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ELLIPTIC PROBLEMS WITH AN ABSOLUTE TERM
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Summary: A model second order eliiptic equation in cylindrical coordinates with mixed
boundary conditions is considered. A dual variational formulation is employed to calculate
the cogradient of the solution directly. Approximations are defined on the basis of standard
finite elements spaces. Convergence analysis and some a posteriori error estimates are presented.
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INTRODUCTION

We consider a second order elliptic problem in an axisymmetric bounded domain,
supposing all data are axisymmetric, the boundary conditions are of a mixed type
and the equation contains an absolute term. Extending the ideas of the paper [1]
(cf. also [2], [3]), we introduce a dual variational formulation of the problem,
which enables us to calculate the cogradient of the solution directly. Finite element
approximations to the solution of the dual problem are defined and an error analysis
presented, within the framework of the theory of weighted Sobolev spaces (cf. [4]
for the primal variational solution).

The equation under consideration occurs e.g. in the theory of a vector potential
distribution for a transformer with magnetic shielding (see [6]).

We shall consider a domain Q < R3, which is generated by the rotation of a bound-
ed domain

D < {(r,z)eR*|r = 0}

about the axis x; = z. Assume that Q has a Lipschitz boundary. Hence, the set
dD n O, where @ is the z-axis, cannot contain isolated points. Let I', denote the
interior of the set 0D N @. We assume

ob=ryurlr,ur,,
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where I'y, I',, T', have at most a finite number of components, being mutually dis-
joint and open in the boundary D and I', + 0.

Let k be a non-negative integer. By W}*(D) we shall denote the weighted Sobolev
space with the weight r, the norm

lelirp = (X o |D%uf? r dr dz)'”?
laf <k
and the seminorm
lulerp = (Y [p|Dul? rdrdz)'’2.
la| =k
If k = 0, we denote W,*(D) = (D).
By L: (D) we shall denote the weighted space of functions with the norm
lullo.1rp = ([pu?r~* drdz)'2.

Let I' = 9D = TI'y be a measurable part of the boundary. By LX(I') we shall denote
the space of functions with the norm

Jullo..r = (fr u’r ds)*'2.
There exists a linear continuous mapping
7: W *(D) = Li(T)

such that yu = u, for any u e C'(D). (For the proof see e.g. [5] — Section 1. It
follows easily from the Trace Theorem in the standard Sobolev space H'(Q).)
Let us introduce the set

Co(D) = {ve C*(D)|suppv n (0D — I'y) = 0} .

We say that the divergence of a vector-function {q,, q,) = qe[L(D)]* exists and
belongs to L2(D), if there exists f € L}(D) such that

J‘ (qro_u+qz-0—l-))rdrdz= —J ferdrdz VveCg (D).
D r D

Then we set div ¢ = f; for g smooth, we have

o 0
—q,

div -—lq+ q
9 r o or oz

We introduce the subspace
H,(div, D) = {qe[L(D)]? | div qe LYD)}
with the following norm

”P”div.D = ([prug.r,b + “pz”é,r,l) + IIle P”(Z}v"p)llz *
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Next let us denote I' = D = I'y and define the following subspace of L(I'):
HYX(I) = y(W,*(D)).

In H'/*(I') we shall use the norm
IWliz2mr = inf lols.rp-

veW,12(D),yop=w
The intersection

w,;*(D) n Li,(D)
will be denoted by X, (D) and equipped with the following norm

"u”Xx(D) = ([“IIZJ,D + ”u”g,ur,l))llz .

1. MODEL PROBLEM

As a model problem, we shall consider the following boundary value problem

(1.1) - 10,%+£ a,(—a—'f +——a— az—a—'—‘ +au=/f in D,
' r or or or 0z 0z

(1.2) u=u, on I,,

(1.3) v.cogradu =g on I,

where v = (v,, vz) denotes the unit outward normal with respect to I',,
ou ou
cogradu ={a,— ,a,— |,
or 0z
ay, a,, a, € L“’(D) are coefficients such that there exists a positive constant ¢ such that
(1.4) a,=c, a,=2c, a,=c ae.inD,

fel’XD), uoe W} (D), gelLXI,)

are given functions.
Let usintroduce the following forms

du v du v
a(u,v) = a,— — + a,— — + aguv ) rdrdz,
D or or 0z 0z
L(v) = [, fordrdz + {,, gordl .
We say that u € W,*%(D) is a weak solution of the primal problem if u — u, e ¥V and
(1.5) a(u,v) = L(v) VYveV,
where

V={ueW,*D)|ywv=0o0nT,}.

