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exponential smoothing in the non-adaptive case). Therefore a natural multivariate 
extension of the classical exponential smoothing is suggested which is numerically 
simple. 

2. MISSING OBSERVATIONS 

The mathematical method of the classical exponential smoothing of order n for 
the time series model 

(2.1) yt+x = t a4$*k + e,+< 
k = o k\ 

with integers t and % (Eet = 0, var et = a2 > 0, Esset = 0 for s + t) is based on 
minimization of the discounted least squares 

(2-2) I^-^L-j-i^Hf}2, 
j-=0 I k = 0 k\ J 

where 0 < a < 1 is a smoothing constant. Let the observations J>H+1, ytt+2- ••• 
..., yv-2, yv-i (u < v) be missing so that only the observations ..., yu~l9 yu, yv, 
yv+1, ... can be gradually delivered (for v = u + 1 we obviously have the standard 
case without missing observations). Now the natural modification of the above 
minimization consists in excluding the summands with missing observations so that 
the minimized expression is 

(2.3) f (i-«y\y,-j-iaj&(-jf2 
j = o I /c = o k\ 

j+t-v+l,...,t-u-l 

For u < t < v the sum in (2.3) is over j = t — u, t — u + 1 , . . . and for t _ u the 
sum is over j = 0, 1 , . . . . In this section the bare symbol X will always denote the 
sum used in (2.3) in the sense just described. 

Let us construct smoothing statistics S[p] of order p recursively as 

(2.4) S[I] = ayf + (1 - a)S [1Jj , t = ..., u - l ,w,v , v + 1 , . . . ; 

= (1 - a)S[1_]!, t = u + 1, u + 2- . . . f» - 1 ; 

5 [ p ] = a S [ / - 1 ] + (1 - a) S[p]t , 

t = ...,w — 1, u, w + 1,...,v— 1, v, v + 1,..., p = 2 , . , . , n + 1 . 

If one uses the recursive formulas (2.4) for practical computations one must choose 
suitable initial values for the smoothing statistics (see e.g. [3]). One can see that the 
only difference from the case without missing observations concerns the values 
Stt+

]i- •••> *Sji?i which are calculated as if the missing observations were replaced 
by zero values. Let us denote St = (S [1 ] , 5 [ 2 ] , ,.., Sl

t
n+l1)' and a(t) = (a0(t), a^t),.... 

...,aB(oy. 
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Theorem 1. The vector a(t) minimizing (2.3) is determined by the system of 
equations 

(2.5) M a(t) = S,, 

where the elements of the matrix M have the form 

(2.6) mpk = t^a^(l-ay(P-l.+jy, 

jp = l , . . . , n + l , fc = 0, . . . , n . 

Proof. The normal equations corresponding to the minimization of (2.3) have the 
form 

(2.7) J ^ 2 ( 1 - ayf-\-jf = 1(1 - tifr^t-i, P = i,...,» + 1 • 

/c=o fc! 

Further we shall show by induction that 5Cp] from (2.4) can be written as 

(2.8) S [« = a * 2 ( l -ay(p-j +J)yt-j, P= l , . . . , n + 1 . 

For p = 1, (2.8) is obvious. Let (2.8) hold for p. Then using the induction assumption 
we can write for p + 1 

OO 

SCp+1] = aSCp] + (1 - a) SCp+1] = a £ (1 - a) ; S£?j = 
j = 0 

= a f ( l - a V a p £ (l - «)'' (P " ] + ^,_,_i = 
i = o i=o V l / 

• - t > + l , . . . , f - / - M - l 

i a -«r,,-i (p-s
1 + sY 

= 0 s = 0 \ & / 
l , . . . , t - M - l 

At'+H+r) 
\ 
we obtain the required relation 

i*t-j-v+ l,...,t-j-u-l 

= a*+1 

r = 0 
r - M - i > + l , . . . , * - a - l 

Since 

sçp+ i ] _. a„+i £( ! _ ay ÍP + Л ^ 

The proof is completed by noticing that the system of equations (2.5) is equivalent 
to the system (2.7). 

The formula 

(2.9) a(t) = MxSt 

can be used in the same way as for the exponential smoothing without missing 

observations. As the calculation of the elements of the matrix M for a chosen 
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smoothing constant a is concerned the problem can be reduced to the calculation of 
sums of the type __(i — a)J' jk (fc = 0, 1,..., n) with missing summands. One can use 
formulas for these sums without missing summands given e.g. in [l5 p. 135] for 
fc = 0, 1,..., 6 and then subtract the values of the missing summands or calculate 
these sums directly using a computer till a prescribed precision is achieved. 

