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IDENTIFICATION OF CRITICAL CURVES 

PART II: DISCRETIZATION AND NUMERICAL REALIZATION 

JAROSLAV HASLINGER, VACLAV HORAK, PEKKA NEITTAANMAKI, KIMMO S A L M E N J O K I 

(Received April 11, 1990) 

Summary. We consider the finite element approximation of the identification problem, where 

one wishes to identify a curve along which a given solution of the boundary value problem 

possesses some specific property. We prove the convergence of FE-approximation and give some 

results of numerical tests. 

Keywords: Identification of a curve, approximation by F E M , convergence. 

AMS classification: 49E30, 65N30 

I N T R O D U C T I O N 

In practice we often meet problems when we wish to identify a curve along which 
a given solution of a boundary value problem possesses some specific property. 
In [1] the problem of identification of a curve along which the "flux" functional 
j ^ (dujdn) ds attains its maximum, is analysed. The present paper deals with the 
approximation of this problem. Some numerical results are presented. 

1. SETTING O F T H E PROBLEM 

This paper deals with the finite element approximation of an identification problem, 
the continuous version of which has been already introduced in [1] . Let us mention 
its definition. We shall assume the following mixed boundary value problem: 

{&>•) 

where 

-Дм — f in Q , 

u = 0 on Гx , 

õu „ 
— = g on Г2 , 
õn 

Q = {(А" l5 x2) e R2 | 0 < x2 < p(x-), xг e (0, 1)} 
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is a bounded domain, the Lipschitz boundary dQ of which is decomposed as follows 

dQ = rt u F2, 

F2 = {(xl9 x2) e R2 | x2 = p(xx)9 xx e (0, 1)} , 

Fi = dQ\F2. 

Here p is a Lipschitz continuous function on [0, 1]. Moreover, fe l}(Q)9 g e L2(F2)-
In order to give the variational form of (^ '), we introduce the space 

V= {vGH l(.Q)| v = Oon FJ . 

The variational formulation of (&') reads as follows: 

, v fFind u e V such that 

|(Vu, Vi>)0ffl - (/, r ) 0 f O + Jr2 gv ds Vv e V. 

The symbol ( , ) 0 O denotes the usual scalar product in L2(0). 
Let 0 < a < j 5 < l , < 5 > O b e given. By Uad we denote a subset of Lipschitz con

tinuous functions, defined by 

Uad = {q> | 3a e [0, a], j8 e [/?, 1]: <p e C^f la , j8)] , 

<p(a) = p(a), cp(j8) = p(j8), (3 = <B g p on [a, j8], 

|<p(xi) — ^(x i) ! :g C^Xj — xx\ Vx1? xt e [a, /?], meas 0(<p) = C2} 

where 
Q(q>) = {(xl9 x2) e R2 | 0 = x2 g p(xx) x, e [0, a] u [/?, 1] 

0 ^ *2 ^ <Kxi) x i G [a> J8]} 

and Cl9 C2 are positive constants such that Uad #= 0. 
Finally, set 

J r(^) = ( ~ • l ) ~ JiV<,) 9 ds - J/vO,) 0 ds , 
\™ /«fl(9) 

where 
r\(q>) = {(x1? x2) e R2 | x2 = p(xj), x! e (0, a)} 
r2

2(cp) = {(xl9 x2) eR2\x2 = p(xx)9 xx G (fi, 1)} 

and < , }dQ(qt) denotes the duality pairing between H~l/2(dQ(<p)) and H1/2(dQ(q>)). 
In [1] the following problem has been introduced: 

(p\, J Find <p* G Uad such that 
} Uv*) = max J(ę) . 

фЄUad 
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This problem can be equivalently formulated (see [l]) as follows: 

such that 

where 

fFind (p* e Uad si 
\f(q>*) = min J(q>) 

<ř>єl/ a d 

J{<P) = W ) / d * + Jiv<«o g <*s + J>22(<p) g ds . 