There exists a unique weak solution. This follows from (1.4) and the Riesz representa-
tion theorem, since Lis a continuous linear functional on V.
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2. DUAL VARIATIONAL FORMULATIONS
In order to derive a dual variational formulation of the problem (1.1)—(1.3),
we employ the method of orthogonal projections in the space
# = [ED

Let 9 = (4,, 4., go) denote elements of the space #. We introduce the following
bilinear form on # x #:

(2.1) (9. P)we = [p(a; "pa, + a; 'p.g. + a5 'pogo) r drdz .

It is easy to see that the associated norm
lall = (9. 9)%°
is equivalent with the standard norm
lallo.r.o = (Jo (a7 + 4z + qo) rdrdz)'/?.

Thus # equipped with the scalar product (2.1) is a Hilbert space.
Let us define the following subsets of #:
Ay = {qe#|JveV:q = (cograd v, azv)}

(and we shall write q = q(v) whenever q is constructed according to the definition
of #,),

Hy={qe#|B(qv)=0 YveV},

where
0 ov
(2.2) B(q,v) = j (q, @, q. @y qou) rdrdz.
b or 0z
Lemma 2.1.
H=H D A, .

Proof. Let us consider a sequence
{qm}:'o:l cH,, q"—>q inH as m-— 0.

By definition, there exist v,, € ¥ such that ¢" = q(v,,) and

la" — a'[ :,[ [a7'(q" = a0 + ... rdrdz =
D

[ (L mm) (- ) +

+ ao(vm — u,,)"] rdrdz = c|o, — vfi0-
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Since V is a Hilbert space, there exists a limit v € ¥ such that v, — v in V. We

easily find that
ﬂqm - q(v)”;" é Cl]vm - v”f,r,D -0 >

which yields ¢ = q(v).
Hence ##, is a closed subspace. Since the form q — B(q, v) is continuous in #,

A, is a closed subspace, as well.
Let ge #, and p e #,. Then q = q(v) for some ve V and we have

‘Ov v
(2.3) (@.P)x =| (=P +—p. + vpy | rdrdz = B(p,v) =0,
p \Or 0z

i.e., #; is orthogonal to 7 ,.
Denoting by #1 the orthocomplement to ', in the space #, we see by (2.3)

that #, ¢ #1. Let te #7 and ve V. Then we have
_ 0 _ d -
0= a0, 0 + a7 'ta. %l + a5 ttgagn | rdr dz = B(t, v),
D or 0z N
Pt Q.E.D.

which implies te #, and #, = #
Let us define the following set
Qs, = {qe# | B(q,v) = L(v) YveV}.

Theorem 2.1. Principle of minimium complementary energy.
Let u be the weak solution of the primal problem. Then

(2.4) q° = argmin £(q),
9<Qysq

where
#(q) = g — q(us)[%

if and only if q9° = q(u).
Proof. Let us write u = u, + w, we ¥, For qe€ Q, let us define the functional

1(q) = [la — q(uo)]|% = |q — q(u) + a(w)[% =

= lla = a@)[% + Ja(w)[% .
Here the orthogonality of 2, and 2, has been employed. Indeed,
B(q — q(u),v) =0 VYoeV
holds due to the definition of Q ;, and
B(q(u), v) = a(u,v) = L(v) YveV.
Conseqt.lent}y, q — q(u) € #, and q(u) € Q,, by definition. Obviously, the functional
I attains its minimum over Q, at the point q° iff ¢° = q(u).
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Remark 2.1. If the boundary condition on I', is homogeneous, we set u, = 0
and then &(q) = 1|q|%.

Since the primal problem has a unique solution, the dual problem (2.4) has a unique
solution, as well.

