Applications of Mathematics

Jaroslav Haslinger; Václav Horák; Pekka Neittaanmäki; Kimmo Salmenjoki Identification of critical curves. II. Discretization and numerical realization

Applications of Mathematics, Vol. 36 (1991), No. 5, 380-391
Persistent URL: http://dml.cz/dmlcz/104474

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

IDENTIFICATION OF CRITICAL CURVES
 PART II: DISCRETIZATION AND NUMERICAL REALIZATION

Jaroslav Haslinger, Václav Horák, Pekka Neittaanmäki, Kimmo Salmenjoki

(Received April 11, 1990)
Summary. We consider the finite element approximation of the identification problem, where one wishes to identify a curve along which a given solution of the boundary value problem possesses some specific property. We prove the convergence of FE-approximation and give some results of numerical tests.

Keywords: Identification of a curve, approximation by FEM, convergence.
AMS classification: 49E30, 65N30

INTRODUCTION

In practice we often meet problems when we wish to identify a curve along which a given solution of a boundary value problem possesses some specific property. In [1] the problem of identification of a curve along which the "flux" functional $\int_{\varphi}(\partial u / \partial n) \mathrm{d} s$ attains its maximum, is analysed. The present paper deals with the approximation of this problem. Some numerical results are presented.

1. SETTING OF THE PROBLEM

This paper deals with the finite element approximation of an identification problem, the continuous version of which has been already introduced in [1]. Let us mention its definition. We shall assume the following mixed boundary value problem:
$\left(\mathscr{P}^{\prime}\right) \quad\left\{\begin{array}{rlr}-\Delta u & =f & \text { in } \quad \Omega, \\ u & =0 & \text { on } \quad \Gamma_{1}, \\ \frac{\partial u}{\partial n} & =g \quad & \text { on } \quad \Gamma_{2},\end{array}\right.$
where

$$
\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \mid 0<x_{2}<p\left(x_{1}\right), x_{1} \in(0,1)\right\}
$$

is a bounded domain, the Lipschitz boundary $\partial \Omega$ of which is decomposed as follows

$$
\begin{aligned}
& \partial \Omega=\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2} \\
& \Gamma_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \mid x_{2}=p\left(x_{1}\right), x_{1} \in(0,1)\right\} \\
& \Gamma_{1}=\partial \Omega \backslash \bar{\Gamma}_{2}
\end{aligned}
$$

Here p is a Lipschitz continuous function on [0, 1]. Moreover, $f \in L^{2}(\Omega), g \in L^{2}\left(\Gamma_{2}\right)$. In order to give the variational form of (\mathscr{P}^{\prime}), we introduce the space

$$
V=\left\{v \in H^{1}(\Omega) \mid v=0 \text { on } \Gamma_{1}\right\} .
$$

The variational formulation of $\left(\mathscr{P}^{\prime}\right)$ reads as follows:

$$
\left\{\begin{array}{l}
\text { Find } \quad u \in V \text { such that } \tag{P}\\
(\nabla u, \nabla v)_{0, \Omega}=(f, v)_{0, \Omega}+\int_{r_{2}} g v \mathrm{ds} \quad \forall v \in V
\end{array}\right.
$$

The symbol $(,)_{0, \Omega}$ denotes the usual scalar product in $L^{2}(\Omega)$.
Let $0<\bar{\alpha}<\bar{\beta}<1, \delta>0$ be given. By $U_{\text {ad }}$ we denote a subset of Lipschitz continuous functions, defined by

$$
\begin{aligned}
& U_{\mathrm{ad}}=\left\{\varphi \mid \exists \alpha \in[0, \bar{\alpha}], \beta \in[\bar{\beta}, 1]: \varphi \in C^{0,1}([\alpha, \beta)]\right. \\
& \varphi(\alpha)=p(\alpha), \varphi(\beta)=p(\beta), \delta \leqq \varphi \leqq p \text { on }[\alpha, \beta] \\
& \left.\left|\varphi\left(x_{1}\right)-\varphi\left(\bar{x}_{1}\right)\right| \leqq C_{1}\left|x_{1}-\bar{x}_{1}\right| \quad \forall x_{1}, \bar{x}_{1} \in[\alpha, \beta], \text { meas } \Omega(\varphi)=C_{2}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{\Omega}(\varphi)=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \mid 0 \leqq x_{2} \leqq p\left(x_{1}\right) \quad x_{1} \in[0, \alpha] \cup[\beta, 1]\right. \\
& \left.0 \leqq x_{2} \leqq \varphi\left(x_{1}\right) \quad x_{1} \in[\alpha, \beta]\right\}
\end{aligned}
$$

and C_{1}, C_{2} are positive constants such that $U_{\mathrm{ad}} \neq \emptyset$.
Finally, set

