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Summary. The paper deals with solutions of transonic potential flow problems handled in the 
weak form or as variational inequalities. Using suitable generalized methods, which are well 
known for elliptic partial differential equations of the second order, some properties of these 
solutions are derived. A maximum principle, a comparison principle and some conclusions from 
both ones can be established. 
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1. INTRODUCTION 

The irrotational, steady and isentropic flow of a non-viscous, compressible fluid 
in a bounded, simply connected domain Q c RN (N = 2) is described by the equation 
for the velocity potential u (n = Vu — gas velocity): 

(i.i) zff.(N2),-) = o. 
i=i ax i \ ox J 

Here O denotes the density. For a polytropic gas it is given by 

(1.2) Q = Q(\Vu\2) = Qo(l~^\ 
V qm J 

for |Vu|2 < qm with constants O0 > 0, x > 1 (see e.g. [7] for the physical background), 
To formulate boundary value problems we assume that dQ is Lipschitz-continuous 
and has the representation dQ = Sx u S2 u S u $1 where Sl5 S2 and S are open 
subsets of dQ and /^.^(Sft) = 0, JLIN-{ being the (N - 1)-dimensional Lebesgue 
measure on dQ. We consider two cases of boundary conditions for u where n is the 
outer normal to dQ: 

402 



Case 1: u = 0 on St , 

°(\VU\2)-T = 9 o n S2^JS; 
dn 

Case 2: /^N«-I(^I) — 0 , 

O(|Vu|2) — = g on 3JQ, where $8Q g do = 0 is assumed, 
dn 

An example for Case 1 can be found in [6: p. 451]. As weak formulations of these 
boundary value problems we get 

(1.3) Jfl Q(\VU\2) VuVv dx = J* gv dO for all v e V, 

with 

(1.4) V = VSl = {v e WU2(Q) | v = 0 on S1 in trace sense} , 

R = S2u S 
in Case 1 and 

(1.5) V= V0:={v6W1'2(.Q)|^vdx = 0 } , 

K = dQ 

in Case 2. In both cases Vis a Hilbert space with the norm ||v|| = (jQ |Vv|2 dx)1 /2 

and g e L2(K) is assumed. A further generalization of (1.1) and (1.3) is the variational 
inequality for ueK: 

(1.6) \Q e(|Vu|2) Vu V(u - v) dx = JK g(u - v) do for all veK, 

where K is a non-empty closed convex subset of V, K _ Ga, and 

(1.7) Ga := {ve V| |Vv|2 = O a.e. on Q} . 

K may be given by a suitable entropy condition [1; 6; 9], e.g. 

K = {veGa\- $aVvVhdx^M $ahdx for all he(C^(.Q))+ 

with constants M _• 0, O < qm, and 

(CSJ(„))+ = { / i e C°°(0) | supp h c c O, h = 0} . 

It is well known that the partial differential operator in (1.1) is of the mixed type. 
If we consider transonic flows then subsonic regions (where (1.1) is elliptic) as well 
as supersonic ones (where ( l . l ) is hyperbolic) occur in Q and the transitions between 
them are usually discontinuous. This fact causes many difficulties in the proof 
of existence of solutions for (1.3) and (1.6) and this problem has not yet been com
pletely solved. Some results in this direction have been found by Feistauer, Mandel, 
Morawetz, Necas and the author for the weak problem (1.3) [1 — 4; 8] and for the 
variational inequality (1.6) [6; 9]. Nevertheless, in this paper we want to study what 
properties the solutions of (1.3) or (1.6) must have. Using suitable generalized 
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methods like the maximum and comparison principles which are well known for 
elliptic equations of the second order (see e.g. [5]) we get some of these properties. 
We point out that throughout the paper we need no entropy condition. 

2. MAXIMUM PRINCIPLE 

If we put 

(2.1) «,,(*) = (?(|Vu(x)|2) StJ . 

dij the Kronecker symbol, for a solution u e Ga of (1.3), we can consider (1.3) as 
a linear elliptic partial differential equation with bounded measurable coefficients 
aiji i,j = 1, ...,1V. The ellipticity holds because of 

> : a , , . ( x ) ^ , = , ( | V u ( x ) | 2 ) | ^ ^ 0 . 
» \ 1 = 1 

The last relation, and hence the following assertions are also valid for any density 
function Q = D(Vu) which is positive, continuous and bounded for |Vu|2 :g a, with 
some a e (0, oo), but may be different from (1.2). 