Simplification of the set Q,

Let us denote q* = (g,, 9.) the “reduced” vector associated with q = (g,, 4., qo)-
From the definition we deduce

(2:5) q9€ Q;, = q*c H(div, D), divq* = —f + q, .

Let us denote H™"/*(I") = [y(W}*(D)] (i.e., the dual space).
For q* € H,(div, D), we define a functional q*.ve H '*(I') by means of the
following formula

(2.6) q* . v, wy = q,@ + q,132 + vdivg*) rdrdz,wey(W,?*D)),
D ar 0z

where v € W, (D) is any extension of the function w such that yv = won I.
Note that the integral does not depend on the kind of extension. In fact, for the
difference w = v’ — v"” of any two extensions y» = 0 holds and since

fD(q,g% + qzz—(zp + ¢ div q*)rdrdz =0 VYoeCy(D)
(cf. the definition of the divergence),
q*.v,y0) =0
follows, using the density of the set Cg’,(D) in the subspace
Wo2(D) = {ue W,*(D) | yu = 0} .
Moreover, there exists an extension &w € W, (D) such that
[6Ws0 = Wl s

consequently, the continuity of the functional q* . v follows. We easily find that

(2.7) qe #,= q*e H(div,D), (q*.v,pv) =0 VveV.
In fact
(2.8) qe A, = div q* = q,e LY(D)

so that ¢* € H,(div, D) and
0 .
0= B(q,v) = q,—a—g+q,—g-i—vdlvq*)rdrdz:(q*.v,yv)
D 57‘ az
holds for any ve V.
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Let us introduce the set
Qo = {q* e H(div, D) | <(q* .v,yv) =0 YveV}.
Then Q, is a (closed) subspace of H,(div, D) and we easily deduce
(29) 9*€ Qo = q = (q/, q, div q*) e A,
(2.10) qe #, = q = (4, 4, divq*), g*€Q,.
Next we introduce the following bilinear form on [H,(div, D)]*:
(@ Ple = o (@ 'a,p, + aZ ' ap, + ag" div q iv p) r dr dz

The latter form is a scalar product in the space H,(div, D) and the associated norm
|- |lc is equivalent to the norm [+ [, .p-

Having numerical methods in mind, we replace the affine hyperplane Q,, by the
sum of a particular element A° € Q, and the subspace #,, i.e., we set

Qrp ="+ ;.
Remark 2.2. Construction of A°.
1° Consider first the case I' = I',. Then we may set
R=2=0, A=F1.
2° LetI', + 0. If we find p € H,(div, D) such that p . v = g on I, then we may set )
A=p, X=p, dg=f+divp.

In fact, for any v € V' we obtain
B(2%, v) = p,@+p2@+(f+divp)v rdrdz =
D or 0z

=<p.v, ) + [pfordrdz = L(v).

3° In case that g is piecewise polynomial on I';, we can look for a p from a finite-
element space, satisfyingp . v = gonTI,.

(Otherwise, we can first find a piecewise polynomial approximation g, and then
apply the previous technique.) [ |
Theorem 2.2. (Equivalent version of the principle.)

Let us define the element q*° = (12, 1) and the following functional

Y(p) = Yl + (%% P)c + [pag ' fdivprdrdz — (p.v,yup).
Then

(2.11) q* = arg min Y(p)
PeQo
if and only if
(a7, 9z, div q*) = q(u) — 2°,

where u is the weak solution of the primal problem (1.5).

398



Proof. Let us substitute

qufy:q:lo"‘X, xeH,
so that

#(q) = S0+ 1) = 32" + 1 - quo) 3 =
1l + (6 AN + 2[4 5 A1 = 2° = q(uo) .

The last term can be omitted and

=1
- 2

x= (pn p., div P) , PeQo
inserted by virtue of (2.10). We obtain

P(@) ~ 4 = Hpl2 + j [ b, (z‘: ., ‘L) "

or
-1 0 Ouq —1/40 .
+ a p: }': - aza— =+ (20 (Ao - aouo) leP rdrdz =
z

= 3[p[¢ + (P. *)c + [pas 'fdivp rdrdz — (p.v,yued,
using also that
13 = f + div g*°

follows from the definition of Q,.
Furthermore, q(u) — A° € #, and by (2.10) we may write

q(u) — 2° = [q7, ¢X, divg*], q*eQ,.

