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DUAL FINITE ELEMENT ANALYSIS OF AXISYMMETRIC 
ELLIPTIC PROBLEMS WITH AN ABSOLUTE TERM 

IVAN HLAVACEK 

(Received April 23, 1990) 

Summary: A model second order elliptic equation in cylindrical coordinates with mixed 
boundary conditions is considered. A dual variational formulation is employed to calculate 
the cogradient of the solution directly. Approximations are defined on the basis of standard 
finite elements spaces. Convergence analysis and some a posteriori error estimates are presented. 
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INTRODUCTION 

We consider a second order elliptic problem in an axisymmetric bounded domain, 
supposing all data are axisymmetric, the boundary conditions are of a mixed type 
and the equation contains an absolute term. Extending the ideas of the paper [1] 
(cf. also [2], [3]), we introduce a dual variational formulation of the problem, 
which enables us to calculate the cogradient of the solution directly. Finite element 
approximations to the solution of the dual problem are defined and an error analysis 
presented, within the framework of the theory of weighted Sobolev spaces (cf. [4] 
for the primal variational solution). 

The equation under consideration occurs e.g. in the theory of a vector potential 
distribution for a transformer with magnetic shielding (see [6]). 

We shall consider a domain ficR3, which is generated by the rotation of a bound
ed domain 

D c {(r, z) e U2 \ r ^ 0} 

about the axis x3 •= z. Assume that Q has a Lipschitz boundary. Hence, the set 
3D n (9, where 0 is the z-axis, cannot contain isolated points. Let F0 denote the 
interior of the set dD n 6. We assume 

3D = F0 u ru u rg, 
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where F0, Fu, rg have at most a finite number of components, being mutually dis
joint and open in the boundary 3D and FM =j= 0. 

Let k be a non-negative integer. By Wk
r
,2(D) we shall denote the weighted Sobolev 

space with the weight r, the norm 

H ^ D = ( I jD |D a u | 2 rd rdz )^ 2 

|«|£fc 

and the seminorm 

M*.r.D = ( I \D\D«u\2rdrdzyi2. 

If k = 0, we denote IVr
0'2(D) = L2(D). 

By L\tr(D) we shall denote the weighted space of functions with the norm 

l"||o,1/,.D = (jD«2'-1drdz)1'2. 

Let F <= dD — F0 be a measurable part of the boundary. By L2(F) we shall denote 
the space of functions with the norm 

Mo,, ,r = (Jr"2rdsy<'2. 

There exists a linear continuous mapping 

r.wy2(D)~*L2
r(r) 

such that yu = u\r for any u e Ci(D). (For the proof see e.g. [5] — Section 1. It 
follows easily from the Trace Theorem in the standard Sobolev space Hl(Q).) 

Let us introduce the set 

C£tr(D) = {v e C"(B) | supp v n (dD - F0) = 0} . 

We say that the divergence of a vector-function (qr, qz) = qe [L2(D)]2 exists and 
belongs to L2

F(D), if there exists / e L2
r(D) such that 

(qr
 dl + qz ^ \ r dr dz = - f fvr dr dz Vv e C?fr(D) . 

A dr dz/ JD 

Then we set div q = / ; for q smooth, we have 

1 5 d 
div q = - qr H qr 4 qr . 

r O> Oz 

We introduce the subspace 

Hr(div, Z>) = {qe[L2(D)]2 | div qeL2(Z))} 

with the following norm 

!|p||div,D = (\Pr\l,,D + Ml,* + \\<i"Pllr.Dy/2 • 
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Next let us denote F = dD — F0 and define the following subspace of Lr(F): 

HV\r) = y(Wl-\D)). 

