fe(s)) ds = J r (0d(s) P(u'(s)), (05U' * Qk * Qk) (S)) ds . 

One has 0S p(u') -> <90 jS(w') in L.(r , LB.(0)), ©.«' -> 0 o u ' in L,(E, LB(Q)) if 5-+0. 
Consequently 0S /?(«') * & -* 0 O /?(u') * Qk in Lm(f, LB,(i2)). Thus 

lim lim Jr(/i(w'(s))> M » ) ) d s = 
&->oo c5->0 

= lim J,- (0o(s) P(u'(s)), (0ou' * Qk * Qk) (s)) ds . 
fc->oo 

Using the same arguments as in Section 4, we conclude that 

lim lim JY (j8(u'(s)), i//dk(s)) ds = J0 (j8(u'(s)), u'(s)) ds . 
/c->oo <5->0 

In a similar way we are able to show 

(5.3) \u'(l)\l + |A«(/)||. = \u'(0)\2
2 + \Au(0)\2

2 + 

+ J< (~P(W(s)) + |>(S), #(S)] + /(S), «'(s)) ds . 

As a consequence of (5.3) we deduce 

(5.4) K ( - ) | 2
2 + \\u(-)\\2 e C(r, R1) 

and thus, using (5.1), (5.2), 

(5.5) u 6 C(F, / /*(£)) , u' G C(F, L2(Q)). 

Theorem 1 has been proved. 
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Souh rn 

DYNAMICKÉ VON KÁRMÁNOVY ROVNÍCE OBSAHUJÍCÍ NELINEÁRNÍ 
TLUMENÍ: ČASOVĚ PERIODICKÁ ŘEŠENÍ 

EDUARD FEIREISL 

V článku jsou studována časově periodická řešení dynamických von Kármánových rovnic• 
Za předpokladu, že rovnice obsahují člen odpovídající tlumení, je dokázána existence slabého 
řešení úlohy. Je užito Faedo-Galerkinovy metody a základních poznatků teorie monotónních 
operátorů na Orliczových prostorech. 

Резюме 

ДИНАМИЧЕСКИЕ УРАВНЕНИЯ КАРМАНА С НЕЛИНЕЙНЫМ ЗАТУХАНИЕМ: 
ПЕРИОДИЧЕСКИЕ ВО ВРЕМЕНИ РЕШЕНИЯ 

ЕЛ^ЦА-Ш рЕ1КЕ18Ь 

Автор изучает периодические во времени решения динамических уравнений Кармана. 
Предполагая существование нелинейного затухания, он получает по крайней мере одно 
решение проблемы. Основные методы доказательства — метод Фаэдо — Галеркина и теория 
монотонных операторов в пространствах Орлича. 
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