$$
J(\varphi)=\left\langle\frac{\partial u}{\partial n}, 1\right\rangle_{\partial \Omega(\varphi)}-\int_{\Gamma_{2^{1}(\varphi)}} g \mathrm{~d} s-\int_{\Gamma_{2^{2}(\varphi)}} g \mathrm{~d} s,
$$

where

$$
\begin{aligned}
& \Gamma_{2}^{1}(\varphi)=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \mid x_{2}=p\left(x_{1}\right), x_{1} \in(0, \alpha)\right\} \\
& \Gamma_{2}^{2}(\varphi)=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \mid x_{2}=p\left(x_{1}\right), x_{1} \in(\beta, 1)\right\}
\end{aligned}
$$

and $\langle,\rangle_{\partial \Omega(\varphi)}$ denotes the duality pairing between $H^{-1 / 2}(\partial \Omega(\varphi))$ and $H^{1 / 2}(\partial \Omega(\varphi))$.
In [1] the following problem has been introduced:
$(\mathbf{P})^{\prime}$

$$
\left\{\begin{array}{l}
\text { Find } \quad \varphi^{*} \in U_{\text {ad }} \quad \text { such that } \\
J\left(\varphi^{*}\right)=\max _{\varphi \in U_{\mathrm{ad}}} J(\varphi)
\end{array}\right.
$$

This problem can be equivalently formulated (see [1]) as follows:
(P)

$$
\left\{\begin{array}{l}
\text { Find } \quad \varphi^{*} \in U_{\mathrm{ad}} \quad \text { such that } \\
\mathscr{I}\left(\varphi^{*}\right)=\min _{\varphi \in U_{\mathrm{ad}}} \mathscr{I}(\varphi),
\end{array}\right.
$$

where

$$
\mathscr{I}(\varphi)=\int_{\Omega(\varphi)} f \mathrm{~d} x+\int_{\Gamma_{2^{1}(\varphi)}} g \mathrm{~d} s+\int_{\Gamma_{2^{2}(\varphi)}} g \mathrm{~d} s .
$$

The existence of at least one solution φ^{*} of (\mathbf{P}) has been established in [1].

2. APPROXIMATION OF (P)

In what follows we shall assume $\Omega \subset \mathbf{R}^{2}$ to be of a special type, namely such that the function p describing Γ_{2} is piecewise linear in $[0,1]$ with nodes included in $[\bar{\alpha}, \bar{\beta}]$ only (see Fig. 1)*)

Figure 1.

Let $\mathscr{D}_{n}(\alpha, \beta): \alpha=a_{1}<a_{2}<\ldots<a_{n}=\beta$ be a partition of $[\alpha, \beta]$, where the number of nodal points n doesn't depend on $\alpha \in[0, \bar{\alpha}]$ and $\beta \in[\bar{\beta}, 1]$. The x_{1}-coordinates of the vertices of p are included in $\mathscr{D}_{n}(\alpha, \beta)$. Any $\mathscr{D}_{n}(\alpha, \beta)$ will be characterized by two numbers $h_{\max }(\alpha, \beta)=\max _{i}\left|a_{i+1}-a_{i}\right|, h_{\min }(\alpha, \beta)=\min _{i}\left|a_{i+1}-a_{i}\right|$. We shall assume that the position of $a_{i}, i=1, \ldots, n$ depends continuously on α, β.

The approximation of U_{ad} will be constructed by means of piecewise linear functions:

$$
\begin{aligned}
& U_{\mathrm{ad}}^{n}=\{\varphi \mid \exists \alpha \in[0, \bar{\alpha}], \beta \in[\bar{\beta}, 1]: \varphi \in C([\alpha, \beta]), \\
& \left.\varphi\right|_{\overline{a_{i-1} a_{i}}} \in P_{1}\left(\overline{a_{i-1} a_{i}}\right), \varphi(\alpha)=p(\alpha), \varphi(\beta)=p(\beta), \\
& \delta \leqq \varphi \leqq p \text { on }[\alpha, \beta],\left|\varphi\left(\bar{x}_{1}\right)-\varphi\left(x_{1}\right)\right| \leqq C_{1}\left|x_{1}-\bar{x}_{1}\right| \\
& \left.\forall x_{1}, \bar{x}_{1} \in[\alpha, \beta], \widetilde{C}_{2} \leqq \text { meas } \Omega(\varphi) \leqq \widetilde{C}_{3}\right\} .
\end{aligned}
$$

$\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \boldsymbol{C}_{3}$ are positive constants chosen in such a way that $U_{\mathrm{ad}}^{n} \neq \emptyset$.
*) This assumption is only for technical reasons.