In Hi/2(r) we shall use the norm 

Mi/2.r,.Г = Іnf 
veWr

1'2(D),yv = w 
]l,г,D • 

The intersection 

Wl-\D)nL\lr{D) 

will be denoted by XX(D) and equipped with the following norm 

M x , W = ( M U + il"|o,./,D)1/2 • 

(1.1) 

1. MODEL PROBLEM 

As a model problem, we shall consider the following boundary value problem 

du\ 1 дu д 
- ar — + — 
r дr ôr 

Г«A"V-
ðz 

+ a0м = / in D 

(1.2) u = u0 on FM, 

(1.3) v . cograd u = g on F^ , 

where v = (vr, vz) denotes the unit outward normal with respect to Tg, 

( du du 
cograd u = ( ar — , az — 

\ dr dz 

a0, ar, az e ^(D) are coefficients such that there exists a positive constant c such that 

(1.4) a0 = c, ar ^ c , az ^ c a.e. in D , 

feL2(D), u0eWl

r>
2(D), g e L2

r(Fg) 

are given functions. 
Let us introduce the following forms 

дu дv дu дv 
ar — — + az — - — I - a0мv ) r dr dz , 

a(u,v) = 
' dr dr * dz dz 

Uv) = Ufvr d r d z + $r9 Q
vr d r • 

We say that u e Wl

r

,2(D) is a weak solution of the primal problem if u — w0 e Vand 

(L5) a(u,v) = L(v) VveV, 

where 
V = {u e W) *2(D) | yv = 0 on Fu} . 

There exists a unique weak solution. This follows from (1.4) and the Riesz representa

tion theorem, since Lis a continuous linear functional on V. 
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2. DUAL VARIATIONAL FORMULATIONS 

In order to derive a dual variational formulation of the problem (1.1) —(1.3), 
we employ the method of orthogonal projections in the space 

* = [L2

r(D)Y . 

Let q = (qr, qz, q0) denote elements of the space Jf?. We introduce the following 
bilinear form on Jf x jf: 

(2-1) (<?, p)je = JD (a;lprqr + a~ xpzqz + ao *Togo) r dr dz . 

It is easy to see that the associated norm 

H * = («?> <0i/2 

is equivalent with the standard norm 

h\kr,o = (S»tf+<l2,+ci2o)rdrdzy2. 

Thus Jf equipped with the scalar product (2.1) is a Hilbert space. 

Let us define the following subsets of 2tf\ 

2%\ = {q e 3/F \~v e V: q = (cograd v, a0v)} 

(and we shall write q = q(v) whenever q is constructed according to the definition 

of Jf , ) , 

where 

(2.2) 

{qєЖ | B(q,v) = 0 Vv є V} , 

õv дv 
B{Я> v)= I r - + qz — + go^ ) r dr dz . 

дr ćz 

Lemma 2.1. 

^ = ^ 0 *f2 . 

Proof. Let us consider a sequence 

[qm}m=x c Jfj , qm -> q in ^f as m—> oo . 

By definition, there exist vm e V such that qm = q(vm) and 

q%=\Dlar[(q7-q"rY+ ••• ]rdrdz = 

"J P Иi ( , , "" , 0 У + в -fé ( ђ -- , ' ' ) ) a 

+ a0(vm - vп)
2 

+ 

r d r d z = c\\vm - uJi,r,z) • 
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Since V is a Hilbert space, there exists a limit v e V such that vm -» v in V. We 
easily find that 

h m - flOOIIiV = c\vm - t>ft,D - o , 
which yields q = q(v). 

Hence Jf^ is a closed subspace. Since the form q -> B(q, v) is continuous in ^f, 
Jf2 is a closed subspace, as well. 

Let q e J f j and p e Jf 2. Then q = q(v) for some v e V and we have 

(2.3) (q, p)^ = | / ~ pr + £ pz + vpo'j r dr dz = B(p, v) = 0 , 

i.e., ,?f! is orthogonal to ^ 2 . 
Denoting by Jf f the orthocomplement to J>f x in the space Jf, we see by (2.3) 

that ff2 cz jf f. Let t e j f f and v e V Then we have 

0 = 
/ - 1 ^v - 1 dv _ i \ , , „ / \ 

af. t ra r h az Ua„ h a0 t0a0v )r dr dz = B(t, v), 
D\ dr " dz J 

which implies teff2 and Jf2 = 3tf\. Q.E.D. 
Let us define the following set 

Qfg = {q 6 Jf | B(q, v) = L(v) Vr e V} . 