For n = 0 (the simple exponential smoothing) the following explicit formulas 
can be derived (let us denote c = t — v + 1, d = t — u for simplicity) 

&o(t) = {1 - (1 - af + (1 - a f t " 1 SV1, _ £ v ; 

= (1 - a)~dS c / ] , u < t < v; 

= SV\ t £u. 

For n = 1 (the double exponential smoothing) the matrix M in (2.9) has the explicit 
form 

where 

A = 1 - (1 - a)c + (1 - a)d , 

B = -(1/a) [1 - a + {(1 - a) (c - 1) - c} (l - a)c -
- { ( l - a ) ( „ - ! ) - „ } ( ! - a ) " ] , 

C - 1 + {(1 - a) c - (c + 1)} (1 - a)e - {(1 - a) „ - („ + 1)} (I - a)d , 

D - {-(1 - _)/«} [2 + {-(c - 1) c(l - a)2 + 

+ 2(c - 1) (c + 1) (1 - a) - c(c + 1)} (1 - a)0-1 -

- { - ( _ - 1) _(1 - a)2 + 2(„ - 1) (d + 1) (1 - a) -

-dCrf + O H l - a ) " - 1 ] , t^v; 

A = (1 - a)d , B = (1/a) {(1 - a) („ - 1) - „} (1 - a)d , 

C = -{(1 - a) „ - (d + 1)} (1 - a)d , 

D = (1/a) {-(„ - 1) „(1 - a)2 + 2(d - ! ) ( „ + l) (1 - a) -

- d(d + 1)} (1 - a)d , u < t < v ; 

A = C _ 1 , _ = - ( 1 - a)/a , £> = -2(1 - a)/a , t ^ M . 

Remark 1. If the values of c = t — . + 1 and d = t — „ are large one can go 
back to the formulas of the exponential smoothing without missing observations. 
Then e.g. in the simple exponential smoothing with a — 0-2 and c — 9, d = 10 one 
replaces the formula d0(t) - 1-0276 SC1] by d0(t) = S[,1]. 
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Remark 2. The above procedure can be generalized to the case when more 
groups of observations are missing. For example if observations yUi + 1, yttl + 2 , . . . 
•••>yt;1-i,yt.2 + i ,y t t 2 + 2, . . . ,y„ 2 - i (ui < v1 ^ u2 < v2) are missing then one must use 

^ = ( 1 - ^ 5 ^ , 

t = ux + 1, u1 + 2, ..., vx — \,u2 + 1, w2 + 2, ..., v2 — 1 

in (2.4) and omit all summands with missing observations in (2.6). 

3. INTERPOLATION 

The interpolation procedure described in this section is very similar to the procedure 
of exponential smoothing for time series with missing observations from Section 2. 
The particular observations used for the construction of the interpolated value are 
discounted according to their time distances from this value. 

Assume a value ys in a group of missing observations ytt+1, ytt+2, ..., y^-i 
(u + 1 ^ s ^ v — 1) is to be interpolated using the known observations ..., yu_u 

yu, yv, yv+1, ... . Let us suppose that the number of known observations is suf
ficiently large in both directions (forward and backward) from ys. Then it is natural 
for the time series model (2.1) to construct the interpolation ys as the first com
ponent a0 of the vector a = (a0, au ..., an)

f minimizing the expression 

(3.1) £ (i-«)mL-j-iaj^(-j)k}2-
j=~oo I k = 0 kl j 

j+ —v + s+ 1 , . . . ,s — u— 1 

In this section let the bare symbol __ denote the sum used in (3.1). In addition to the 
smoothing statistics 5 [ p ] (see (2.4)) we shall also use "backward" smoothing statistics 
T}Pl defined as 

(3.2) 

T,[1] = ayt + (1 - <x)T*l\ , t = ..., v + \,v,u,u - V...; 

= (1 - oc)Tl
t+\ , t = v - \,v - 2,...,u + 1 ; 

T [p] = aT [ p~ 1 ] + (1 - a)T [^ ]! , t = ...,v + V v, v - \,...,u + \,u,u - 1 , . . . , 

p = 2, ..., n + 1 . 