In this section we first consider the general case of a given symmetric matrix 
(a^x)) with bounded measurable elements and 

(2.2) £ au(x) Uj > 0 

for all xeQ, £ = (£1? ..., £N) eRN\ {0}. For u, v e WU2(Q) we define the bilinear 
form 

N 

(2.3) L(u, v) = £ au(x) uxivxjd* • 
J Q i,j= 1 

Let Rx be an open subset of dQ with jnN_ i(Rx) > 0. According to [5: p. 168] we say 
that u _" 0 on K! is satisfied if u+ = max {u, 0} = 0 on Kj in the trace sense. Other 
definitions concerning the ordering on Rt follow naturally: u ^ v on Rt if u — v g 0 
on R{; 

sup u = inf {k | u g k on JR1? k eR} ; inf u = —sup ( — u) . 
Ri Ri Ri 

Our results will be obtained by easy extensions of the usual arguments, However, 
in the standard literature they are not to be found explicitly for a differential operator 
in our special form (2.3). Therefore we present the simple proofs here, too. 

Lemma 2.1. Let u e W] >2(Q) satisfy 

(2.4) L(u,h) ^ 0 (L(u, h) ^ 0) for all h^O, heV^1). 

J) VRi is defined by (\ A) where S1 has to be replaced by Ri. In the case //^^ifRi) = 0 
we set VRl= WU2(Q). 
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Then 

(2.5) sup u ^ sup u (inf u = inf u) 
Q Rx n Ri 

if A--JV-I(-RI) > 0. It? the case / t ^ . ^K i ) = 0 we have u = const, a.e. On .Q. 

Proof, a) Let c = sup u, v = u - c, Q+ = {x G Q \ v(x) > 0}. Then we have 

on Q+ 

on Q\Q + v+ = max {v, 0} = < 

fVv = Vu on Q+ 

V/; = < 
} 0 on fi\iQ+, 

v+ = 0 on R1? and hence v+ e VRl. Putting h = v+ in (2.4) and using (2.2) we obtain 

0 = L(v+, v+) = f X O0.v
+v+ dx = f £ a,7uXiv

+ d x ^ O . 

J.Q j,/-= 1 J Q i,j= 1 
This inequality implies Vv+ = 0 a.e. on Q and v+ = const. By virtue of v+ = 0 
on R1 we obtain v+ = 0, which means v = u — c :g 0 a.e. on Q. 

b) Let .Hyy-iC^i) = 0. For an arbitrary <p e Cco(Q) we set h = <p — min <p and 
n 

have h e W1'2^), h = 0, Vh = V<p. Then (2.3), (2.4) yield L(u, cp) = L(u, h) = 0, 
and hence L(u, <p) = 0 for all <p e W1 '2(Q). Here we have used the density of C 0 0 ^) 
in W1 2(Q) which holds because dQ is assumed to be Lipschitz-continuous. We get 
L(u, u) = 0 and this implies the assertion. 

The case in parentheses follows in a similar way. • 
R e m a r k 2.2. Suppose that V = V0 and let ueV satisfy (1.3). Since in this 

case §dQ g do = 0 is assumed it is easy to see that the integral relation (1.3) is also 
valid for v e WU2(Q). 

We set R+ = {x e R _ dQ | g(x) > 0} and R~ = {x € R \ g(x) < 0} and assume 
that R + , K~ are open subsets of dQ. This is fulfilled if g is piecewise continuous 
on R. Now, we can establish the following properties. 

Theorem 2.3. Let / ^ ^ ( K ) -# 0, g =j= 0 and let u e Ga be a solution of (1.3). Then 

a) jnN_1(R
+), /Ijv^^K") Ore positive for V = V0. 

b) u cannot be a constant in any subdomain Q' _ Q for which dQ' n R+ or 
dQ' n R~ has a positive measure [iN-i. 

c) u has a nonnegative maximum M and a nonpositive minimum m on Q. 

It achieves M on R+ u S1 and m on K~ u St but does not achieve them in the 

interior of Q. 

d) Suppose that u = const. On dQ' for a subdomain Q' _ Q. Then we have 
u = const. On Q' and ^-^(dQ' n R+) = iiN_1{dQ' n R~) = 0. 
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Proof, a) Because of j R g do = 0 (Case 2), g + 0, neither g <; o nor g ^ 0 is 
possible a.e. on R. 

b) Suppose that u = const, in a subdomain Q' c & with l*N-i(dQf n R+) > 0. 
We choose a j G d£>' n K+ and a sufficiently small ball B = B(y) such that B n Q ^ 
£ &' and B n dQ ^ R+ (see Fig. 1). For an arbitrary <p e C£°(I*) we put 

v(x) 
(>(x), x 
(0 x 

ЄH 

фB. 

