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EXPLICIT SOLUTIONS FOR BOUNDARY VALUE PROBLEMS 
RELATED TO THE OPERATOR EQUATIONS X(2) - AX = 0 . 

LUCAS J6DAR, ENRIQUE NAVARRO 

(Received August 9, 1989) 

Summary. Cauchy problems, boundary value problems with a boundary value condition 
and Sturm-Liouville problems related to the operator differential equation X^ — AX = 0 are 
studied for the general case, even when the algebraic equation X2 — A = 0 is unsolvable. Explicit 
expressions for the solutions in terms of data problem are given and computable expressions 
of the solutions for the finite-dimensional case are made available . 
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1. INTRODUCTION 

For the finite-dimensional ease, second order operator differential equations are 
important in the theory of damped oscillatory systems and vibrational systems, 
[6], [12]. Infinite-dimensional equations occur frequently in the theory of stochastic 
processes, the degradation of polymers, infinite ladder network theory in engineering, 
[1], [19], denumerable Markov chains and moment problems, [10], [22]. 

In [8], the author studies Cauchy problems and boundary value problems related 
to the operator differential equation 

(1.1) K(2> + AiK(1) + A0X = 0 

where Ai9 for i = 0, 1, are bounded linear operators on a complex separable Hilbert 
space H. Explicit expressions of the solutions of these problems in terms of data 
problem and the solutions of the algebraic operator equation 

(1.2) X2 + AyX + A0 = 0 

were given in [8]. The resolution problem of the equation (1.2) is related to the problem 
of existence of a linear factorization for the operator polynomial L(z) = z2 + Axz + 
+ A0. So, for the finite dimensional case, P is a solution of (1.2) if and only if the 
matrix polynomial zl — P is a right divisor of L(z), i.e. L(z) = Li(z) (zI — P) for 
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some matrix polynomial Lx(z) (which is necessarily linear with the leading coeffi­

cient I). Furthermore, this occurs if the companion matrix CL = 
[_ — A0 ~*^ij 

is diagonalizable, [6], [13], The infinite-dimensional case is treated in [20] in a more 
general context. Note that for the operator case, even for the finite-dimensional case, 
the equation (1.2) may be unsolvable. For example if Ax = 0 and — A0 is a unilateral 
weighted shift operator, the equation (1.2) is unsolvable, [21], p. 63. 

Sturm-Liouville operator problems have been studied by several authors and with 
different techniques, [14] — [18]. Fot the scalar case, the classical Sturm-Liouville 
theory yields a complete solution of the problem, [4], [7]. In a recent paper [9], 
we study the Sturm-Liouville operator problem 

(1.3) Z ( 2 ) - XQX = 0 

EtX(0) + £2X ( 1 )(0) = 0 

Ei X(a) + F2 Xw(a) = 0 

0 й t = a, ÅєC 

where Ei9 Fh for i = 1, 2, and Q are bounded operators on H, and C denotes the 
complex plane. 

The paper [9] deals with the problem of finding non-trivial explicit solutions 
of the problem (1.3) for the case when the corresponding algebraic operator equation 
X2 — XQ = 0 is solvable. In this paper we are interested in the problem of finding 
conditions under which the problem admits non-trivial solutions, as well as explicit 
expressions for the solutions in terms of data problem, for the general case, even 
when X2 — XQ = 0 is unsolvable. We are also interested in finding explicit expres­
sions for the solutions of boundary value problems and Cauchy problems concerning 
the operator differential equation 

(1.4) X(2) - AX = 0 

when A is an operator without a square root. 
In the following we denote by L(H) the algebra of all bounded linear operators 

on H. If T lies in L(H), its spectrum will be denoted by <J(T), and its compression 
spectrum crcomp(T) is the set of all complex numbers z such that the range (zl — T) (H) 
is not dense in H, [2], p. 240. 