The statistics T [p] are constructed recursively in the opposite time direction than S\Pl 

and their initial values can be constructed analogously as for S[Pl (e.g. using regression 
estimates based on several last observations of the time series). Let us denote Tt = 
(T [ 1 ] , T [ 2 ] , . . . ,T [ " + 1 ] y. 
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For given n and a let J be the matrix of the type (n + 1) x (n + l) fulfilling 

(з.з) 

1! ( - - / ) 

^ 7 ( 2 - ; ) ( ! - ! ) 

_ _ ( в - / ) . . . ( l - J ) 
«! 

1! 

2! 

( i + i ) 

( 2 + ; ) ( i + i ) 

(в + j ) . . . ( l + j ) 

for all j = ..., — 1, 0, 1, ... . The matrix / is uniquely determined by (3.3). For 

example, for n = 3 it has the form 

(3.4) 

H, o, 0, 0\ 

2a, - 1 , 0, O' 

3a2, - 3 a , 1, 0, 

\4a3, - 6 a 2 , 4a, - 1 / 

Theorem 2. The vector a minimizing (3.1) is determined by the system of equations 

(3.5) Ma = Ss+ JTS, 

where the elements of the matrix M have the form 

_ ( - i ) f c • (3.6) ' i * E(l - a)1-'1 (p - 1 + j ) . . . ( ! + ; ) / , 
fe! (p - 1)! 

p = 1, ..., n + 1 , k = 0, ..., и . 

P r o o f is similar to that of Theorem 1 since the normal equations corresponding 

to the minimization of (3.1) have the form 

.(3-7) І ^ Ь ( i - ^f-Ң-jf = s(i - *fЧ'-ly.-j, 

p = 1, ..., и + 1 , 

and it is possible to show by induction that the p-th component of the vector Ss + JTS 

can be expressed as 

(3-8) . f-Z-r- s(i - *r (P - i + j) • • • (i +;) y.-j • 
(p - 1)! 

For n = 0 the following explicit formula holds (let us denote for simplicity j = 
— s — M, a = u — s): 
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9, - d0 = {(l-ocy + (l- of}-1 (S," + Tl»). 

For n = 1 the interpolation ys = dQ can be calculated as 

'd0\_(AB\-i (Ss" + TlU \ 

^ J - ^ C D J Vs^ + 2«r^-Ts
2V' 

where 

A = (l - a) ' + (l - a)» , 

5 = (!/«)[(! - *y{g - (1 - «)(« - 1)} - (1 - « ) ' { / - (1 - « ) ( / - 1}], 

C = (1 - a / {(/ + 1) - (1 - a)/} - (1 - of {g-(l- a)(g - 1) - «} , 
D - (-/«) [ { " ( / - 0/(1 - «)2 + 2(/ - 1) (f + 1) (1 - «) -

- /(/ + 1)} (1 - ay + {-(g- 2) (g - 1) (1 - af + 

+ 2(g - 2) 0(1 - «) - (g - 1) a} (l - a)"] . 

Remark 3. If the time distance of the last known observation y, from the inter
polated value ys is not large one can proceed in the following way improving the 
interpolation gradually with each new observation y, in the time series ..., yu-u yu, 
yv, yv+l,..., y,(u < s < v ^ f). Let us construct the statistics U[,p] recursively as 

(3.9) U[/] = T - ^ - T - O - *Y(p ~ i - *)"..(l - g)y„ 
(p - 1)! 

l/Wi - ^ + r ^ n ^ 1 - «)t+1~s(P - 2 + s - t).. .(s - r)y l + 1 , (p - 1)1 

t = v, v + 1, ...,p = 1, ...,n + 1 , 

where f = s — u, g = v — s. Then the interpolation $s(f) based on the known 
observations ..., yM-i, yM, yt,, yy+i,..., yt can be constructed as the first com
ponent d0(t) of the vector aA(t) = (d0(t), o\(t), ..., dn(t))' given by the formula 

(3.10) a*(t) = M(t)->(Ss+Ut)9 

where Ut = (U[1], U[2], ..., U[,,+ 1])' and the elements of the matrix M(t) have the 
form 

(3.11) mjt) = - a W ( 5 ( 1 - «y(p - 1 +/). . .(1 + /)(-/)< + 
fc'u> - 1)' J=f 

+ Z 0 - * ) J ( p - 1 - j ) . . . ( l - j ) / } , p = l,...,n + l , fc = 0 n. 
j = 0 

For example, for n = 0 we obtain 

j>s(0 = d0(.) = {(1 - „y + (1 - «). - (1 - a ) ' - ^ 1 }- 1 (Sj" + U^) . 
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4. MULTIVARIATE CASE 

Let yt = (ylt,..., ydt)
f be a d-dimensional time series with the model 

(4.1) Yt = f(t) + Bt, 

lwhere the i-th component ft(t) of the vector f(t) = (/i(f), ...,/*(?))' i s a polynomia 
of order nt and Est = 0, var st = I > 0, EeX = 0 for s -f- f. 