Fig. 1. 

Then we have ve VSl and 

0 = $QnB O(|Vu|2) Vu V<p dx = \Q O(|Vu | 2) Vu Vv dx = $R g v do = 

= JRnB 9<P d0 

where (1.3) is used. This equality yields g = 0 on R n B £ K+ in contradiction 
to the definition of K+. By replacing R+ by R~ the other case follows. 

c) By virtue of u e Ga we have u e Wl,0O(Q) and u is a.e. equal to a function from 
C0,1(Q) which has a maximum and a minimum on ;Q. 

Now, we first apply Lemma 2A with Rt = R+ u Sx and al7 given by (2A). From 
(1.3) together with Remark 2.2 we obtain 

L(u, h) = §R+ gh do + j R - gh do = §R~ gh do ^ 0 

for all h ^ 0, h e VRl, and hence M = max u = max u. Application of Lemma 2A 
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with K! = K~ u S! yields m = min u = min u. In the case iiN-i(Sx) > 0 we have 
Q R-KJSX 

M _ inf u = 0 = sup u = m. In the other case the inequality m fiN(Q) = \Q u dx = 
Si Si 

^ M / i iv (^ ) a n d t n e condition in (1.5) yield m = 0 = M. 

The rest of this assertion follows from the strong maximum principle for weak 
subsolutions [5: Theorem 8.19] together with part b) above. 

d) We consider the equation (1.3) for ve C0(Q'), extended by 0 outside of Q', 
and get $Q, £>(|Vu|2) Vu Vv dx = 0 for all v e Wl

0
,2(Q'). Replacing Q by Q' we can 

again apply Lemma 2.1 with Rt = dQ', VRi = Wl,2(Q') and atj given by (2A). 
Note that in this case no assumptions on dQ' are needed in the proof of Lemma 2.1. 
The inequalities (2.5) immediately yield u = const, and part b) above completes 
the proof. • 

Corollary 2.4. Let g = 0 or jnN_t(R) = 0. Then (1.3) has only the solution u = 0. 

Proof. We apply Lemma 2A with R1 = St and recall the corresponding definition 
of V. • 

R e m a r k 2.5. The subdomains in which u = const, have a physical meaning. 
Namely, there the gas is at rest because of Vu = 0. Theorem 2.3b), d) deals with 
such subdomains. Moreover, part b) is a generalization of the following fact: For 
a u which is smooth in a neighbourhood of R+ or R~, (1.3) yields £>(|Vu|2) dujdn = g, 
dujdn > 0 on K + , and dujdn < 0 on K~, respectively. Hence, u cannot be a constant 
in this neighbourhood. 

Theorem 2.6. Let V= V5l, g = 0 (=^0), g 4= 0 and u e Ga be a solution of (13). 
Then we have u < 0 (>0) in the interior of Q. Furthermore, for all points x0 e St 

at which Q satisfies an interior sphere condition2) and the outer normal derivative 
dujdn exists we have dujdn(x0) > 0 (<0) . 

Proof. According to Theorem 2.3c) with fiN^i(R
+) = 0 we have u(x) < max u = 

Si 

= 0 for all x e Q, analogously for the case in parantheses. The assertion concerning 
the sign of the normal derivative follows from [5: Lemma 3.4] which is easy to extend 
for weak subsolutions. • 

R e m a r k 2.7, The last theorem shows that on Sx only flux outwards occurs, 
provided g = 0; that means: only flux inwards on R, is supposed. 

2) That means: there exists a ball B c: Q with x0 e dB. This condition is fulfilled if e.g. 8Q e C2 

[5: pp. 27, 32V 
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3. COMPARISON PRINCIPLE 

If we want to compare two solutions ux, u2 of (V3) or (1.6) we have to study 
the difference between them. From the relation (1.3) or (1.6) we can derive the 
inequality 

Medvu^vu ! - O(|vu2|
2)vu2)v(ux - u2)dx s o. 

