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SOME FUNCTIONS OF EIGENVALUES OF NORMAL OPERATOR 
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Summary. Kellogg's iterations in the eigenvalue problem are discussed with respect to the 
boundary spectrum of a linear normal operator. 
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The Rayleigh-quotient iteration is often used for finding an approximation of the 
eigenvalue in the eigenvalue problem. The problem of approximative construction 
of the eigenvalues does not seem to be satisfactorily solved yet, particularly in the 
case of complex eigenvalues. 

The purpose of this paper is to show how the knowledge of the Rayleigh-quotient 
iterations can be used for the construction of the complex eigenvalues. We will 
search for the eigenvalues of the equation 

(1) Tx = AX 

in a complex Hilbert space X for a normal operator under certain conditions on its 
boundary spectrum. Some terms from the theory of spectral representation arc 
used [1]. 

Let us denote by (•, •) the scalar product in X, let the norm be defined as usual, 
|| * || = (*, *)1 /2 . Let [A'] be the space of linear bounded operators on X, \\T\\X = 
= sup HFNIj. If there is no danger of misunderstanding the indices will be omitted. 

11*11*=-
Similarly, the braces {•] denote sequences as well as sets. Let C be the open complex 
plane. We denote the spectrum of F by O(F), the spectral radius by r(T) and the 
spectral radius circle of T by co(F), i.e. cO(T) = {/l e C: \A\ = r(Tj). Given Te [X] 
we define its adjoint F* for which (Tx, y) = (x, F*y) holds for every x, y e X. We 
say that F is self-adjoint if T = T* and that T is normal if TT* = F*F Iterations 
are constructed in the following way: 

( 2 ) x("+1) = Tx('J), 
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/ (n+1) v ( / i + l ) \ 

U fn (x(">,x(">) ' 

/ Y ( n + 1 ) Y ( / i ) \ 

(4) v - ^ ^ — ^ 
V ; " (x(">, x(rt>) ' 

where x (0) e X. 
First, the convergence of the sequence of (3) is studied. 

Theorem 1. Let Te [X] be a normal operator and let x (0) e X be such that Tx(0) -j= O. 
Then the sequence {fin} generated by x (0) converges. Furthermore, if x (0) is such 
that FAx(0) 4= x (0) for every |/,| < r(T), then {/*„} converges to the square of the 
spectral radius of T. In both cases the convergence is monotonous. 

The proof is quite similar to that in [3] and therefore is omitted. Nearly the same 
results were obtained by Kolomy for linear non-negative self-adjoint operators 

W-
The following theorem explains how to understand the behaviour of the sequence 

{vn} from (4). 

Theorem 2. Let Te [K] be a normal operator and let x{0) e X be such that 
(E(co(T)) X(0>, X(0>) 4= 0, where E is the spectral measure of T (see [l]). Then the 
sequence {vn} converges. 

Proof. As (x ( n + 1 ) , x(n)) = (T(T*T)n x(0), x(0)) due to (2), it is possible to represent 
this expression with the help of the Gelfand-Najmark theorem [ l ] in the form 

(5) (xin+l>, x(">) = J5 A|A|2" (E(dA) x(0), x(0)) 

where .S" c C and a(T) a S. Dividing both the numerator and the denominator 
of the ratio in (4) by r2"(T), we have 

(6) v = U^lr(T)\2"(E(dl)x^\x^) 
KJ " $ s VHTf" (E(dX) x<°>, x«0>) * 

As the both functions in (6) are bounded, the Lebesgue's dominated convergence 
theorem will be used [ l ] . After a short simple computation we obtain 

(7) l i m v . - ^ ^ c U ) ^ ^ ) ) 
V } ^oo (E(co(T)) x (0), x(0)) 

which complete the proof as (E(co(T)) X ( 0 ) , X ( 0 ) ) -# 0 under the assumptions of the 
theorem. 

This result is not positive at all because the eigenvalue of Tneed not be obtained 
as the result of this process. In which cases is the result positive at all?The answer 
is partially given by the assumptions of the former results obtained in [2], [3] and [4]. 
In these papers it is assumed that the operator Thas at least the following property: 
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only one point of the spectrum of Flies on its spectral radius circle (or its ,,weight" 
is in some sense greater than the ,,weight" of some other points of the spectral 
radius circle). This description covers for example the case of self-adjoint non-
negative operators. 