Theorem 2.1. Principle of minimium complementary energy. 
Let u be the weak solution of the primal problem. Then 

(2.4) q° = argmin Sf(q), 

where 

H<i) = i||q - iK)||* 
if awd only if q° = q(u). 

Proof. Let us write u = u0 + w, w e V, For q e g/^ let us define the functional 

/(<?) - IN ~ <?K)||i = h - q(«) + q(w)||i = 
= N - q ( « + N(w)Ii. 

Here the orthogonality of Jf x and J»f 2 has been employed. Indeed, 

B(q - q(u), v) = 0 Vv G V 

holds due to the definition of Q^ and 

B(q(u), v) = a(u, v) = L(v) Vv e V. 

Consequently, q — q(u) e J^2 and q(w) e Qfg by definition. Obviously, the functional 
I attains its minimum over Qfg at the point q° iff q° = q(u). 
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Remark 2.L If the boundary condition on Fu is homogeneous, we set uQ = 0 
and then 9>(q) = \\q\^. 

Since the primal problem has a unique solution, the dual problem (2.4) has a unique 
solution, as well. 

Simplification of the set Qfg 

Let us denote q* = (qr, qz) the "reduced" vector associated with q = (qr, az, q0). 
From the definition we deduce 

(2.5) q e Qfg=> q* e Hr(div, D), div q* = - / + q0 . 

Let us denote H~1/2(F) = [y(*V^(D)]' (i.e., the dual space). 
For q*eHr(div, D), we define a functional q* . veH~1 /2(F) by means of the 

following formula 

(2.6) <q* . v, w> = f f9r — + g2 — + i? div q*^ r dr dz , w e y(Wx
r '

2(D)), 
J D \ dr dz J 

where v e Wl
r
,2(D) is any extension of the function w such that yv = w on F. 

Note that the integral does not depend on the kind of extension. In fact, for the 
difference co = v' — v" of any two extensions ya> = 0 holds and since 

f U ~ + q, ~-z + <P div <A r dr dz = 0 V^ e C0"r(i)) 

(cf. the definition of the divergence), 

<q* . v, ya>> = 0 

follows, using the density of the set C^D) in the subspace 

Wtf{D) = {ueWl-\D)\yu = Q}. 

Moreover, there exists an extension iw e W\ 2(D) such that 

| M l . r . - > = lW i l /2,r.r; 

consequently, the continuity of the functional q* . v follows. We easily find that 

(2.7) q e JT2 => q* e Hr(div, D) , <q* . v, yv> = 0 VveV. 

In fact 

(2.8) q e Jf2 => div q* = q0e L2(D) 

so that q* e Hr(div, D) and 

0 = B(q, v) = ( gr — + qz — + t? div q* ) r dr dz = <q* . v, yi?> 
JDV dr dz J 

holds for any veV. 
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Let us introduce the set 

Q0 = {q* e Hr(div, D) | <q* . v, yv) = 0 Vv e V) . 

Then Q0 is a (closed) subspace of Hr(div, D) and we easily deduce 

(2.9) q* e Q0 => q = («,*, az*, div q*) 6 # 2 , 

(210) q G ^ 2 ^ q = (^ ,a z , div q*), q* 6 6o • 

Next we introduce the following bilinear form on [Hr(div, D)]2: 

(<1> P)c = JD far" 1 <?rPr + azX(lzPz + «0 ! d i v <7 d J V f>) T dr d z • 

The latter form is a scalar product in the space Hr(div, D) and the associated norm 
|'He is equivalent to the norm fl'fdJv.D-

Having numerical methods in mind, we replace the affine hyperplane Qfg by the 
sum of a particular element A0 G Qfg and the subspace J^2, i.e., we set 

Qfg = A0 + tf2 . 