The existence of at least one solution (p* of (P) has been established in [1], 

2. APPROXIMATION OF (P) 

In what follows we shall assume Q c R2 to be of a special type, namely such that 
the function p describing F2 is piecewise linear in [0, 1] with nodes included in [a, /?] 
only (see Fig. 1)*) 

* H 

г2 л 
П 

Гi 

— 1 \ Гi 
1 1 — 1 — • 

1 X, 

Figure 1. 

Let -^„(a, P): a = at < a2 < ... < an = ft be a partition of [a, />], where the 
number of nodal points n doesn't depend on a e [0, a] and /? e [/?, 1]. The ^-co
ordinates of the vertices of p are included in @n(<x9 j3). Any @n(a, f$) will be charac
terized by two numbers hmax(a, ft) — max,-1 aI+1 — at\9 hmin(a9 ft) = min£ |aI+1 — a5|. 
We shall assume that the position of ai9 i =- 1, . . . , n depends continuously on a, ft. 

The approximation of Uad will be constructed by means of piecewise linear 
functions: 

Un
ad = {cp | 3a e [0, a] , jj e [/?, 1]: 9 e C([a, £]), 

^IflTTTal e p i ( « i - i « ^ <Ka) = Ka)> <K#> = K0) > 
5 g <JO ^ p on [a, jff], l ^ ^ ) - ^(x^l ^ Ci^j - xx | 

Vxl5 xx e [a, j8], C2 = meas &((?) ^ C?3} . 

Cl9 C29 C3 are positive constants chosen in such a way that U%d 4= 0. 

*) This assumption is only for technical reasons. 
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Remark 2.1. The equality constraint meas Q(cp) = C2 in the definition of 
Uad is now replaced by two sided inequality constraints C2 ^ meas Q(q>) ^ C3 

(for the choice of C29 C3 see below). This means that Uad ^ Uad. 
The approximation of (P) is now defined as follows: 

.pv ("Find <pneUn
d such that 

1 h \j(<p*n) = minJ(<p). 
<peUn

ad 

Next, we shall analyse 

(i) the existence of at least one solution <p* of (P)„; 

(ii) the relation between (P)n and (P) when n -* oo + . 

3. EXISTENCE OF A SOLUTION FOR (P)n 

In order to prove the existence of a solution for (P)M, we formulate this problem 
in the language of discrete design variables. The vector of discrete design variables 
a) = (col9 ..., co2n) contains 

(j) the nodes of Sn(a, /?); 

(jj) the x2-coordinates of vertices of (p e Un
d at ai9 i = 1, . . . , n. 

For the sake of simplicity of notation we shall suppose that the first n components 
of o> are the nodes of @n(a9 0)9 while the elements of (jj) are listed last, i.e. 

co. = at i = 1, . . . , n ; 

ay. = r/)(a.„n) i = n + 1, ..., In. 

Let the parameter n be fixed. Then Uad can be identified with a compact subset 
U of R2n as follows: 

= j o) e R2n | hmax(col9 con) = o>l+t ~ o>f = hmin(col9 con)9 i = 1,..., n - 1; 

o>! G [0, a] , con G [/?,1], G>„+1 = p(cD1)9 co2n = p(con) ; 

(5 S o)i g p(cof„„), i = n + 2 , . . . , In - 1; 

|coi+1 - a>i\ ^ C ^ + i - , , - ©!--!, i = n + 1, . . . ,2n - 1; 

c2 s „, frPH-rt-)) + f' 5=»L±-i)Kl, - „,,,) + 

U 

+ (i-a>,)^^2
+^^e3}. 

Let 3~n: U"d -* R2" be a mapping defined through the relation 

3r„(<P) = (<*u • • •> ««> <P(ai)> • • •> <Ka»)) > <? e ^ d • 
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It is easy to see that ^n(Uld) = U and the inverse mapping ZTn
x\U -* U^d is given by 

n 

^n \<0) = Z ^ j + / i > © = (">1> • • •> <*>2«) e t/ , 

where ^ , j = 1, ..., rc are piecewise linear functions satisfying ^y(af) = 5^. Finally, 
set 

Se(co) = J(^l<o) = J ^ ) / d x + JrafW gds + $riH(p) 9 ds . 