2. BOUNDARY VALUE PROBLEMS 

We begin this section with the study of the Cauchy problem for the equation (1.4). 
Let us consider the L(H) valued analytic functions defined by 

(2.1) gA(z) = £ A*z2kl(2k)l, fA(z) = £ A'z2*+1/(2/c + 1)! 
*:£0 itgo 
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Note that gA and fA are entire functions in the complex plane. If A has a square 
root B such that A = B2, then gA(z) = cosh (Bz), where cosh (•) denotes the image 
of the hyperbolic cosine by means of the Riesz-Dunford functional calculus, [5]. 
Furthermore, if A is an invertible operator such that A = B2, the fA(z) = 
= B~1 sh (Bz), where sh (•) denotes the image of the hyperbolic sine by means of the 
Riesz-Dunford functional calculus. It is integresting to note that for the case when A 
has not a square root, or A is not invertible, then gA(z) andf^(z) are not computable 
by means of the Riesz-Dunford functional calculus, but for the finite-dimensional 
case, an explicit and computable expression of these matrix functions is available. 
Let us suppose that a e [0, 27i] is chosen such that or(A) — {0} is contained in Da = 
= C - Ha with Ha = ( - rexp( ia) ; r = 0}, then if w e a(A) - {0} and z , / 2 = 
= exp ((loga (z))/2), one gets 

(2.2) h(z) = £ zfe/(2k)! = cosh (z 1 / 2 ) , if z e Da 

although the series which defines h is an entire function in the complex plane. Thus, 
the computation of the derivatives hU)(w) for j = 0 and w e r/(A) is very easy even for 
z = 0, considering (2.2) for w in Da, and taking the series expansion that defines 
h(z), for z = 0. If G(A) = {A,-; 1 = i = s}, (Xtl — A)D denotes the Drazin inverse 
of XtI - A, and E(Xt) = I - (ltI - A) (XtI - A)D, vt the index of XtI - A, then 

(2.3) gA(z) = h(z*A) = t Y - ^ " ^ " W E^ ^ > 
i = l k = 0 k! 

see [3], Chapter 1 for details. In an analogous way, for computing gA(z) in the finite 
dimensional case, this matrix may be computed as a polynomial in A. 

Lemma 1. Let us consider the Cauchy problem 

(2.4) K(2) - AX = 0 , K(0) = Co , K(1)(0) = C! , - c o < t < oo 

where A, C0 and C1 are operators in L(H). Then the only solution Of (2.4) is given 
by the expression 

(2.5) X(t) = gA(t) C0 + fA(t) C, 

where gA(t) andfA(t) are defined by (2.1). Furthermore, if A is an invertible operator 
with B2 = A, then 

(2.6) X(t) = cosh (Bt) Co + B"1 sh (Bt) Cx . 

Proof. Taking Yx = X, Y2 = K(1), the Cauchy problem (2.4) is equivalent to the 
first order extended problem 

™ *Ш'bш-m-ш-oo < ř < oo 
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According to [11], the only solution of (2.7) is given by 

™ P=-([-]')(c:]-
For k = 0, one gets 

oQ\ r° Z T ~ \Ak ° i r° o211"1 _ r° ^ i 
[Aoj ~~L° < V [A°J " L ^ + 1 ° J " 

From (2.8) and (2.9), it follows that 

X(t) = Yx(t) = ( X AV*/(2fc)!) C0 + ( £ Akt» + 1l(2k + 1)!) C. = 
k^O k^O 

= gA(t) c0 + fA(t) Ci. 

If B2 -= A, then from the previous remarks to the statement of the lemma, under 
the invertibility hypothesis imposed on A, one gets (2.6). 

The next result is concerned with the boundary value problem 

(210) X(2) - AX = 0 , X(a) - X(0) = E 

where E and A are operators in L(H). 

Theorem 1. Let us consider the boundary value problem (2A0), then the following 
assertions hold: (i) The problem (2A0) is solvable if z1/2 4= (2pni)lafor all z e o(A), 
where p is any integer. 