Remark 2.2. Construction of A0. 

1 Consider first the case F = FM. Then we may set 

A? = Az° = 0 , k°0=f. 

2° Let rg + 0. If we find p e Hr(div, D) such that p . v = g on Tg, then we may set 

Ar° = pr, Az° = pz, l%=f+ div p . 

In fact, for any v e Vwe obtain 

ß(A°, p) = í pr Һ pz 1- (f + div p) v \ r dr áz = 
\ Õr Õz У ' ) 

= <p.v, yv} + \Dfvr dr dz = L(v) . 

3° In case that g is piece wise polynomial on Tg, we can look for a p from a finite-
element space, satisfying p . v = a on Fg. 

(Otherwise, we can first find a piecewise polynomial approximation gh and then 
apply the previous technique.) • 

Theorem 2.2. (Equivalent version of the principle?) 
Let us define the element q*° = (Ar, Az) and the following functional 

HP) = i M I c + (<r*°> *>)c + JD «o 7 d i v p r dr dz - (p . v, yu0> . 
Then 

(2.H) q* = arg min \j/(p) 
peQo 

if and only if 

(q*,q*,dv,<,*) = q(u)-X0, 

where u is the weak solution of the primal problem (1.5). 
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Proof. Let us substitute 

<J e Qfg => q = A0 + x , XeJf 2 

so that 

y(q) = ^(A° + X) = i|A° + z - q(«o)0i = 

= i l l * + (*, A 1) , + i\\X%, A1 = A° - q(i.0) . 

The last term can be omitted and 

X = (pr9 p2, div p) , p e Q0 

inserted by virtue of (2.10). We obtain 

+ a ; 1 pA A° - az -^°-J + all(X% - a 0u 0 )divp r d r d z = 

= \\pfc + (P, <?*°)c + \D «O 7<Mv f> r dr dz - <J>. v, ya0> , 

using also that 

A° = / + div q*° 

follows from the definition of Qfr 

Furthermore, q(u) — X° e Jf2
 a n d by (2A0) we may write 

q(u) - 1° = [q*, g*, div q*] , q* e go • 

Consequently, we are led to the assertion of the theorem. 

3. APPROXIMATIONS TO THE DUAL PROBLEM 

We discuss here only applications of internal finite-element approximations of 
the set Q0, i.e., the construction and approximation properties of subspaces Qoh a Q0. 

Assume that two families {Vr
h}, {Vz

h} of finite-dimensional subspaces are given, 
such that for any parameter ft, 0 < ft <j 1, the following conditions are satisfied: 

(Al) VI c Wl
r >

2(D) n L\lr(D) , Vz
h cz WX/2(D) ; 

(A2) an integer k ^ 1 and a positive constant C exist, independent of ft and u, 

v such that 

\/veWk+U2(D)nX1(D) 3vheV'h: 

(3.1) \\v-vhlXi{D)SChklv\\k+UrtD; 

VueWk
r + l>2(D) 3uheVz

h: 

(3.2) l«--i/.||i,r,D^Cfck||iilk+lfr iJ); 

(3.3) if vvr + uvz = 0 on Tg, then vhvr + uhvz = 0 on Tq. 
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Let us define 

V(h) = {(Pri Pz) e V\ x Vz
h} ; Qoh = V(h) n Q0 . 

It is readily seen that for any p e V(h) we obtain div p e L2(Z>), so that p e Hr(div, D). 
Moreover, 

Qok = {peV(h)\p.v = Oon Fg} . 

We call <f € Q0/J a finite-element approximation to the dual problem (2.11), if 

(3.4) (f = argmin ij/(p) . 
peQou 

In order to prove the convergence of approximations, we shall need the following 

Proposition 3.1. Let D be a bounded domain with a Lipschitz boundary 3D, 
which consists of a finite number of infinitely smooth parts. Then the set 

^ = { q 6 [ C " ( 5 ) ] 2 | s u P p q n r , = 0} 

is dense in the subspace Q0. 