An estimate from below is required. Therefore we estimate the integrand. For 
pu p2 eRN we define the function 

(3-1) F(pu p2) := (Q(P\) p1 - Q(P2
2) p2) . (pt - p2) = 

= f(l)-f(0) = tif'(t)dt 

where f(t) = Q(r2(t)) r(t) (Pl - p2), r(t) = p2 + t(Pl - p2). Let 

(3.2) H(q) := Q(q) + 2q Q'(q) be defined for q e [0, a\ . 

Simple computation shows that 

f'(t) ^ 2Q'(r\t))r\t)(Pl - p2Y + 8(r2(t))(Pl - p2Y = H(r2(t))(Pl - p2)
2 

if Q'(q) < 0 is assumed. Hence, we have 

(3.3) F(Pl, p2) = F(p2, Pl) ^ (Pl - p2)
2 ft H(r2(t)) dt. 

R e m a r k 3.1. For a polytropic gas (1.2) we obtain the formula 

(3.4) H(q) = g(q)
X-±l.^=^- with q c : = ^ q m . 
X — 1 qm ~" g X + 1 

It is easy to see that 

(3.5) H(a)>0(<0) iff q <qc(>qc). 

For |Vu|2 < qc(>qc) the partial differential equation (1.1) is elliptic (hyperbolic). 
This function H plays an important role not only for the type of the differential 
operator but also for our estimates. Thus, we will examine it carefully. 

From now on the following assumptions are imposed on Q = O(g): 

i) Q e C2([0, qm)) , 

ii) Q(q) > 0 , Qf(q) < 0 for all q e [0, qm) , 

iii) H defined by (3.2) satisfies (3.5) with some qc e (0, qm) , 

iv) H'(q) < 0 for all q e \qc, (1 + d0) qc~\ for some given 

do€U^zJc\ 

If Q is defined by (1.2) all these assumptions are satisfied. To verify iv) we calculate 

(x - I)2 (q - q,rl)
2 
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from (3.4). Hence, iv) is fulfilled if we choose d0 < min {2\(x — 1), 2}. Using i) — iv) 
we obtain the following estimates for F. 

Lemma 3.2. Let de [0, d0\. Then there exists a constant b = b(d) > 0 such that 

(3.7) F(Pi, p2) = (b(Pl - p2f + H((l + d) qc)) (Pl - p2)
2 

for all P2, p\ g (1 + d) qc. 

Proof, a) For a sufficiently small s > 0 we have H'(q) < 0 for all qeIE: = 
: = [ ( ! — s) qci (1 + d) qc\. Thus, the mean value theorem yields 

H((l + d) qc) - H(q) = M((i + d) qc - q) with M = max H' < 0 
Ie 

On JE := [0, (i — s) qc\ the function H has a minimum m > 0 by virtue of (3.5), 
and for g e Je we have 

H(q) ^m^A + (m- A)(L±A?lJLJ 
(1 + d) qc 

with A := #((1 + d) qc) ^ 0. If we put 

B = min{-M, -2L^d_l > 0 
1 (1 + d) qj 

these two inequalities imply 

(3.8) H(q) ^ B((l + d) qc- q) + A for g 6 [0, (1 + d) qc~\ . 

b) Because of the convexity of the function r2(t) on [0, 1] we have 

(3.9) r2(l) $_ tr2(l) + (1 - t) r2(0) = tP\ + (1 - t) P\ = (1 + d) qc, 

and (3.8) yields H(r2(t)) ^ B((l + d)qc- r2(t)) + A . Using (3.3) and carrying 
out the integration we finally obtain 

F(PI,P2) ^ (Pi - P2y (B((I + d)qc - y \ - \p\ + i(Pi - p2)
2) + A)^ 

^ - \PI - P2\
4 + A)PI - P2y. n 

o 

Corollary 3.3. Le^ H'(q) < 0 on Ix = [0, (1 + d) qc\. Then we can choose s = 1 
in Part a) of the Proof above obtaining b = — £ max H'. 

Ii 

Note that in (3.7) the constant A = A(d) = H((\ + d) qc) is negative for d > 0. 
But for d = 0 we have H(gc) = 0 by virtue of (3.5), and hence 

(3.10) F(Pu p2) = b(0) \Pl - p 2 | 4 for all p2, p2
 = qc . 