(i) Under the hypothesis (i) a solution of (2.10) is given by 

(2.11) X(t) = ((gA(t)(gA(a)-I)-1E, 

where gA is defined by (2.1). 

(iii) If there exists B in L(H) such that B2 = A, then a solution of (2.10) is given 
by 

(2.12) X(t) = cosh (Bt) (cosh (Ba) - I)'1 E 

Proof. Let us consider the Cauchy problem (2.1) with Ct = 0 and C0 an arbitrary 
fixed operator in L(H). By Lemma 1, a solution of this problem is given by 

(2.13) X(0 = (XAV7(2/c)!)Co. 
k = 0 

In order to satisfy the boundary value condition of (2A0), the operator C0 must verify 

(2.14) E = X(a) - X(0) = ( £ Aka2kl(2k)\ - I) C0 = 
k^b 

= (XAVV(2fc)!)C0 = (a»-/)C0. 
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From the spectral mapping theorem, [5], one gets 

(2.15) <r(gA(a) - I) = <r(h(a2A) - /) = {h(a2z) - 1; z e a(A)} = 

= {cosh (z1/2a) - 1 ; z e a(A)} 

and, as cosh (w) = 1 if and only if w = 2pni with p integer, the hypothesis of (i) 
implies that the operator gA(a) — I is invertible in L(H). From (2.14) it follows that 

(2.16) C0 = (gA(a) - I)'1 E . 

Hence (i) is proved. Taking this expression of C0 in (2A3) one gets (ii). If B is an 
operator with B2 = A, then the expression (2A3) with C0 given by (2A6) yields 

X(t) = ( X (Bt)2fc/(2k)!) C0 = cosh (Bt) (cosh (BO) - I)"1 E . 
/c^0 

In accordance with the notation introduced above in (2.1), we denote by gA
l\z) 

the L(H)-valued operator series obtained by differentiation in gA(z), that is 

(217) a^(z) = IAV*-7(2fc- l ) ! . 

Let us consider fA(z) = £A fcz2fe+1/(2k + 1)!, and note that gA
l)(z) = fA(z) A. The 

following result is concerned with the Sturm-Liouville problem (1.3) for X 4= 0. 

Theorem 2. Let X =1= 0, and let A be the operator XQ, then there nontrivial solutions 
of (1.3) if and only if 0 e O"comp(S), S being the operator matrix 

(218) Я, E2 1 

(«)J ' fi 9A(O) + F2 gA

1}(a) F5 f^(a) + F2 QA(^ 

Under the hypothesis Oe crcomp(S), the solution set for the problem (1.3) is given by 

X(t) = gA(t) C0 + fA(t) C, 

where C0 and Ci are operators in L(H) satisfying 

(2.19) S [c ° ] = °-

IfN is a closed subspace of H © H which is orthogonal to the subspace S(H © H)9 

and N! and N2 are the subspaces of H © H defined by N1 = N n (H © {0}), 
N2 = N n ({0} © H), then the operators C0 and C1 may be chosen as the projections 
on H with ranges N1 and N2, respectively. 

Proof. By Lemma 1, the general solution of the operator differential equation 
arising in (1.3) is given by (2.5), where A = XQ. If we assume that X(t) given by (2.5) 
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satisfies the boundary value conditionsof (1.3), it follows that the operators C0 and 
C! must verify the conditions 

(2.20) Et(gA(0) C0 + ^ ( 0 ) Ct) + E2(g™(0) C0 + fA
l\0) C,) = 0 , 

F1(gA(a) C0 + fA(a) CO + F2(gA
l\a) C0 + fA

l\a) C.) = 0 . 

From (2.1) and (2.17) one gets gA(0) = I,fA(0) = 0 , / ^ ( 0 ) = flu(0) = / , ^ ' ( O ) = 0, 
f(

A\a) = gA(a), gA\a) = AfA(a). Thus, the system (2.20) is equivalent to 

E,C0 + £ 2 C ! = 0 , 

F1(gA(a) C0 + fA(a) Ct) + F2(AfA(a) C0 + gA(a) Ct) = 0 . 