P r o o f is based on the following property of any Banach space (cf. [7] — Thm. 
2.6, p. 29): A subspace Jt of the space B is dense in B if and only if every element • 
of the dual space B' that vanishes on Jt also vanishes on B. 

Letfe Q0. There exist Fe Hr(div, D) and F0 e L2
r(D) such that 

(3.5) f(q) = (Fr, qr)0sr?JD + (Fz9 qz)0,r$D + (F0, div q)0>r>D . 

Assume thatf vanishes on the set Jt. Since 

[C£r(D)]2 c Jt, 
we obtain 

F = grad F0 

in the sense of distributions, so that F0 e Wr
1,2(D). By definition and (3.5), we have 

for any q e Q0 

(3.6) f(q) = (grad F0, q)0^D + (F0, div q)0,r,D = <q . v, TF0> . 

Moreover, we can verify that 

(3.7) 7F0 = 0 on ru , so that F0 e V. 

In fact, assume that 

||^oio,r,rttnS > 0 

on some infinitely smooth part S of dD. 
Let us define 

C£r(F) = {<p e cw(F) | supp <p n (er - F0) = 0} . 
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It is easy to verify that: (i) C£r(
ru n s) i s dense in L2

r(F„ n S) and (ii) for any 
<p e C0r(ru n S) there exists p e J/ such that p . v = <p on Fu n S, p . v = 0 outside 
Fu n S. 

Then using (3.6), we arrive at a contradiction with the assumption that 

f(p) = <f> . v, ?F0> = JFMOS f>. vyF0r d5 = 0 Vp e ,// . 

For q e Q0, we have 

/(q) = <<7 • v, 7F0> = 0 
by virtue of (3.6), (3.7) and the definition of Q0. Hencef vanishes on the whole space 
Q0 and therefore J( is dense in Q0. 

Theorem 3.1. Let D be a bounded domain with (Lipschitz) polygonal boundary. 
Then 

l im || qh - q*| |d iVfD = 0 
fc->0 

where qh and q* is the finite-element approximation (3.4) and the solution of the 
dual problem (2.11), respectively. 

Proof. The definition (2.11) of q* results in 

(q*,p)c = l(p) VpeQ0, 

whereas the definition (3.4) of q* implies 

(qh, P")c = KPh), v p " e e 0 A , 
where 

l(p) = -(j>, q*°)c - JD «0 Vdiv p r dr dz + <f>. v, yu0> . 

By subtraction we obtain 

(q* - <T\ P")c = 0 Vp* e Qoh , 

i.e., qh is the orthogonal projection of q* onto Q0h in //r(div, D ) - Therefore 

(3.8) [|q* - q»|c ^ |q* - Pfc||c Vf* e 60* • 

Using Proposition 3.1, we obtain 

Vn>0 3t^(tntz)e[Cco(D)fnQ0 

such that 

(3.9) |q* - t|div>D < i,/2 . 

By virtue of the assumption (A2), one can find an element 

t* = (£f*)ee0» 
such that 

(3A0) |t* - t|div,D = Cfc*(||f,||&+1,,,D + flt*|*+i,„D) • 
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In fact, we have 
f f r + ï T r d r d z -Ilr^j^Pr 

á 3(||Pr[|0,1/r,D + |Pr |
2,,D + \Pz\l,r,D) 

and 

|Pr||o,r,D ^ C||Pr||o,l/r,D, 

so that we may write 

lpfldiv,D ^ (3 + C) flPrflo2,,/r,l, + 3|pr |2,r,D + l\pz\\,r.D ^ 

^ C(flprflll(D) + ||pz||
2,r,D) . 

Therefore, using (A2), we obtain (3.10) as follows 

V - t\\^D s c(\t"r - tr\Xi{D) + \tz - tz\Ur,D) ^ 

<Cht(fltrfl,+ 1,r,D+ hl+Ur.D). 