Remark 2.1. The equality constraint meas $\Omega(\varphi)=C_{2}$ in the definition of $U_{\text {ad }}$ is now replaced by two sided inequality constraints $\widetilde{C}_{2} \leqq$ meas $\Omega(\varphi) \leqq \widetilde{C}_{3}$ (for the choice of $\widetilde{C}_{2}, \widetilde{C}_{3}$ see below). This means that $U_{\mathrm{ad}}^{n} \notin U_{\mathrm{ad}}$.

The approximation of (\mathbf{P}) is now defined as follows:
$(\mathbf{P})_{n} \quad\left\{\begin{array}{l}\text { Find } \quad \varphi_{n}^{*} \in U_{\mathrm{ad}}^{n} \text { such that } \\ \mathscr{I}\left(\varphi_{n}^{*}\right)=\min _{\varphi \in \mathrm{U}_{\mathrm{ad}}} \mathscr{I}(\varphi) .\end{array}\right.$
Next, we shall analyse
(i) the existence of at least one solution φ_{n}^{*} of $(\mathbf{P})_{n}$;
(ii) the relation between $(\mathbf{P})_{n}$ and (\mathbf{P}) when $n \rightarrow \infty^{+}$.

3. EXISTENCE OF A SOLUTION FOR (P) \boldsymbol{n}_{n}

In order to prove the existence of a solution for $(\mathbf{P})_{n}$, we formulate this problem in the language of discrete design variables. The vector of discrete design variables $\omega=\left(\omega_{1}, \ldots, \omega_{2 n}\right)$ contains
(j) the nodes of $\mathscr{D}_{n}(\alpha, \beta)$;
(jj) the x_{2}-coordinates of vertices of $\varphi \in U_{\mathrm{ad}}^{n}$ at $a_{i}, i=1, \ldots, n$.
For the sake of simplicity of notation we shall suppose that the first n components of ω are the nodes of $\mathscr{D}_{n}(\alpha, \beta)$, while the elements of (jj) are listed last, i.e.

$$
\begin{array}{ll}
\omega_{i}=a_{i} & i=1, \ldots, n \\
\omega_{i}=\varphi\left(a_{i-n}\right) & i=n+1, \ldots, 2 n .
\end{array}
$$

Let the parameter n be fixed. Then $U_{a d}^{n}$ can be identified with a compact subset U of $\mathbf{R}^{2 n}$ as follows:

$$
\begin{aligned}
& U=\left\{\omega \in \mathbf{R}^{2 n} \mid h_{\max }\left(\omega_{1}, \omega_{n}\right) \geqq \omega_{i+1}-\omega_{i} \geqq h_{\min }\left(\omega_{1}, \omega_{n}\right), i=1, \ldots, n-1 ;\right. \\
& \omega_{1} \in[0, \bar{\alpha}], \omega_{n} \in[\bar{\beta}, 1], \omega_{n+1}=p\left(\omega_{1}\right), \omega_{2 n}=p\left(\omega_{n}\right) ; \\
& \delta \leqq \omega_{i} \leqq p\left(\omega_{i-n}\right), i=n+2, \ldots, 2 n-1 ; \\
& \left|\omega_{i+1}-\omega_{i}\right| \leqq C_{1}\left|\omega_{i+1-n}-\omega_{i-n}\right|, i=n+1, \ldots, 2 n-1 ; \\
& \widetilde{C}_{2} \leqq \omega_{1} \frac{\left(p(0)+p\left(\omega_{1}\right)\right)}{2}+\sum_{i=n+1}^{2 n-1} \frac{\left(\omega_{i+1}+\omega_{i}\right)}{2}\left(\omega_{i+1-n}-\omega_{i-n}\right)+ \\
& +\left(1-\omega_{n} \frac{\left(p\left(\omega_{n}\right)+p(1)\right)}{2} \leqq \tilde{C}_{3}\right\} .
\end{aligned}
$$

Let $\mathscr{T}_{n}: U_{\mathrm{ad}}^{n} \rightarrow \mathbf{R}^{2 n}$ be a mapping defined through the relation

$$
\mathscr{T}_{n}(\varphi)=\left(a_{1}, \ldots, a_{n}, \varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right), \quad \varphi \in U_{\mathrm{ad}}^{n}
$$

It is easy to see that $\mathscr{T}_{n}\left(U_{\mathrm{ad}}^{n}\right)=U$ and the inverse mapping $\mathscr{T}_{n}^{-1}: U \rightarrow U_{\mathrm{ad}}^{n}$ is given by

$$
\mathscr{T}_{n}^{-1}(\omega)=\sum_{j=1}^{n} \omega_{j+n} \ell_{j}, \quad \omega=\left(\omega_{1}, \ldots, \omega_{2 n}\right) \in U
$$

where $\ell_{j}, j=1, \ldots, n$ are piecewise linear functions satisfying $\ell_{j}\left(a_{i}\right)=\delta_{i j}$. Finally, set

$$
\mathscr{L}(\omega)=\mathscr{I}\left(\mathscr{T}_{n}^{-1} \omega\right)=\int_{\Omega(\varphi)} f \mathrm{~d} x+\int_{\Gamma_{2^{1}(\varphi)}} g \mathrm{~d} s+\int_{\Gamma_{2^{2}(\varphi)}} g \mathrm{~d} s .
$$