Now we ask for some more information that we can obtain from the limit point 
of {vn} provided more assumptions are imposed on the spectrum of T 

Theorem 3. Let Te [X] be a normal operator and let u1? u2 be its complex points 
of o(T) on co(T) (not necessarily isolated). Further, let x(0) e X be such that 
(E(co(T))x(0),x(0) == (E({uuu2})x(0),x(0)) + 0. Then the limit point of {vn} lies 
on the line segment connecting u l 5 u 2 . In particular, if ux and u2 are complex 
conjugate then the real part of {vn} converges to the real part of both u1? u2. 

Proof. The sequence {vn} converges owing to Theorem 2. The rest of the proof 
proceeds as follows. By the assumption (F(co(T)) x(0), x(0)) = (F({u1? u2}) x(0), x(0)) * 
* 0 we have (E({ux}) x(0), x(0)) + 0 or (F({u2}) x(0), x(0)) + 0. Let us assume that 
(F({uJ) x(0), x(0)) ^ (F({u2}) x(0), x(0)) (without any loss of generality) and denote 

k _ ( F ( { u 2 } ) x ( 0 ) , x ( 0 ) ) 

(E({ux})x
(0\x(0)y 

It is evident that O ^ k ^ 1. For the sequence {vn} we obtain, similarly as in the 
proof of Theorem 2, that 

(8) lim v = UTA^**)*™,*™ = u t + ku2 

»-« " (E(co(T))x(0),x(0)) 1 + k 

holds owing to (7). Denoting ux = Re u + i Im u, u2 = Re u - i Im u, we have 
from (8) that 

lim vn = Re u + i Im u , 
n-+a> k + 1 

and the theorem is proved. 

Remark . If \x1 is an eigenvalue (not necessarily an isolated point of o(T)), then 
the convergence of the real part of {vn} does not depend on the type of u2 due to 
its properties in o(T). 

Comparing Theorem 1 and Theorem 3 we can seek for the values uL and u2 

provided ux and u2 are complex conjugate. 

Proposition 1. Under the assumptions of Theorems 1 and 3 the values ux and u2 

satisfy 

(9) U l = x12 = I™ V0«) e x P ( i a r c c ° s - ^ j • 
^ ' n->oo \ V/^ /J / 
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The proof of this assertion is obvious. For easier understanding of this fact we 
remark that if ux = u2 = ueup holds, then cp can be obtained from the expression 

Re v 
(10) cos <p = lira ------- . 

n -> co v 1^rt 

This proposition gives us the tool for computation of complex conjugate points 
of o(T). 

A similar method can by used also in the case, when \x1 and u2 are not complex 
conjugate. 

Propostiion 2. Let Te [X] be a normal operator and let ux and u2 be the only 
points of G(T) lying on co(T). Further, let x(0) e X and x(0) e X be such that 

(E({ul})x^\x^)(E({u2})x^,x^) + 

+ (E({u1})x^,x^)(E({n2})x^,x^) 
and 

(E(co(T)) x(0), x(0)) * 0 , (E(co(T)) ic(0), x(0)) * 0 . 

Then the pair u1? u2 is the solution of the equation 

(Re vx — Re v )̂ (Im ux — Im u2) = (Re ux — Re u2) (Im v̂  — Im v%) 

under the condition 

\ux\ = |u2| = r (T ) , 

where vx, vx are the limit points of the sequences {vn} with the starting approxi
mations x(0), x (0), respectively. 

The proof requires only a short straightforward computation, se we omit it. 
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Souhrn 

NEKTERE FUNKCE VLASTNICH CISEL NORMALNHO OPERATORU 

TOMAS KOJECKY 

Popisuje se chovani Kelloggovych iteraci pfi reseni rovnice Tx — Xx v Hilbertove prostoru 
pro normalni operator. Je studovana situace, kdy na spektralni kruznici co(T) operatoru T 
(co(T) — {Xe C, X = r(T)}) lezi dva komplexni body spektra. K jejich urceni se uziji posloup-
nosti (3) a (4) — jiste Rayleighovy podily. 
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Р е з ю м е 

НЕКОТОРЫЕ ФУНКЦИИ СОБСТВЕННЫХ ЗНАЧЕНИЙ 
НОРМАЛЬНОГО ОПЕРАТОРА 

ТОМА8 К01ЕСКУ 

Описывается отношение итераций Келлогга для решения уравнения Тх — Хх с простран
стве Банаха в случае; когда оператор Т является нормальным. Рассматривается ситуациа; 
когда на спектральной окружности со (Т) оператора Т находятся две комплехные точки его 
спектра. Для их нахождения берутся (3) и (4)-некоторые частные Ра лея. 

Ашког'з аМгеьз: Ог. Тотаз Ко}еску, С8с, РУР ДО, У1с1еп5ка 15, 771 46 О1отоис. 
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