Combining (3.8), the equivalence of norms and (3.10), we may write 

\\q" - q*fld.v.D ^ Cr\\q
h - q*\\c < C.flq* - f*|c < 

S C2\q* - t*fldiv>D < C2(flq* - tfldiv>D + \\t - t*fldiv>D) <. 

< C2,j/2 + C3/l*(||.r|t+.,,,!> + |K.|*.n.,.j>) < « 

for ?/ and h sufficiently small. Q.E.D. 

Corollary 3.1. Let us assume that the solution of the dual problem (2.11) q* e 
e[Wk+U2(Dy\2,k^ l.Then 

\q* - q"U,D ^ c,y%r*flt+1,r>D + [a*flt+1,,D). 

Proof follows immediately from the argument of Theorem 3.1, setting t = q*. 

Remark 3.1. From Theorem 3.1 (or Corollary 3.1) we obtain approximation 
to the cogradient and to the solution, as well. In fact, Theorem 2.2 implies that 

cograd u = q* + q*° , 

u = ao^divq* + 1%) • 

Inserting qh instead of q*, we arrive at the following approximations 

(3.11) (cograd u)h = qh + q*° , 

uh = ao-^divq" + $) . 

Using Theorem 3.1, we obtain 

(312) [jcograd u - (cograd w)4o,r,D + 1" - "4o,r,D = 

= ||<7* ~ ^lkr,D + l^o"1 div(q* - qh)l0trtD g C||q* - q%iVtD -> 0 . 
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4. EXAMPLES OF FINITE-ELEMENT SUBSPACES 

In the present Section we show examples of subspaces Vh and V\, satisfying as
sumptions (Al), (A2). For details we refer to the papers [4] and [8]. 

Let us consider a bounded domain D with polygonal (Lipschitz) boundary 3D 
and triangulationsSTh, which are consistent with the decomposition i3D = r o u f u u 
u Tg. For any triangle K c &~h we introduce a local interpolation mapping 

n\: C(K) - Pk(K) , 

where k = 1 or k = 2 and Pk(K) denotes the space of polynomial functions of the 
degree at most k, and such that Tlk

K u(Q) = u(Q) at the nodal points Q e OK. If k = 1, 
the nodal points are the vertices, if k = 2, vertices and the midpoints of sides. 

We define the spaces 

Ik = {veC(D)\v\KePk(K) V K e ^ } , k = 1, 2 

and global interpolation mappings 

nk
h: C(D) - I * , 

J7i«|* =-Z£ti V X e ^ . 

Let us define 

h = max (diam K) 
Ke^h 

and assume that the family {&~h}, h -> 0 of triangulations is regular, i.e., a positive 5 
exists such that all internal angles in ZTh are not less than #. 

Then we have the following estimate 

(4.1) \U - JlJfl|lfr,D + || II " nk
hulo,l/r,D = Chk\U\k+UrtD 

Vue Wk+U2(D)nXl(D). 

For the proof we refer to [4]-Lemma 6.1, 6.2, 6.3. Recall that W2
r
a(D) c-> C(D) 

holds and if u e XX(D) n C(D), then u = 0 on F0. Therefore, Htu = 0 on F0, as well. 
Thus setting 

Vr
h = {well \w = 0 on F0} , 

vh = Tlk
hv, the assumptions (Al) and (A2) - (3.1) will be satisfied, as far as Vh is 

concerned. 
If we define 

Vz
h = l \ , uh=U\u, 

then (AIL) - (3.2) is fulfilled, since 

|u - nku\Ur,D = Chk\u\k+Ur,D Vu e Wk+1>2(D) 
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holds (cf. [4]-Lemma 6.1, 6.2) and 

fl« - Jl£«||0,,,D ^ Chk+1\u\k+Ur,D VueWk
r
+1'2(D) 

can be derived following the same way as in the proof of Lemma 6.1, 6.2 of [4]. 
Let us verify (A2) - (3.3). Let 

vvr + uvz = 0 on fg n K = S 

where S is any side on the polygonal boundary Fg. By definition, we have 

cph E= (n\v) vr + (Ilk
hu) vs = vvr + wvz = 0 

at the nodes Aj e S. Since the restriction cph\s e Pk(S), <ph vanishes on the side S, i.e., 
(3.3) is true. 

5. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED BOUNDS 
OF ENERGY 

\ 
Suppose that we have solved the problem from two sides: 
(i) by the primal method, using a standard finite element model [4], which yields 

the approximation 

uht = uo + *% , Wht e £2- n y > (k = 1 or k = 2), 

(uhl is defined by the condition 

<*(uhl, vhl) = L(vhl) Vvhl e Ik
H n V) ; 

(ii) by the dual method of Section 3, which yields the approximations 

Xh = 1° + (qh, qh, div qh) , 

where A0 e g ^ and qh is the solution of (3.4). 

Lemma 5.1. Let C = max { f l a ^ ^ ; |K||oo,z>; [K[|OO,D}-
 T h e n 

(5.1) c^\uhl - 4UrtD S h(uhl) - q(u)U ^ hM ~ X>U . 

(5.2) C~^\\Xh - q(u)\\0^D S \\*h - q(u)U = N O O ~ *\* • 

Proof. It is readily seen that (cf. Section 2) 

q(uhl)-q(u)e^ly q(u)eQfg and Xh e Qfg 

by virtue of (2.9). 

Using Lemma 2.1, we may write 

(5.3) ],(»„,) - A% = flqOO - q(«)|^ + ],(«) - X% . 
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Moreover, from (1.4) and the definition of q(v) we obtain 

(5.4) c\\vJlr,D<Llq(v)^ Vv e W^(D). 

(5.5) W i - S C - i q J S . , D V q e ^ . 

The estimates (5.1), (5.2) follow from (5.3)-(5.5) immediately. 

Lemma 5.2. Let us denote 

a(v, v) = \\vfA . 

Then we have 

(5.6) !«,, - u0]A g fl« - Hof̂  =g ||„- - C7(H0)|U . 

Proof. Recall that we may write 

u = u0 + w , w e V and nAl - w0 + w/31 - »% e Vn l j t , 

A(W, w) = L(w) and a(uhl, whl) = L(whl) . 

Denoting by 

<e(v) = i |P |_ - L(V) 

the potential energy, we obtain that 

(5.7) 2 _?(«) + 2 L(H0) = U»01 - 2 L W = MS = 2 a ( " . w) = 
= | . - w|„ - \wfA = |«0 |_ - \wfA . 

In the same way, we deduce that 

2<?(uhl) + 2L(u0)= lu0\\
2
A~ \\whl\\

2
A. 

' llw 
Then 

o ^ 2[JS?K)-._*(«)] = - K I i + " 

since wJ?l e w0 + Vand u is the minimizer of ££ over u0 + V. Consequently, the left-
hand inequality in (5.6) follows. 

By a direct calculation we can derive that 

SP{u) + 9>(q(u)) + L(uQ) - ijiiolji = 0 . 

Using also Theorem 2.1 and recalling that Xh e Qfg, we obtain 

- 2[_Sf(u) + L(w0)] = 2<?(q(u)) - Huoll ^ y ( ^ ) - ||u0|A -

The left-hand side, however, is equal to 

Ыì, 
by virtue of (5.7), Consequently, the right-hand inequality of (5.6) follows. 
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Souhrn 

DUÁLNÍ ANALÝZA OSOVĚ SYMETRICKÝCH ELIPTICKÝCH PROBLÉMŮ 
S ABSOLUTNÍM ČLENEM METODOU KONEČNÝCH PRVKO 

IVAN HLAVÁČEK 

Uvažuje se osově symetrická eliptická úloha se smíšenými okrajovými podmínkami v cylin
drických souřadnicích. K přímému výpočtu kogradientu řešení je aplikována duální variační 
formulace. Aproximace se definují na základě standardních prostorů konečných prvků. Dokazuje 
se konvergence přibližných řešení a některé aposteriorní odhady. 
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