Consequently, we are led to the assertion of the theorem.

3. APPROXIMATIONS TO THE DUAL PROBLEM

We discuss here only applications of internal finite-element approximations of
the set Q,, i.e., the construction and approximation properties of subspaces Q,, < Q,.
Assume that two families {V}}, {V}} of finite-dimensional subspaces are given,

such that for any parameter h, 0 < h < 1, the following conditions are satisfied:

(A1) vi ¢« WA(D)n L3, (D), Vi< W}3(D);

(42) an integer k = 1 and a positive constant C exist, independent of h and u,

v such that
Voe WEF (D) n X4(D) Fv,e Vi

(3.1) ”U - Uh”x,(b) = ChkuU”k+I,r,D;
Yue WEH3(D) Ju,e Vi
(3'2) “u - uh”hr,D = Chk"unk+l,r,D;
(33) if ov, +uv,=0 on I,, then vy, +uy, =0 on I,.
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Let us define
V(h) = {(p P) e Vi x Vi}: Qou=V(h) " Q.

It is readily seen that for any p € V(h) we obtain div p € L2(D), so that p € H,(div, D).
Moreover,

Qon = {peV(h)|p.v=0o0nT,}.
We call ¢* € Q,,, a finite-element approximation to the dual problem (2.11), if

(34) q" = argmin y(p) .

peQon

In order to prove the convergence of approximations, we shall need the following

Proposition 3.1. Let D be a bounded domain with a Lipschitz boundary 0D,
which consists of a finite number of infinitely smooth parts. Then the set

M = {qe[C*(D)]*|suppq N T, = 0}

is dense in the subspace Q. *

Proof is based on the following property of any Banach space (cf. [7] — Thm.
2.6, p. 29): A subspace .# of the space B is dense in B if and only if every element *
of the dual space B’ that vanishes on .# also vanishes on B.

Let f € Qq. There exist F e H,(div, D) and F, € L}(D) such that

(35) f(q) = (Fn qr)O,r,D + (Fz’ qz)O,r,D + (F09 le q)O,r,D .
Assume that f vanishes on the set .#. Since

[CouD)) =
we obtain
F =grad F,

in the sense of distributions, so that F, € W, *(D). By definition and (3.5), we have
foranyqe Q,

(3:6) f(9) = (grad Fo, 9)o,,,p + (Fo. div q)o,,,p = <q. v, 7Fo) -
Moreover, we can verify that
(3.7) | yF, =0 onT,, sothat F,eV.
In fact, assume that
”')’Fo”o,r,runs >0

on some infinitely smooth part S of dD.
Let us define

C3 () = {peC*(T)|suppo n (oI = Iy) = 0} .



It is easy to verify that: (i) C (I, n S) is dense in IX(I', n S) and (ii) for any
¢ € C3 (', N S) there exists p € # such thatp .v = pon T, " S, p.v = 0 outside
r,nsS.

Then using (3.6), we arrive at a contradiction with the assumption that
f®) =<p.v.yFo> = [r,as P . v)Fords =0 Vpe.s .
For g € Q,, we have
f(@) =<q.v,yFo> =0
by virtue of (3.6), (3.7) and the definition of Q,. Hence f vanishes on the whole space

0, and therefore .# is dense in Q,.

Theorem 3.1. Let D be a bounded domain with (Lipschitz) polygonal boundary.
Then

div,D — 0

im |¢* - ¢
h—0
where q" and q* is the finite-element approximation (3.4) and the solution of the
dual problem (2.11), respectively.
Proof. The definition (2.11) of q* results in
(9% P)c = I(p) VPEQo,
whereas the definition (3.4) of ¢* implies