Lemma 3.4 Let p\ = (1 — d) qc for some d e (0, 1]. Then there exists a 
5 = S(d) > 0 such that (3.10) is valid for all pl ^ (1 + S) qc. 
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Proof, a) First, let p\ = qe. Hence, (3.9) yields r2(t) = (1 - td) qc S qc> Accord

ing to (3.8) with d = 0, we obtain 

l0H(r2(t))dt = B\l(qc~-r2(t))dl = 

= B(qc - \p\ - \p\ + i(Pi ~ Pif) = B (\dqc + i f o - D2)
2) . 

b) The function K(pup2) := J1 H(r2(t)) dt - |B (p , - p2)
2 is uniformly conti

nuous for p2
 = (1 - d) qc, p2 __ (I + d0) qc. By virtue of a) we have K(pu p2) = 

= \Bdqc > 0 for p2 = qc. Consequently, there exists an z = e(d) > 0 which is 
independent of pu p29 such that K(Pu p2) > 0 for all p2 with \p2 - p2\ < s. Thus 
we obtain K(pu p2) g_ 0 for all p\ _. (1 - d) qc, p2 _̂  (1 + 8) qc if (5 - 5(d) > 0 
is suitably chosen. The inequality (3.3) yields the assertion. • 

Lemma 3.5. Let H be convex on [0, (l + d0) qc~\. Then (3.10), with 6(0) = 
= - i H'(qc), is valid for all P\ = (1 - d) qc, p\ = (1 + d) qc, d e (0, d0]-

Proof. Using the convexity and H(qc) = 0 we get H(g) = H(q) — H(qc) =-

= H'(qc)(q - qc) for geI,. From (3.9) r2(t) e I{ follows, and hence (3.3) yields 

F(Pu P2) = -H'(qc) (Pl - p2)
2 (qc - \p\ - \p\ + \(Pl - p2)

2) __ 

^ -lH'(qc)\Pl ~ - p 2 | \ U 

The question arises which Lemmas hold for H in the case of a polytropic gas. 
The answer depends on x. From (3.6) we obtain H'(q) < 0, but H"(q) _ 0 for 
1 < K = 2 and H"(g) < 0 for x > 2. Hence, Lemma 3.2 with Corollary 3.3 and 
Lemma 3.4 are valid for both cases of x but with different b(d). On the other hand, 
Lemma 3.5, which is a strengthened variant of Lemma 3.4, is only valid for x „" 2 
(note that x = 1.4 for air). 

Application of inequality (3.10) yields the following comparison principle. 

Theorem 3.6. Let uuu2e W],2(Q) satisfy ux = u2 on R, and 

(3.H) Q(uuh):= k ^ V u ^ V u i V h d x g Q(u2,h) 

for all h _ 0, h e VRl. Moreover, we suppose that \Vut\
2 __ (1 — d) qc, |Vu2|2 ^ 

= (1 + 8)qc or |Vu2|2 = (1 - d) ac, |Vu,|2 = (1 + (5) gc a.e. On _2 fOr some 
d e [0, 1], where 8 = 8(d) is the function gives in Lemma 3.4 and 8(0) = 0. Then 
uj :g u2on Q if pN_1(Ri) > 0. It? the case / ^_ ] (R 1 ) = 0 we have ux — u2 = const. 
On .Q. 

Proof, a) For pN-{(R{) > 0 we put w = ux - u2, Q+ = {x e Q | vv(x) > 0} 
and have w+ e VRl. Using the definition (3.1), and (3.H) with h = w+, we obtain 

0 = j^(O(|Vu3 |2) Vu, - O^(|Vu2|
2) Vu2)Vw+ dx = $Q+ F(Vuu V u 2 ) d x . 
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Application of Lemma 3.4 (or Lemma 3.2 in the case d = 0) with px = Vu t(x), 
p2 = Vu2(x) yields 

0 = b(0) Jr2+ |Vu! - Vu2|4 dx = b(0) ]Q |Vw+ |4 dx . 

This inequality implies Vw+ = 0 a.e. on Q and finally w = 0 (see the end of part a) 
in the proof of Lemma 2.1). 

b) Let fiN-i(Ri) = 0. First, by the same argument as in part b) of the proof 
of Lemma 2.1 the relation Q(ux, <p) = Q(u2,(p) for all (p e W1,2(Q) follows. We 
proceed as above. Putting cp = ux — u2 we obtain 0 = \Q F(Vu1? Vu2) dx = 

= b(0) IQ |Vui — Vu2|4 dx, and hence ut — u2 = const, on Q. • 

Corollary 3.7. If, in addition, H is assumed convex then the last theorem holds 
with 3(d) = d for d _" min {1, d0} because Lemma 3.5 can be used. 