The equivalent formulation of $(\mathbf{P})_{n}$ is given by

$$
\left\{\begin{array}{l}
\text { Find } \omega^{*} \in U \text { such that } \tag{P}\\
\mathscr{L}\left(\omega^{*}\right)=\min _{\omega \in U} \mathscr{L}(\omega)
\end{array}\right.
$$

The main result of this section is

Theorem 3.1. For any n there exists at least one solution φ_{n}^{*} of $(\mathbf{P})_{n}$.
Proof. U is a compact subset of $\mathbf{R}^{2 n}, \omega \rightarrow \mathscr{L}(\omega)$ is a continuous function. Using the classical compactness argument, we obtain the existence of at least one $\omega^{*}=$ $=\left(\omega_{1}^{*}, \omega_{2}^{*}, \ldots, \omega_{2 n}^{*}\right) \in U$ solving $(\widetilde{\mathbf{P}})_{n}$. Setting $\varphi_{n}^{*}=\sum_{j=1}^{n} \omega_{j+n}^{*} \ell_{j}$ we arrive at the asser-. tion of Theorem 3.1.

4. RELATION BETWEEN (\mathbf{P}) AND $(\mathbf{P})_{n}, n \rightarrow \infty$

Let $\left\{\mathscr{D}_{n}(\alpha, \beta)\right\}, n \rightarrow \infty$ be a regular family of partitions of $[\alpha, \beta]$ in the following sense:

$$
\left\{\begin{array}{l}
\text { there exists a positive number } q \text { independent of } \\
n, \alpha, \beta \text { and such that } \\
\frac{h_{\max }(\alpha, \beta)}{h_{\min }(\alpha, \beta)} \leqq q
\end{array}\right.
$$

Let $\varphi_{n}^{*} \in U_{\mathrm{ad}}^{n}$ be a solution of $(\mathbf{P})_{n}$. Now we shall analyse what happens when $n \rightarrow \infty$.

First of all we shall specify the choice of constants $\tilde{C}_{2}, \tilde{C}_{3}$ appearing in the definition of U_{ad}^{n}. We set

$$
\begin{aligned}
& \tilde{C}_{2}=C_{2}\left(1-\left(\frac{1}{n}\right)^{\gamma}\right), \\
& \tilde{C}_{3}=C_{2}\left(1+\left(\frac{1}{n}\right)^{\gamma}\right),
\end{aligned}
$$

where $\gamma \in(0,1)$ and the meaning of C_{2} is given by the definition of $U_{\text {ad }}$. First we prove

Lemma 4.1. For any $\varphi \in U_{a d}, \varphi:[\alpha, \beta] \rightarrow \mathbf{R}^{1}$ there exists a sequence $\varphi_{n} \in U_{a d}^{n}$ defined on $[\alpha, \beta]$ and such that

$$
\begin{equation*}
\varphi_{n} \rightrightarrows \varphi \text { (uniformly) on }[\alpha, \beta] . \tag{4.1}
\end{equation*}
$$

Proof. Let $\varphi \in U_{\mathrm{ad}}$ be defined on $[\alpha, \beta], \alpha \in[0, \bar{\alpha}], \beta \in[\bar{\beta}, 1]$. Set $\varphi_{n}=r_{n} \varphi$, where $r_{n} \varphi$ denotes the piecewise linear Lagrange interpolation of φ. Using the classical approximation properties of φ_{n} we have

$$
\begin{equation*}
\left\|\varphi_{n}-\varphi\right\|_{L^{\infty}((\alpha, \beta))} \leqq c \frac{1}{n}\|\varphi\|_{W^{1, \infty}((\alpha, \beta))} \leqq c \frac{1}{n} \tag{4.2}
\end{equation*}
$$

which yields (4.1). Let us prove that $\varphi_{n} \in U_{\mathrm{ad}}^{n}$. Clearly, it is necessary only to verify that

$$
C_{2}\left(1-\left(\frac{1}{n}\right)^{\gamma}\right) \leqq \text { meas } \Omega\left(\varphi_{n}\right) \leqq C_{2}\left(1+\left(\frac{1}{n}\right)^{\gamma}\right)
$$