(qhs Ph)c = l(ph) s VP" € Qon »

where
Ip) = —(p, 9*%)c — [pao 'fdivprdrdz + {p.v,yup).
By subtraction we obtain
(" —q" ") =0 Vp"€ Qui,
i.e., g" is the orthogonal projection of ¢* onto Q, in H,(div, D). Therefore
(3.8) la* — q'Jc < |9* — P"[c VP"€ Qo-
Using Proposition 3.1, we obtain
V>0 3t=(1,1)e[C?(D)]*n Q,
such that
(3.9 la* = tlaivo < n/2.
By virtue of the assumption (42), one can find an element

th = (1, ) € Qon
such that

(3.10) ch - tﬂdiv,D = Chk(”tr”k+l,r,D + ”tz”k+1,r,D)‘
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In fact, we have
2
Idiv p2, ZJ (1 o+ ey 9&) rdrdz <
b \F

or 0z

é 3(”pr”3‘1/r,D + lpr 12,r,D + lpzﬁ,r,b)
and

”pr”O,r,D = C”Pr”(),l/r,p s
so that we may write
”P”jiv,D £(3+0) ”prﬂé,llr,b + 3|pr,:12,r,D + 3”pz”f,r,D =
< C(p %oy + 1p:lip) -
Therefore, using (A42), we obtain (3.10) as follows
e — t”div,D s C(”t:' - trHX,(D) + ﬂt: - tz”l,r,D) =
= Chk(”tr”k+1.r,D + ”tz”k+ Lr.D) -
Combining (3.8), the equivalence of norms and (3.10), we may write
l9" = 9*[aiv.p = Cila" = ¢*[c = Cy[q* — ¢ <
Cz”q* - th”div,l) = Cz(”q* - t[]div,D + ”t - thﬂdiv,D) <
Canl2 + Cshk(”trnkﬂ,r,u + ”lz”k+1,r,D) <e
for n and h sufficiently small. Q.E.D.

A HIA

Corollary 3.1. Let us assume that the solution of the dual problem (2.11) q* €
e[WE*3(D)]?, k = 1. Then

[lq* - qh”div,l) = Chk(”‘lf”kﬂ,r,p + [q:”k+1.r,b)'
Proof follows immediately from the argument of Theorem 3.1, setting t = g*.

Remark 3.1. From Theorem 3.1 (or Corollary 3.1) we obtain approximation
to the cogradient and to the solution, as well. In fact, Theorem 2.2 implies that

cograd u = q* + q*°,
u = ag '(div g* + A7) .
Inserting q" instead of q*, we arrive at the following approximations
(3.11) (cograd u), = q" + q*°,
u, = ag '(div ¢" + 19) .
Using Theorem 3.1, we obtain
(3.12) [cograd u — (cograd u),|o,.p + [u — uso,r0 =
= [l4* = @[o,r.0 + [ac" div (a* = ¢")]o,r.0 < C[9* — ¢"[4iv.0 ~ O
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4. EXAMPLES OF FINITE-ELEMENT SUBSPACES

In the present Section we show examples of subspaces V; and V;, satisfying as-
sumptions (A1), (A2). For details we refer to the papers [4] and [8].

Let us consider a bounded domain D with polygonal (Lipschitz) boundary 6D
and triangulations .7, which are consistent with the decomposition 6D = ', I, U
v I',. For any triangle K = 7, we introduce a local interpolation mapping

My: C(K) - P(K),

where k = 1 or k = 2 and P,(K) denotes the space of polynomial functions of the
degree at most k, and such that ITy u(Q) = u(Q) at the nodal points Q € oK. If k = 1,
the nodal points are the vertices, if k = 2, vertices and the midpoints of sides.

We define the spaces

Iy ={veC(D)|v|xe P(K) VKeT,}, k=12
and global interpolation mappings

m;: C(D) - ;.

Mu|x = Dyu VKeJ,.
Let us define

= max (diam K)
KeTy

and assume that the family {7}, h — 0 of triangulations is regular, i.e., a positive
exists such that all internal angles in 7, are not less than 9.
Then we have the following estimate

(4'1) I“ - Hﬁ“ll,r,b + ”“ - Hﬁ“”o,m,b = Chklu|k+1,r,D
Vue Wit 3Dy n X (D).