Theorem 3.6 is a generalization of the well known comparison principle for 
smooth functions ul9u2 [5: p. 207] where the quasilinear differential operator 
must be elliptic with respect to only one of the two functions. From our comparison 
principle a uniqueness result for the weak problem (1.3) follows immediately. 

Theorem 3.8. Let u e V be a solution of (1.3), and |Vu|2 :g (1 — d) qc a.e. on Q 
for some d e [0, d0~\. Then there is no other solution of (1.3) in Ga with a = (1 + 
+ 3(d)) qc. In particular, problem (1.3) has at most one solution in Gqc. 

Proof. Suppose that v e Ga is another solution of (1.3). Then we have Q(u, h) = 
= Q(v, h) for all h = 0, h e VSl where Remark 2.2 has to be used in the case V = V0. 
Application of Theorem 3.6 with R1 = Si9 and u1 = u, u2 = v or vice versa, yields 
u = v on Q provided iaiV_1(K1) > 0. In the other case we get u = v + const. By 
virtue of the condition in (1.5) this constant must be 0. • 

4. SOME CONCLUSIONS AND ESTIMATES FOR THE DIFEFRENCE 
OF TWO SOLUTIONS 

Throughout this section we assume that in addition to i) — iv) H is a convex func
tion on [0,(1 + do) gc] (that means: x = 2 for a polytropic gas (1.2)). Let de 
e [0, d0] be a given number. Then we put G(d) = Ga with a = (l + d) qc. 

Definition 4.1. Let u e Wia(Q). Then Qc(u) = {x e Q | |Vu|2 = (1 - d) qc} de
notes the elliptic or subsonic region with respect to u in Q, Qt(u) = (x e Q | (1 — 
— d) qc < |Vu|2 rg (1 + d) qc} the transonic region, and .Q/,(u) = {x e Q | (l + 
+ d) qc < |Vu|2} the hyperbolic or supersonic region, u is called elliptic or sub
sonic in Q if nN(Q\Qe(u)) = 0, and transonic if jnN(Q\Qe)u)) = //v(Of(u)) > 0. 

R e m a r k 4. 2. Let d > 0. Then the differential operator of (l . l) is elliptic with 
respect to u in Qe(u), and hyperbolic in Qh(u). 
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From Theorem 3.6 some information on the transonic region with respect to 
a solution of (1.3) follows. 

Theorem 4.3. Let u e G(d) be a solution of (1.3). Then a subset of Qt(u) cannot 
be contained in any subdomain Qf £ Q for which the Dirichlet problem 

(4.1) j Q , e ( | H 2 ) V w Vv dx = 0 for all v e WU2(Qf) , 

w — u = 0 on dQf , 

has a subsonic solution w in Qf. 

Proof. We consider the equation (1.3) for v E CQ(Q'), extended by 0 outside 
of Qf, and obtain that u is a solution of (4.1). Recalling that |Vu|2 ^ (1 + d) qc, 
|Vw|2 ^ (1 — d) qc a.e. on Q' we can apply Theorem 3.6, Corollary 3.7 if we replace 
.Qby Q' and put K! = dQf,VRl = W0

,2(Qf). This yields u = w on Q' and the assertion 
follows. • 

R e m a r k 4.4. Roughly speaking, the assertion of Theorem 3.8 is the following one: 
If there exists a subsonic solution of (1.3) then we have no transonic one. 

Now, we proceed to study the difference of two solutions of the variational ine
quality (1.6). Lemma 3.2 and Lemma 3.5 allow us to establish a general estimate. 

Theorem 4.5. Let uteK c G(d) be a solution of (1.6) with g = gl9 I = 1, 2. Then 

(4.2) fa\VUl - Vu 2 | 4 dx^ 

= cx k |Vux - Vu2|2 dx + c2||u! - tt2||ir-.-(fl) Iki ~ 9I\LHR) 
with 

(4.3) Qt = Qt(Ul) n Qt(u2), 

and with positive constants c2 = c2(Q); CX = ct(d) —> 0 + 0 if d -> 0 + 0. 

Proof, a) If g = gx we put v = u2 in (1.6), and if g = g2 we put v = ut. We 
obtain two inequalities which added to (3.1) yield 

(4.4) jQ F(Vu1? Vu2) dx S $R (g, - g2) (ux - u2) do . 