From here and (2A8) the result is concluded. 

Remark 1. Note that for the finite-dimensional case, the hypothesis 0 e crcomp(S) 
is equivalent to the noninvertibility of the matrix S, and in this case, in order to 
obtain explicit expressions of the solutions of (1.3), it is sufficient to compute the 
matrices fA(a), gA(a), gi

A
1)(a), and to solve the algebraic system (2.19). For the general 

case different solutions for (1.3) may be found depending on the codimension of the 
subspace S(H ® H). 

Corollary 1. Let us consider the problem (V3) where Q is an invertible operator 
with a square root D, and X =t= 0. Then the problem (1.3) is solvable if and only if 
0 G crcomp(T), where T is the operator matrix 

Ex 

Ei cosh (Dal112) + F2D sh (Dal1'2) 

E2 1 , / 2 ) J -E,(DA1/2)-1 sh(Da;j / 2) + E2 cosh (Dal 

In this case, the solution set for the problem (1.3) is given by 

X(t) = cosh (DXll2t) C0 + (£»21/2)_1 sh (DXll2t) C{ 

where C0 and Cl are operators satisfying T = co 
ci 

= 0. 

Proof. It is a consequence of Theorem 2 and Lemma 1. 
Let us consider an example to which the method of [9] is not applicable because 

of the unsolvability of the equation X2 — XQ = 0. 

Example 1. Let Q be the matrix Q = \, it is easy to show tha Q has no 

square root and that Q2 = 0. If we consider the boundary value problem (1.3) with 

a = 1, X 6 C, Ei = Ft = F2 = J, E2 = , then by Theorem 2, there are non-
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trivial solutions of (1.3) if the following matrix is singular: 

S = Lc ( l ) + 0^(1) LG(1) + ^e(l). 
In our case one gets 

J 
øШ) = ß̂ = [o o ] ; ^ 1 ) " '+ ÃQI2 = [J f ] ; 

/яe(l) = / + Aß/З! = [J f ] . 

So the matrix S arising in (2.18) takes the form 

S = 

1 0 1 0 
0 1 1 1 
1 ЗД/2 2 2A/3 
0 1 0 2 

An easy computation yields that the determinant of S is det (5) = 6 — 14L Thus S is 
singular only for X = 3/7. For this value of 2, the matrix S has in its kernel the vector 

2 

- 1 

- 1 

. If we consider the matrices C o = 20 , C l = - 1 0 L then the condi-

+ 

tion (2.19) is verified. By Theorem 2, a nontrivial solution of the problem (1.3) is 
given by X(t) = gA(t) C0 + fA(t) Cl9 where A = 3(2/7. From the power series ex­
pansions offA and gA, given by (2.1), and from Q2 = 0 it follows that 

X(t) = (I + At212) C0 + (It + At3/3!) C. = [ | 3 ' 2 f 4 ] [J J] 

p * 3/14"|["-l 0 l [ 1 - t + 3f2/7 - J3/14 0"| 
+ L° u L - i ° J L 2~t °J* 

It is a straightforward matter to verify that X satisfies the problem (1.3). 
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Souhrn 

EXPLICITNÍ ŘEŠENÍ OKRAJOVÝCH ÚLOH PŘÍBUZNÝCH 
OPERÁTOROVÉ ROVNICI 

X(2)_ AX=0 

LUCAS JÓDAR, ENRIQUE NAVARRO 

V článku jsou vyšetřeny Cauchyovy okrajové a Sturm-Liouvillovy úlohy příbuzné operátorové 
rovnici K(2) — AX = 0 v obecném případě, i když rovnice X2 — A = 0 je neřešitelná. Jsou 
podány explicitní výrazy pro řešení v konečně dimensionálním případě, které lze použít k výpočtu 
řešení. 
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