For the proof we refer to [4]-Lemma 6.1, 6.2, 6.3. Recall that W}**(D) <> C(D)
holds and if u € X (D) n C(D), then u = 0 on I'y. Therefore, ITyu = 0 on I'y, as well.
Thus setting

Vi ={weZy|w=0o0onTI,},

v, = IT'v, the assumptions (A1) and (42) — (3.1) will be satisfied, as far as Vj is
concerned.
If we define

V;ZZ};) uh:H:u,
then (42) — (3.2) is fulfilled, since
lu - H’}:ulj’r’p é Chklulk+l,r.D Yu s Wl:+l,2(D)
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holds (cf. [4]-Lemma 6.1, 6.2) and
lu — Mu|o,p < CH** Hulisy,p Yue Wet'3(D)

can be derived following the same way as in the proof of Lemma 6.1, 6.2 of [4]
Let us verify (A2) — (3.3). Let

v, +uv, =0 on I'ynK=3S§

where S is any side on the polygonal boundary I',. By definition, we have

on = () v, + (Myu) v, = vv, + uv. = 0

at the nodes 4; € S. Since the restriction go,,[s € P,(S), ¢, vanishes on the side S, i.e.,
(3.3) is true.

5. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED BOUNDS
OF ENERGY

%
Suppose that we have solved the problem from two sides:

(i) by the primal method, using a standard finite element model [4], which yiclds
the approximation

Uy,

=uy+w,, w,elynV, (k=1lork=2),
(uy, is defined by the condition
a(uy,, vy,) = L(v,,) Vo, €Zy 0 V);
(ii) by the dual method of Section 3, which yields the approximations
M =20+ (a5, ¢z, div ¢°)
where 1% € Q, and q" is the solution of (3.4).

Lemma 5.1. Let C = max {||a,] 5 p; [2.]«,p5 [90] .0} Then

(5.1) 2wy, — ufi,p < [q(un) — 9@)]2 < [a(us) — 40

63 CPIE = qWlosn < 12 — 40 S latun) — Pl
Proof. It is readily seen that (cf. Section 2)

q(us,) — q(u)e #,, q(u)e Q;, and i'eQ,
by virtue of (2.9).

Using Lemma 2.1, we may write

(5.3)
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Moreover, from (1.4) and the definition of q(v) we obtain
(5.4) cloli,o < [a(0)]|% Yoe W} (D).

(5.5) lal> =z ¢4, vqesr.

The estimates (5.1), (5.2) follow from (5.3)—(5.5) immediately.

Lemma 5.2. Let us denote
a(v0) = [ol.
Then we have
(5.6) lun, = wollx = [u — uolla = | — q(uo)] -
Proof. Recall that we may write
u=uy+w, weV and wu, =uy+w,, w,eVnZ,
a(u, w) = L(w) and a(u,, w,,) = L(w,) .
Denoting by
2(0) = 3ol - L)
the potential energy, we obtain that
(7)) 220 + 2 Luo) = Juli ~ 2L0w) = Jul} = 2a(u, w) =
= [u = wli = Iwl = Juolli = w]i-
In the same way, we deduce that
2 2(u,,) + 2 Lluy) = Juoll ~ ol
0= 2 &(w,) — 2W)] = —[wi[3+ W%

Then

since u,,, € uy + Vand u is the minimizer of £ over u, + V. Consequently, the left-
hand inequality in (5.6) follows.
By a direct calculation we can derive that

L(u) + #(q(u)) + Luo) — Huos = 0.

Using also Theorem 2.1 and recalling that A" € Q,, we obtain
— 2[2(u) + L{uo)] = 2 #(q(w)) — [uofi = 27(*") — Juoli =
= 2" — q(uo)]% - o -

The left-hand side, however, is equal to

Iwla = luol

by virtue of (5.7). Consequently, the right-hand inequality of (5.6) follows.
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Souhrn

DUALNI ANALYZA OSOVE SYMETRICKYCH ELIPTICKYCH PROBLEMU
S ABSOLUTNIM CLENEM METODOU KONECNYCH PRVKU

IvaN HLAVACEK

UvaZuje se osové symetricka eliptickd uloha se smiSenymi okrajovymi podminkami v cylin-
drickych soutadnicich. K pfimému vypoétu kogradientu feSeni je aplikovidna dualni variacni
formulace. Aproximace se definuji na zdklad€ standardnich prostorti kone€nych prvku. Dokazuje
se konvergence pribliznych reSeni a nékteré aposteriorni odhady.
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