The equivalent formulation of (P)B is given by 

(0\ (Find co* e U such that 

\&(co*) = min JSf(co). 

The main result of this section is 

Theorem 3.1. For any n there exists at least one solution cp* of (P),r 

Proof. U is a compact subset of R2*, co -> j£?(eo) is a continuous function. Using 
the classical compactness argument, we obtain the existence of at least one CD* = 

n 

= (co*, co*, ..., o>*n) G U solving (p)n. Setting cp* = £ ^*+r/j w e arrive at the asser
tion of Theorem 3.1. J = l 

4. RELATION BETWEEN (P) A N D (P)B, n -> GO 

Let {^„(a, /?)}, w -+ oo be a regular family of partitions of [a, /?] in the following 
sense: 

'there exists a positive number q independent of 

n, a, p and such that 

kgxM) 
^min(a, J8) 

q. 

Let </>* G U3d be a solution of (P)„. Now we shall analyse what happens when 
n -» oo. 

First of all we shall specify the choice of constants C2, C3 appearing in the definition 
ofUa

n
d.Weset 

* - * ( ! - $ • ) . 

where y e (0, l) and the meaning of C2 is given by the definition of t/ad. First we prove 
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Lemma 4.1. For any cp e Uad, cp: [a, ff] -> R1 there exists a sequence cpneUad 

defined on [a, ff\ and such that 

(41) <pnzX <p (uniformly) on [a, /?] . 

Proof. Let cpeUad be defined on [a,/?], a e [0, a] , /? e [/?, 1]. Set <p„ = rn<p, 
where rncp denotes the piecewise linear Lagrange interpolation of (p. Using the 
classical approximation properties of cpn we have 

1 1 
(4-2) \\<Pn ~ <H|L««a,/T,) = C~ IklW^-aa^)) = C ~ » 

n n 
which yields (4A). Let us prove that <p„ e Uad. Clearly, it is necessary only to verify 
that 

C2U - Py\ S meas £>(<?„) ^ C2 (l + (^j\ 

(the other properties of <pn appearing in the definition of U"aA are satisfied because 
of the definition of <p„). We have 

meas Q(<p„) = J0(„n) dx = meas Q — Jf J£„ dx = 

= meas i2 - Jf Ĵ „ dx ± J£ Jj d* = 

= meas flfa) + JJ (JJ dx, - ft, dx:) dx2 =£ C2 + Jf |J*. dx,| dx2 

П Є 
because of (4.2), provided n is sufficiently large. 

Similarly 

meas Q(<pn) * C2 (l - (^j\ . 

The main of this section is 

Theorem 4.1. Let cp* e Uad, cp*: [a*, jS*] -> R1 be a solution of (P)„. Then (here 
exist subsequences of {a*}, {/?*}, {<?*} (denoted by the same symbol) and a* e 
e [0, a], jg* G [/?, 1], <p* G Uad, <p*: [a*, /?*] -> R1 such that 

K * - a * , ^ f , n->oo 

( 4 3 ) L * - cp* on Im = [a* + 1 , J?* - A ] 
( m mj 

/or any integer m and 

(4.4) (p* is a solution of (P). 

Proof. Let <p„* e Ua"d, <p*: [a*, / £ ] -> R1 be a solution of (P)„: 

(4.5) S(q>t)£S(<p) V<peU:d. 
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As a* e [0, a] , /?* e [/5, 1] there exist subsequences of {a*}, {/?*} (still denoted by 
the same symbol) and numbers a* e [0, a] , /?* e [/?, 1] such that 

(4.6) a* ->a* , P* -> P* , n -> co . 

Let m be an integer and Im as above. Then cp* are defined on Im (m being fixed) for 
n sufficiently large. As the sequence {cp* |Jm} satisfies on Im all assumptions of the 
Ascoli-Arzela theorem, there exist a subsequence {cp*i} c: {<p*} and a function 
<p*(m) G C(IM) such that 

<p*Z> <p*{m) on I m . 