We split up Q = Qe(uy) u Qe(u2) u Qt. On Qe(ut) we can apply Lemma 3.5 and 
according to (3.10) we have 

F(Vu1? Vu2) = 6(0) |Vux - Vu2 |4 . 

On Qt Lemma 3.2 gives the estimate 

F(Vux, Vu2) = 6(d) |Vu! - Vu2|4 + A(d) |Vu! - Vu2|
2 . 

Since H is convex for q e [0, (1 + do) qj we have H'(q) ^ H'((l + d0) qc) =: c0 < 
< 0. Hence, using Corollary 3.3 we find 6(d) = - £ m a x H ' = ~c0J6. Finally, 

Ii 
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we obtain 

Jo F(Vu1? Vu2) dx = - i c 0 Jfl |Vu! - Vu2|4 dx + 

+ -4(d) k |Vui - Vu2 |2dx . 

b) We can estimate the right hand side of (4.4) in the following way: 

IfROl - 9l){Ul ™ u2)dO| S ||gl - OIILHR) \\U1 ~ U2\\L2(R) S 

= c | | g i ~~ g2[|L2(R) | | w i " " M 2 | |W 1 -2( r?) 

with c = c(Q) > 0. The last two inequalities together with (4.4) imply (4.2) where 

c 2 = - - ; C l = ^ = ~H((l + d)qc)->~H(qc) = 0 if d -+ 0 . D 
CQ CQ CQ CQ 

From the estimate (4.2) we are able to derive a result similar to Theorem 3.8, 
Remark 4.4. 

Theorem 4.6. If there exists a subsonic solution u e K of (1.6) then we have no 
other solution in K <= G(d). In particular, the variational inequality (1.6) has 
at most one solution in K ~~ Gq . 

Proof. Suppose that veK is another solution of (1.6). Then from (4.2) with 

gi = g2 = g w e obtain 

ffl |Vu - Vv|4 dx S cx(d) fflt |Vu - Vv|2 dx = 0 . 

Here we have used that jaN(Qt) ^ fiN(Qt(u)) = 0 because u is assumed to be subsonic. 
Hence, V(u — v) = 0 a.e. on Q and finally u = v by virtue of the definitions (1.4), 
(1.5) of V. D 

If there exist two different solutions of (1.6) with the same boundary data g we 
can also use (4.2) to obtain some conclusions. 

Theorem 4.7. Let ul9 u2eK c G(d) be two solutions of (1.6), and let Qt be defined 
by (43). Then 

a) u! -# u2 is only possible if fiN(Qt) > 0. 

b) i fu ! — u2 = const, on Qt then ux = u2 on Q , 

c) flVu! - Vu2\\
2

LHQt) ^ cx(d) }iN(Qt) . 

Proof, a), b) follow immediately from the inequality (4.2) with gx = g2 = g. 
c) The Schwarz inequality and (4.2) yield 

( k |V«*i ~ Vu2|2 dx)2 ^ fiN(Qt) k |Vu! - Vu2 |4 dx ^ 

= fiN(Qt) Cl(d) k |Vu! - Vu2|2 dx . D 
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Corollary 4.8. By virtue of H(qc) = 0 we have 

c i(J) = -6-fH((l + d)qe)~ H(qe))) = ±dqeH'((l + M)4c)> S e (0, 1) . 
CQ\ J CO 

Hence, the right hand side of the inequality in c) of the above theorem is 0(d) 
if d —> 0. Note that jnN(Qt) remains bounded only if d -> 0. 

Inequality (4.2) and Theorem 4.7 show that Qt, defined by (4.3), is the crucial 
subset of Q when we study the difference of two solutions uuu2. The behaviour 
of u! — u2 on Qt determines in a sense its behaviour on the whole of Q. Now, let us 
consider varying boundary data. 

Theorem 4.9. Let u, u0 e K ^ G(d) be solutions of (1.6) with boundary data g, 
and g0, respectively. Moreover, suppose that \\g — g0\\L2(R) = s and jnN(Qt(u0)) = s2 

for some £ > 0. Then \\u — u0\\wi,2(Q) = Ce1/3 with C = C(d, Q) > 0 . 