(the other properties of φ_{n} appearing in the definition of U_{ad}^{n} are satisfied because of the definition of φ_{n}). We have

$$
\begin{aligned}
& \text { meas } \Omega\left(\varphi_{n}\right)=\int_{\Omega\left(\varphi_{n}\right)} \mathrm{d} x=\operatorname{meas} \Omega-\int_{\alpha}^{\beta} \int_{\varphi_{n}}^{p} \mathrm{~d} x= \\
& =\operatorname{meas} \Omega-\int_{\alpha}^{\beta} \int_{\varphi_{n}}^{p} \mathrm{~d} x \pm \int_{\alpha}^{\beta} \int_{\varphi}^{p} \mathrm{~d} x= \\
& =\operatorname{meas} \Omega(\varphi)+\int_{\alpha}^{\beta}\left(\int_{\varphi}^{p} \mathrm{~d} x_{1}-\int_{\varphi_{n}}^{p} \mathrm{~d} x_{1}\right) \mathrm{d} x_{2} \leqq C_{2}+\int_{\alpha}^{\beta}\left|\int_{\varphi_{n}}^{\varphi} \mathrm{d} x_{1}\right| \mathrm{d} x_{2} \\
& \leqq C_{2}+c \frac{1}{n} \leqq C_{2}\left(1+\left(\frac{1}{n}\right)^{\gamma}\right)
\end{aligned}
$$

because of (4.2), provided n is sufficiently large.
Similarly

$$
\text { meas } \Omega\left(\varphi_{n}\right) \geqq C_{2}\left(1-\left(\frac{1}{n}\right)^{\gamma}\right)
$$

The main of this section is
Theorem 4.1. Let $\dot{\varphi}_{n}^{*} \in U_{\mathrm{ad}}^{n}, \varphi_{n}^{*}:\left[\alpha_{n}^{*}, \beta_{n}^{*}\right] \rightarrow \mathbf{R}^{1}$ be a solution of $(\mathbf{P})_{n}$. Then there exist subsequences of $\left\{\alpha_{n}^{*}\right\},\left\{\beta_{n}^{*}\right\},\left\{\varphi_{n}^{*}\right\}$ (denoted by the same symbol) and $\alpha^{*} \in$ $\in[0, \bar{\alpha}], \beta^{*} \in[\bar{\beta}, 1], \varphi^{*} \in U_{\mathrm{ad}}, \varphi^{*}:\left[\alpha^{*}, \beta^{*}\right] \rightarrow \mathbf{R}^{1}$ such that

$$
\left\{\begin{array}{l}
\alpha_{n}^{*} \rightarrow \alpha^{*}, \quad \beta_{n}^{*} \rightarrow \beta^{*}, \quad n \rightarrow \infty \tag{4.3}\\
\varphi_{n}^{*} \rightarrow \varphi^{*} \quad \text { on } \quad I_{m}=\left[\alpha^{*}+\frac{1}{m}, \quad \beta^{*}-\frac{1}{m}\right]
\end{array}\right.
$$

for any integer m and

$$
\begin{equation*}
\varphi^{*} \text { is a solution of }(\mathbf{P}) \tag{4.4}
\end{equation*}
$$

Proof. Let $\varphi_{n}^{*} \in U_{\mathrm{ad}}^{n}, \varphi_{n}^{*}:\left[\alpha_{n}^{*}, \beta_{n}^{*}\right] \rightarrow \mathbf{R}^{1}$ be a solution of $(\mathbf{P})_{n}$:

$$
\begin{equation*}
\mathscr{I}\left(\varphi_{n}^{*}\right) \leqq \mathscr{I}(\varphi) \quad \forall \varphi \in U_{\mathrm{ad}}^{n} \tag{4.5}
\end{equation*}
$$

As $\alpha_{n}^{*} \in[0, \bar{\alpha}], \beta_{n}^{*} \in[\bar{\beta}, 1]$ there exist subsequences of $\left\{\alpha_{n}^{*}\right\},\left\{\beta_{n}^{*}\right\}$ (still denoted by the same symbol) and numbers $\alpha^{*} \in[0, \bar{\alpha}], \beta^{*} \in[\bar{\beta}, 1]$ such that

$$
\begin{equation*}
\alpha_{n}^{*} \rightarrow \alpha^{*}, \quad \beta_{n}^{*} \rightarrow \beta^{*}, \quad n \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Let m be an integer and I_{m} as above. Then φ_{n}^{*} are defined on I_{m} (m being fixed) for n sufficiently large. As the sequence $\left\{\left.\varphi_{n}^{*}\right|_{r_{m}}\right\}$ satisfies on I_{m} all assumptions of the Ascoli-Arzela theorem, there exist a subsequence $\left\{\varphi_{n^{1}}^{*}\right\} \subset\left\{\varphi_{n}^{*}\right\}$ and a function $\varphi^{*(m)} \in C\left(I_{m}\right)$ such that

$$
\varphi_{n^{1}}^{*} \rightrightarrows \varphi^{*(m)} \quad \text { on } \quad \mathrm{I}_{m} .
$$