Replacing m by (m + 1), one can find a subsequence {<p*2} <z {<p*i} defined on 
Im+1 and a function <p*(m+1) e C(Im+1) such that 

* _> ~*(m+l) __ r 

(p„2 __» (p ' o n Im+1 . 
Clearly <p*{m+1) = <p*(m) on Im. Repeating the same procedure for any integer m 
and passing to the diagonal subsequence defined by means of {9*1}, {cp*i}, ... one 
construct a sequence, denoted by {cp*}9 such that 

cp* Z$ cp* on Im where <p* = (p*(m) on Im, m integer. 

It is easy to see that up* e Uad. Indeed, as 

A - (~j\ ^ meas &(<?*) S C2 (l + ^ 

then 

(4.7) lim meas *Q(<p*) = C2 • 
n-»oo 

But 
meas 0(<p*) = meas O — Jf% j£n* dx = 

= meas Q - JJm J£n, dx - JGm J£n* dx , 

where meas Gm -> 0 as m ~> 00. Keeping m fixed and n - > o o w e have 

lim meas Q(cp*) = meas O — JJm j£* dx — JGm j£» dx . 
n-*ao 

Letting m -> 00 we finally obtain 

lim meas Q(cp*) = meas Q — jp
al J£* dx = meas Q(cp*) . 

n—> 00 

Comparing this with (4.7) we see that meas Q(<p*) = C2. Further 

<p* («* + i \ = lim L* L* + -)- «?*(«*)) + lim <?*(«*) = 
\ m / n - o o \ \ mj J n-*ao 

= lim («,.* («* + i ) - </>„>„*)) + lim p(aB*) = p(«*) + c(m) , 
B-.oo\ \ m) ) B"*oo 
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where c(m) -> 0 if m -> oo. Thus cp*(<x*) = p(a*) and similarly (p*(j5*) = p(fi*). 
The other conditions appearing in the definition of Uad are easily satisfied. Let us 
prove that 

(4.8) lim J(q>*) = J(q>*) . 
J1-+00 

Indeed, 

W . j / d x = j f l /dx - j ; ; : j j„./dx = 

= iafdx - J/m J£n./dx - JGm j£„./dx , 

where meas Gm -> 0 as m -H• oo. For m fixed and ra -> oo we have 

lim J0(Vn.)/dx = J 0 / dx - J/m j£. /dx - JGm J$./dx . 
J1~>00 

Letting m -> oo we finally obtain 

(4.9) lim J0(9n.,/dx = J 0 /dx - Jf.* j£. /dx = J0(„.,/dx . 
/ . - •oo 

Similarly 

J-Vcv) ^ d s = IS"* 3 V(- + (P')2) d*i " ^ JS* <7 V(l + (P')2) d*i -

= Jra'(*«) 9 <is 
and 

. n-»oo . 

Jr2*(>n') g ds -» Jr22(<) g ds . 

Taking into account this, (4.9) and the definition of J5", we arrive at (4.8). 
Let cp e Uad, <p: [a, />] i—> R1 be fixed. According to Lemma 4.1 there exists a se

quence <pneUad, «rV [a, /?] H-> R1 and such that (4.1) holds. In the same way as 
before one can prove that 

lim S((pn) = J(q>) . 
n-+ao 

From this, (4.8) and (4.5) we get 

Jf((p*) = J(q>) . 

As cp e Uad is an arbitrary element this means that q>* solves (P). 

5. NUMERICAL EXAMPLES 

Let us suppose for simplicity that p is a linear function defined on [0, 1], and let 
0 < a < ft < 1. Let n be fixed. The partition ^„(a, /?) will contain moving nodes, 
forming a partition of [a, /?] (see Fig. 2). 
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The vector of discrete design variables co = (col, ..., to2n) now contains 

(j) the nodes of Bn(a, /?); 

(jj) the x2-coordinates of vertices of (p e U^d at ah i = 1, ..., n. 

The set U, introduced in Section 3, is a compact subset of R2". 

0 (J- oc 0)n 1 X. 