Since the exponential smoothing if performed separately for particular components 
of yt does not take into account the correlations which may exist among these com
ponents, a simple method respecting this fact is looked for. The feature which is 
substantial for the following procedure and which can unpleasantly contradict 
a real situation consists in the assumption that the correlation structure given by I 
does not change in time. 

Let y 1 ? . . . , yN be observations which can be used for the initiation of the procedure 
(such initial observations are used also in the method of adaptive exponential 
smoothing by Enns et al. [5] for the construction of initial ML estimates). Then one 
can estimate the elements a{j of the matrix I consistently using thfe theory of the 
seemingly unrelated regressions (see e.g. [6, p. 160]) as 

(4.2) stJ = e?'e;lN, i,j = l , . . . ,d , 

where eA = (eiu ..., eiN)' is the vector of the OLS residuals from the regression of 
(yu> •••> y.N)' o n (/.(!)> •••>/i(N))/. The initial estimates of the parameters of f(t) 
can be obtained in the second stage by applying the OLS method to the particular 
components of the transformed observations 

(4.3) - , = S - ^ y , 

for t = 1,..., N (the elements stj of S are given in (4.2)). 

The components of zt can be taken as uncorrected and the previous estimates 
of the parameters of f(t) are fully efficient (see e.g. [6, Theorem 8.4.2]). This fact 
motivates the suggestion to use the classical univariate exponential procedure 
(including the choice of the order of the smoothing and the choice of the smoothing 
constant) for particular components of the transformed time series zt constructed 
according to (4.3) for all t. Moreover, it is possible to take advantage of the previous 
initial estimate of f(t) for starting the procedure. Finally, one must revert from the 
smoothed values zt of the transformed time series to the smoothed values yt of the 
original time series according to the formula 

(4.4) yt
A = S 1 / 2 z f

A . 

In particular, if for univariate time series {zlt},..., {zdt} it is possible to use the 
simple exponential smoothing with smoothing constants a 1 ? . . . ,a d , respectively, 
then the following direct formula 
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(4.5) yr = A*y, + ( / - A*)y,U 

holds, where 

(4.6) A* - SÍ/2AS~1/2 

and A is the diagonál matrix with a1? ..., ad on the mam diagonál. 
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S o u h r n 

NĚKTERÉ PROBLÉMY EXPONENCIÁLNÍHO VYROVNÁVÁNÍ 

TOMÁŠ ClPRA 

Článek se zabývá některými praktickými problémy spojenými s klasickým exponenciálním 
vyrovnáváním v časových radách. Základní věta exponenciálního vyrovnávání je rozšířena 
na případ s chybějícími pozorováními a v rámci exponenciálního vyrovnávání je popsána inter-
polační procedura. Je navržena jednoduchá metoda exponenciálního vyrovnávání pro mnoho
rozměrné časové řady. 

Pe3ioMe 

HEKOTOPBIE nPOBJIEMBI ^KC^OHEH^HAJIÍ>HO^O CrJIA^CHBAHH^ 

TOMÁŠ ClPRA 

Pa6ora 3aHHMaeTCH HeKOTopbiMH npaKTHnecKHMH npo6jieMaMH, KacaronrHMHCfl KJiaccHnecKoro 
3KcnoHeHHnajibHoro crna>KHBaHHfí BO BpeMeHHbix p*max. OcHOBHan TeopeMa 3KcnoHeHUHajibHoro 
CniaJKHBaHHH 06o6rH.eHa Ha CJlVHaH C OTCyTCTByK>ni.HMH HaÓJHOfleHHJIMH H onHCaHa TaK^ce HHTep-
nojiHHHOHHaH nponeíiypa B paMKax 3KcnoHeHmrajibHoro crna>KHBaHHíi. npeflJioaceH npocToň 
MeTOfl 3KCnOHeHHHaJIbHOrO CrJia^KMBaHHH J\J\ÍL MHOrOMepHbIX BpeMeHHbIX píIAOB. 
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