Replacing m by $(m+1)$, one can find a subsequence $\left\{\varphi_{n^{2}}^{*}\right\} \subset\left\{\varphi_{n^{1}}^{*}\right\}$ defined on I_{m+1} and a function $\varphi^{*(m+1)} \in C\left(I_{m+1}\right)$ such that

$$
\varphi_{n^{2}}^{*} \rightarrow \varphi^{*(m+1)} \quad \text { on } I_{m+1} .
$$

Clearly $\varphi^{*(m+1)}=\varphi^{*(m)}$ on I_{m}. Repeating the same procedure for any integer m and passing to the diagonal subsequence defined by means of $\left\{\varphi_{n^{1}}^{*}\right\},\left\{\varphi_{n^{2}}^{*}\right\}, \ldots$ one construct a sequence, denoted by $\left\{\varphi_{n}^{*}\right\}$, such that

$$
\varphi_{n}^{*} \rightrightarrows \varphi^{*} \quad \text { on } \quad I_{m} \quad \text { where } \quad \varphi^{*}=\varphi^{*(m)} \quad \text { on } I_{m}, \quad m \text { integer. }
$$

It is easy to see that $\varphi^{*} \in U_{\mathrm{ad}}$. Indeed, as

$$
C_{2}\left(1-\left(\frac{1}{n}\right)^{q}\right) \leqq \operatorname{meas} \Omega\left(\varphi_{n}^{*}\right) \leqq C_{2}\left(1+\left(\frac{1}{n}\right)^{q}\right)
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{meas} \Omega\left(\varphi_{n}^{*}\right)=C_{2} \tag{4.7}
\end{equation*}
$$

But

$$
\begin{aligned}
& \text { meas } \Omega\left(\varphi_{n}^{*}\right)=\operatorname{meas} \Omega-\int_{\alpha_{n}^{*}}^{\beta_{n^{*}}^{*}} \int_{\varphi_{n^{*}}}^{p} \mathrm{~d} x= \\
& =\text { meas } \Omega-\int_{\boldsymbol{I}_{m}} \int_{\varphi_{n^{*}}}^{p} \mathrm{~d} x-\int_{\boldsymbol{G}_{m}} \int_{\varphi_{n}}^{p} \mathrm{~d} x,
\end{aligned}
$$

where meas $G_{m} \rightarrow 0$ as $m \rightarrow \infty$. Keeping m fixed and $n \rightarrow \infty$ we have

$$
\lim _{n \rightarrow \infty} \operatorname{meas} \Omega\left(\varphi_{n}^{*}\right)=\operatorname{meas} \Omega-\int_{I_{m}} \int_{\varphi^{*}}^{p} \mathrm{~d} x-\int_{G_{m}} \int_{\varphi^{*}}^{p} \mathrm{~d} x .
$$

Letting $m \rightarrow \infty$ we finally obtain

$$
\lim _{n \rightarrow \infty} \operatorname{meas} \Omega\left(\varphi_{n}^{*}\right)=\operatorname{meas} \Omega-\int_{\alpha^{*}}^{\beta^{*}} \int_{\varphi^{*}}^{p} \mathrm{~d} x=\operatorname{meas} \Omega\left(\varphi^{*}\right)
$$

Comparing this with (4.7) we see that meas $\Omega\left(\varphi^{*}\right)=C_{2}$. Further

$$
\begin{aligned}
& \varphi^{*}\left(\alpha^{*}+\frac{1}{m}\right)=\lim _{n \rightarrow \infty}\left(\varphi_{n}^{*}\left(\alpha^{*}+\frac{1}{m}\right)-\varphi_{n}^{*}\left(\alpha_{n}^{*}\right)\right)+\lim _{n \rightarrow \infty} \varphi_{n}^{*}\left(\alpha_{n}^{*}\right)= \\
& =\lim _{n \rightarrow \infty}\left(\varphi_{n}^{*}\left(\alpha^{*}+\frac{1}{m}\right)-\varphi_{n}^{*}\left(\alpha_{n}^{*}\right)\right)+\lim _{n \rightarrow \infty} p\left(\alpha_{n}^{*}\right)=p\left(\alpha^{*}\right)+c(m),
\end{aligned}
$$