Proof. We put u1 = u, u2 = u0, gx = g and g2 = g0 in (4.2), and obtain 

\Q |Vu - Vu0|4 dx S ct(jQt (|Vu| + |Vu0|)2 dx)1 '2 (Jfl |Vu - Vu0|2 dx)1 '2 + 

+ c2\\g - go||L2(R) ||« - u0\\wi,2(Q) g 

= (2 Ci((l + d) qc)
1/2 + c2) e||w - u0||^i,2(r2) . 

Here we have used that juN(Qt) g fiN(Qt(u0)) S e2 by virtue of (4.3). The definition 
of V and the Schwarz inequality imply 

||w - u0\\wl,2(Q) S CS($Q |Vu - Vu0|2 dx)2 S 

S c3 JLIN(Q) J0 |Vu - Vu0|4 dx = c4s||u - u0\\wl,2(Q) . Q 

Corollary 4.10. Ifu0 is subsonic then under the assumptions of the above theorem 
we haveju — U0\\WI,2(Q) ^ C||g — go||L-(R)- That means: the solutions u of (1.6) 
depend continuously on the boundary data g at g0. 

The last corollary shows that the subsonic solutions of (1.6) are stable with respect 
to varying boundary data in the class of all possible solutions from K £ G(d). Let 
us give some concluding remarks: The assertions of this section can similarly derived 
for non-convex H (that means: x > 2 for a polytropic gas (1.2)). Thereby the function 
8(d) given in Lemma 3.4 has to be used. Most of our theorems were formulated for 
solutions of the variational inequality (1.6). It is clear that they are also valid for the 
solutions of the weak problem (1.3) because each solution of (1.3) from G(d) is 
a solution of (1.6) with K = G(d). Moreover, for the solutions of (1.3) we are able 
to prove a modification of Theorem 4.7b). 

Theorem 4.11. Let uu u2 e G(d) be two solutions of (1.3), and let the boundary 
dQt of Qt, defined by (4.3), be Lipschitz-continuous. If Ui = u2 on dQt n Q then 
u^ — u2 on Q\ Qt. 
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Proof. Let Q' = Q\Qt and V = {v e WU2(Q') | v = 0 on dQ' n (í2 u Sx) in 

trace sense}. For v e V', extended by 0 outside of Q\ the relation (1.3) together with 

Remark 2.2 implies 

Jrr Q(\^UI\2) ^UI Vv d x = hndQ' 9V d o » / = 1, 2 . 

Since u! — u2 e V' it is possible to put v = ux — u2, and subtraction of the two 

relations yields JD- F(Vul5 Vu2) dx — 0. Recalling that Q' = ^ e (u i ) u i-?e(u2) we can 

apply Lemma 3.5 on Í2'. From (3.10) we obtain F(Vu1? Vu2) ^ b(0) \Vul — Vu 2 | 4, 

hence V(ux — u2) = 0 a.e. on Q'. By virtue of ut — u2 = 0 on dQ' n Q = dQt n Í2 

we have ut = u2 on Q'. • 
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S o u h r n 

O NĚKTERÝCH VLASTNOSTECH ŘEŠENÍ PROBLÉMU TRANSONICKÉHO 
POTENCIÁLNÍHO PROUDĚNÍ 

HANS-PHTER GITTEL 

V článku se studují řešení problému transonického potentiálního proudění ve slabé formě 
nebo ve tvaru variační nerovnosti. S použitím zobecněných metod, dobře známých pro eliptické 
parciální diferenciální rovnice druhého řádu jsou odvozeny některé vlastnosti těchto řešení. 
Dále je dokázán princip maxima, srovnávací princip a některé jejich důsledky. 
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Резюме 

О НЕКОТОРЫХ СВОЙСТВАХ РЕШЕНИЯ ЗАДАЧИ СВЕРХЗВУКОВОГО 
ПОТЕНЦИОНАЛЬНОГО ПОТОКА 

Н А М В - Р Е Т Е К С1ТТЕЕ 

В статье изучаются решения задачи сверхзвукового потенциального потока в слабой 
форме или в форме вариационного неравенства. При помощи обобщенных методов, хорошо 
известных для эллиптических уравнений в частных производных второго порядка, выведены 
некоторые свойства этих решений и доказаны принцип максимума, принцип сравнения 
и некоторые их следствия. 

АшНог'з аААгеаа: Т>х. Нат-РеХег СШе1, 8ек1юп Магпетаг1к с1ег КагЬМагх-ШгуегзкаЧ. 
Каг1-Магх-Р1а12 10, Ьс\р7л^ Б Б К 7010. 
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