Figure 2. 

From the definition of U we see that all constraints with the exception of the last 
one are linear. In U we take the constants to be 

a = 045 , p = 0-85 , Cx = 1-5 , C2 = C2 = C3 = 0-5894 , 

S = 04 , hmJ(ou con) = 1 , fc-m^o)!, co.,) = 0-02 , n = 13 . 

In order to solve the problem (P)n numerically one uses some iterative method; 
typically a gradient type method. 

In optimization we apply the Sequential Quadratic Programming method (sub
routine E04VDE of NAG-library). Domain integrals are computed using Gaussian 
quadrature and line integrals with the trapezoidal formula. A sufficient subdivision 
is performed dynamically in the domains of integration to get accurate results. 
In sensitivity analysis the method of part I was compared with the finite difference 
and the algebraic method and all three methods gave the same gradient. In optimiza
tion the algebraic gradient, obtained through analytical differentiation of the cost, 
was used. 

In the examples we take Q to be given by 

® = {(*i> xi) e R2 | 0 < x2 < p(xx) = ixt + \ , xt e (0, l)} . 

We consider two cases: 

Example 5.1. Let x3 = f(xl9 x2) = — 2n2 sin (nx^) sin (nx2), g(xu x2) = — 2*5TT . 
. sin (nxt) cos (nx2) and let Q be given as above. As an initial guess we choose 

cot = 0425 + (i - 1) 00625 , i = 1, ..., 13 
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and 

G)14 = 0-5625 , o)15 = 0-5 , o)16 = 0-4375 , <y17 = 0-375, 

o)18 = 0-3125 , Q)19 = 0-3125 , o)20 = 0-40178 , co2l = 0-49107 , 

co22 = 0-58035 , G)23 = 0-66964 , co24 = 0-75892 , co25 = 0-84821, 

co26 = 0-9375 . 

In Figure 3 below we have the initial and optimal curves q> fot this example. 

Figure 3. 

In Table 1 below we have the values off along the optimal curve q>*. 

Table 1. 

xг 
x2 

xъ 

0-0000000 0-5000000 0-0000000 

0-1092079 0-3361881 - 5-780113 

0-1313176 0-3030236 - 6-446706 

0-2441563 0-3359311 -11-91932 

0-2645934 0-3665868 -13-32052 

0-3071481 0-4304188 -15*83973 

0-3508292 0-4959405 -17-60962 

0-4093626 0-5837405 -18-29257 

0-47500Í2 0-6689263 -16-97169 

0-7462183 0-6193624 -13-14121 

0-8078977 0-7118464 - 8-811865 

0-8717889 0-8076833 - 4-395551 

1-000000 1-000000 0-000000 

The cost in optimization was reduced from J0 = -3-93614 to Jopt = -4-88278. 
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Example 5.2. Let x3 = f(xl9 x2) = x\ + xjjE, g(xi> xz) = 1 a n ^ let .Q be given as 
above. Moreover, let the initial guess be the same as in Example 5.1. In Figure 4 
below we have the initial and optimal curves <p for this example. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

* 

Figure 4 

In Table 2 below we have the values off along the optimal curve <p*. 

Table 2. 

0-0000000 
0-2072488 
0-3436032 
0-4082979 
0-4289429 
0-4492524 
0-4692871 
0-5995702 
0-6263743 
0-6976938 
0-7892034 
0-8258656 
1-000000 

0-5000000 
0-5999357 
0-5744058 
0-4785570 
0-4560512 
0-4260519 
0-4344718 
0-4016983 
0-4395616 
0-5465407 
0-6838051 
0-7387984 
1-000000 

0-2500000 
0-4028749 
0-4480052 
0-3957239 
0-3919747 
0-3833479 
0-4089961 
0-5208459 
0-5855591 
0-7854833 
1090431 
1-227877 
2000000 

From the table we see that f is constant along most of the optimal curve <p, which 
corresponds to the theory from [1]. The cost in optimization was reduced from J0 = 

0-6616 to J, opt 0-3124. 
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