where $c(m) \rightarrow 0$ if $m \rightarrow \infty$. Thus $\varphi^{*}\left(\alpha^{*}\right)=p\left(\alpha^{*}\right)$ and similarly $\varphi^{*}\left(\beta^{*}\right)=p\left(\beta^{*}\right)$. The other conditions appearing in the definition of U_{ad} are easily satisfied. Let us prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathscr{I}\left(\varphi_{n}^{*}\right)=\mathscr{I}\left(\varphi^{*}\right) \tag{4.8}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \int_{\Omega\left(\varphi_{n^{*}}\right)} f \mathrm{~d} x=\int_{\Omega} f \mathrm{~d} x-\int_{\alpha_{n^{*}}}^{\beta_{n^{*}}} \int_{\varphi_{n^{*}}}^{p} f \mathrm{~d} x= \\
& =\int_{\Omega} f \mathrm{~d} x-\int_{I_{m}} \int_{\varphi_{n^{*}}}^{p} f \mathrm{~d} x-\int_{G_{m}} \int_{\varphi_{n^{*}}}^{p} f \mathrm{~d} x,
\end{aligned}
$$

where meas $G_{m} \rightarrow 0$ as $m \rightarrow \infty$. For m fixed and $n \rightarrow \infty$ we have

$$
\lim _{n \rightarrow \infty} \int_{\Omega\left(\varphi_{n}{ }^{*}\right)} f \mathrm{~d} x=\int_{\Omega} f \mathrm{~d} x-\int_{I_{m}} \int_{\varphi^{*}}^{p} f \mathrm{~d} x-\int_{G_{m}} \int_{\varphi^{*}}^{p} f \mathrm{~d} x .
$$

Letting $m \rightarrow \infty$ we finally obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega\left(\varphi_{n}^{*}\right)} f \mathrm{~d} x=\int_{\Omega} f \mathrm{~d} x-\int_{\alpha^{*}}^{\beta^{*}} \int_{\varphi^{*}}^{p} f \mathrm{~d} x=\int_{\Omega\left(\varphi^{*}\right)} f \mathrm{~d} x . \tag{4.9}
\end{equation*}
$$

Similarly

$$
\begin{aligned}
& \int_{\left.\Gamma_{2^{1}\left(\varphi_{n} *\right.}^{*}\right)} g \mathrm{~d} s=\int_{0}^{a_{n}^{*}} g \sqrt{ }\left(1+\left(p^{\prime}\right)^{2}\right) \mathrm{d} x_{1} \xrightarrow{n \rightarrow \infty} \int_{0}^{\alpha^{*}} g \sqrt{ }\left(1+\left(p^{\prime}\right)^{2}\right) \mathrm{d} x_{1}= \\
& =\int_{\Gamma_{2^{1}\left(\varphi^{*}\right)}} g \mathrm{~d} s
\end{aligned}
$$

and

$$
\int_{\Gamma_{2}^{2}\left(\varphi_{n}\right)} g \mathrm{~d} s \xrightarrow{n \rightarrow \infty} \int_{\left.\Gamma_{2^{2}\left(\varphi^{*}\right)}\right)} g \mathrm{~d} s .
$$

Taking into account this, (4.9) and the definition of \mathscr{I}, we arrive at (4.8).
Let $\varphi \in U_{\mathrm{ad}}, \varphi:[\alpha, \beta] \mapsto \mathbf{R}^{1}$ be fixed. According to Lemma 4.1 there exists a sequence $\varphi_{n} \in U_{\text {ad }}^{n}, \varphi_{n}:[\alpha, \beta] \mapsto \mathbf{R}^{1}$ and such that (4.1) holds. In the same way as before one can prove that

$$
\lim _{n \rightarrow \infty} \mathscr{I}\left(\varphi_{n}\right)=\mathscr{I}(\varphi) .
$$

From this, (4.8) and (4.5) we get

$$
\mathscr{I}\left(\varphi^{*}\right) \leqq \mathscr{I}(\varphi) .
$$

As $\varphi \in U_{\text {ad }}$ is an arbitrary element this means that φ^{*} solves (\mathbf{P}).

5. NUMERICAL EXAMPLES

Let us suppose for simplicity that p is a linear function defined on $[0,1]$, and let $0<\bar{\alpha}<\bar{\beta}<1$. Let n be fixed. The partition $\mathscr{D}_{n}(\alpha, \beta)$ will contain moving nodes, forming a partition of $[\alpha, \beta]$ (see Fig. 2).

The vector of discrete design variables $\omega=\left(\omega_{1}, \ldots, \omega_{2 n}\right)$ now contains
(j) the nodes of $\mathscr{D}_{n}(\alpha, \beta)$;
(ji) the x_{2}-coordinates of vertices of $\varphi \in U_{\mathrm{ad}}^{n}$ at $a_{i}, i=1, \ldots, n$.
The set U, introduced in Section 3, is a compact subset of $\mathbf{R}^{2 n}$.

Figure 2.

From the definition of U we see that all constraints with the exception of the last one are linear. In U we take the constants to be

$$
\begin{aligned}
& \bar{\alpha}=0.15, \quad \bar{\beta}=0.85, \quad C_{1}=1.5, \quad C_{2}=\widetilde{C}_{2}=\widetilde{C}_{3}=0.5894 \\
& \delta=0.1, \quad h_{\max }\left(\omega_{1}, \omega_{n}\right)=1, \quad h_{\min }\left(\omega_{1}, \omega_{n}\right)=0.02, \quad n=13
\end{aligned}
$$

In order to solve the problem $(P)_{n}$ numerically one uses some iterative method; typically a gradient type method.

In optimization we apply the Sequential Quadratic Programming method (subroutine E04VDE of NAG-library). Domain integrals are computed using Gaussian quadrature and line integrals with the trapezoidal formula. A sufficient subdivision is performed dynamically in the domains of integration to get accurate results. In sensitivity analysis the method of part I was compared with the finite difference and the algebraic method and all three methods gave the same gradient. In optimization the algebraic gradient, obtained through analytical differentiation of the cost, was used.

In the examples we take Ω to be given by

$$
\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \left\lvert\, 0<x_{2}<p\left(x_{1}\right)=\frac{1}{2} x_{1}+\frac{1}{2}\right., \quad x_{1} \in(0,1)\right\} .
$$

We consider two cases:
Example 5.1. Let $x_{3}=f\left(x_{1}, x_{2}\right)=-2 \pi^{2} \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), g\left(x_{1}, x_{2}\right)=-2 \cdot 5 \pi$. . $\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right)$ and let Ω be given as above. As an initial guess we choose

$$
\omega_{i}=0 \cdot 125+(i-1) 0.0625, \quad i=1, \ldots, 13
$$

and

$$
\begin{aligned}
& \omega_{14}=0.5625, \quad \omega_{15}=0.5, \quad \omega_{16}=0.4375, \quad \omega_{17}=0.375, \\
& \omega_{18}=0.3125, \quad \omega_{19}=0.3125, \quad \omega_{20}=0.40178, \quad \omega_{21}=0.49107, \\
& \omega_{22}=0.58035, \quad \omega_{23}=0.66964, \quad \omega_{24}=0.75892, \quad \omega_{25}=0.84821, \\
& \omega_{26}=0.9375 .
\end{aligned}
$$

In Figure 3 below we have the initial and optimal curves φ fot this example.

Figure 3.
In Table 1 below we have the values of f along the optimal curve φ_{n}^{*}.
Table 1.

\boldsymbol{x}_{1}	x_{2}	\boldsymbol{x}_{3}
0.0000000	0.5000000	0.0 .0000000
0.1092079	0.3361881	-5.780113
0.1313176	0.3030236	-6.446706
0.2441563	0.3359311	-11.91932
0.2645934	0.3665868	-13.32052
0.3071481	0.4304188	-15.83973
0.3508292	0.4959405	-17.60962
0.4093626	0.5837405	-18.29257
0.4750012	0.6689263	-16.97169
0.7462183	0.6193624	-13.14121
0.8078977	0.7118464	-8.811865
0.8717889	0.8076833	-4.395551
1.000000	1.000000	0.000000

The cost in optimization was reduced from $J_{0}=-3.93614$ to $J_{\text {opt }}=-4.88278$.

Example 5.2. Let $x_{3}=f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}, g\left(x_{1}, x_{2}\right)=1$ and let Ω be given as above. Moreover, let the initial guess be the same as in Example 5.1. In Figure 4 below we have the initial and optimal curves φ for this example.

Figure 4

In Table 2 below we have the values of f along the optimal curve φ_{n}^{*}.

Table 2.

$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$
0.0000000	0.5000000	0.2500000
0.2072488	0.5999357	0.4028749
0.3436032	0.5744058	0.4480052
0.4082979	0.4785570	0.3957239
0.4289429	0.4560512	0.3919747
0.4492524	0.4260519	0.3833479
0.4692871	0.4344718	0.4089961
0.5995702	0.4016983	0.5208459
0.6263743	0.4395616	0.5855591
0.6976938	0.5465407	0.7854833
0.7892034	0.6838051	1.090431
0.8258656	0.7387984	1.227877
1.000000	1.000000	2.000000

From the table we see that f is constant along most of the optimal curve φ, which corresponds to the theory from [1]. The cost in optimization was reduced from $J_{0}=$ $=0.6616$ to $J_{\text {opt }}=0.3124$.

References

[1] J. Haslinger, V. Horák: Identification of critical curves. Part I: Continuous case, Apl. Mat. 35 (1990), 169-177.

Authors' addresses: Doc. RNDr. Jaroslav Haslinger, CSc., Doc. Ing. Václav Horák, DrSc., KFK MFF UK, Ke Karlovu 5, 12000 Praha 2; Prof. Pekka Neittaanmäki, Dr. Kimmo Salmenjoki, Department of Mathematics, University of Jyväskylä, Seminaarinkaut 15, 40100 Jyväskylä, Finland.

