
Applications of Mathematics

Martin Hanke; Marlis Hochbruck; Wilhelm Niethammer
Experiments with Krylov subspace methods on a massively parallel computer

Applications of Mathematics, Vol. 38 (1993), No. 6, 440–451

Persistent URL: http://dml.cz/dmlcz/104566

Terms of use:
© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104566
http://dml.cz

38 (1993) APPLICATIONS OF MATHEMATICS No. 6, 440-451

EXPERIMENTS WITH KRYLOV SUBSPACE METHODS
ON A MASSIVELY PARALLEL COMPUTER

MARTIN HANKE, Karlsruhe, MARLIS HOCHBRUCK, Zúrich,
and WlLHELM NlETHAMMER, Karlsruhe

Summary. In this notě, we compare some Krylov subspace iterative methods on the
MAS PAR, a massively parallel computer with 16K processors. In particular, we apply
these methods to solve large sparse nonsymmetric linear systems arising from elliptic par-
tial differential equations. The methods under consideration include conjugate gradient type
methods, semiiterative methods, and a hybrid variant. Our numerical results show that,
on the MAS PAR, one should compare iterative methods rather on the basis of total com-
puting time than on the basis of number of iterations required to achieve a given accuracy.
Our limited numerical experiments here suggest that, in terms of total computing time,
semiiterative and hybrid methods are very attractive for such MASPAR implementations.

Keywords: massively parallel computers, iterative methods, nonsymmetric linear sys
tems, Krylov subspace methods, preconditionings

AMS classification: 65F10, 65W05

1. I N T R O D U C T I O N

The University of Karlsruhe recently installed a massively parallel computer, a
M A S P A R MP-1 with 16,384 processors. Like the Connection Machine CM-2, the
M A S P A R is extremely well-suited (cf. Section 3) for the particular data structures
arising from finite-difference discretizations of elliptic partial differential equations,
such as

(1) Lu = -aAu + bux + cuy + du = / in fi = (0, 1) x (0, 1),
u — g on r = <9íž,

where a, 6, c, d, / and g are appropriate real-valued coefficient functions. These
discretizations give rise to large sparse reál nonsymmetric linear systems

(2) Ax = h.

The development of iterative methods for (2), and their implementation on modern
supercomputers is currently an important research area in numerical linear algebra

440

(cf., e.g., Freund, Golub, and Nachtigal [5]). It is well-known that on supercomouters,
and in particular on single-instruction-multiple-data (SIMD) machines, it is not only
the rate of convergence but also the parallel potential of the particular iterative
schemes which matters . We refer to Niethammer [12] for a comparison of Krylov
subspace methods on vector computers, and to Tong [18] for a similar comparison
on the Connection Machine CM-2.

In this notě, we want to summarize some of our numerical experiments on the
M A S P A R with Krylov subspace methods which coinpute an approxirnate solution of
(2). In Section 2, we give a short description of Krylov subspace methods. These
can be divided into two main classes: conjugate gradient type methods, and semiit-
erative methods. While the most important basic operation—as far as the nurnber
of arithmetical operations is concerned—is the samé for both classes, námely the
matrix-vector product with A, there is nevertheless a major difference between these
two types of methods: semiiterative methods require certain parameters which de-
pend on a priori required spectral information on A] conjugate gradient type methods
are parameter-free, but accurnulate similar information by means of inner products
which are computed during the iterative process. Notě that no inner products arise
in semiiterative methods. As we will show below, on a massively parallel computer
like the M A S P A R , it is no longer the matrix-vector multiplication which dominates
the cost per iteration, because an inner product is more expensi ve in terms of com-
putat ional t ime. Hybrid variants cornbine methods from both classes in order to
také advantage of their particular properties: typically, a few steps of a conjugate
gradient type method are performed which acquire enough spectral information on
A, to switch to a promising semiiterative methods.

For our numerical experiments we selected representative methods from each class,
and one hybrid method; we also included preconditioning. In Section 3 we describe
sorne aspects concerning the implementation of these methods on the M A S P A R . Our
codes are written in M P L , a parallel extension of C; we emphasize the simplicity of
the M P L routines.

In the finál section we present our numerical results. We consider two model
problems taken from the literatuře. Our results are significantly diíferent, when
compared on the basis of nurnber of iterations required or on the basis of total
computing time; the semiiterative methods converged fastest in all our experiments,
the timings of the hybrid method are also quite promising.

441

2. KRYLOV SUBSPACE METHODS

Krylov subspace methods are known as powerful methods for the iterative solution
of linear systems. In each step, they produce approximations xn to the exact solution
A~lh of the form

(3) xn = x o + ACn(ro,;4), n = l , 2 ,

Here xo € R^ is any initial guess for the solution of (2), ro = b — AXQ is the initial
residual, and

(4) £ n (r 0 , A) ~ spán {r0, ArQ)..., An"1r0}

is the nth Krylov subspace with respect to ro and A.

In the following, we denote by IIn the set of all complex polynomials of degree at

most n, and by H the set of all complex polynomials.

From (3) and (4) it is straightforward to deduce that the nth residual vector

r n = b — Axn can be written as

(5) r n = p n (. 4) r o , n = 0 ,1 ,2 , . . . ,

where the so-called residual polynomials pn E IIn fulfill

P„(0) = 1.

It is obvious from (5) that the convergence of a Krylov subspace method will be
fastest if its associated residual polynomials are as small as possible in a region Q
enclosing the spectrum of A. This leads to the polynomial minimization problém

max |p n (z) |= min max|p(z)|,
zeQ P €n n : P(o)=i zeo v

for which an exact solution is known only in speciál cases.

The various Krylov subspace methods diífer in the way they approach the compu-
tation of the residual polynomials. The classical Hestenes-Stiefel conjugate gradient
(CG) method [8], for instance, chooses the residual polynomials to be orthogonal
with respect to the inner product

(P, q) := r%p(A)q(A)r0l p, q E H.

442

As a result, the n th iterate can be computed by means of three-term or coupled

two-term recurrences, and the residual vectors satisfy a rninimization property in

the A~l norm:

I M U - « =Jj%A-lrn= min | | b - i 4 x | U - i .
v x€x 0+£n(r 0) ,4)

Unfortunately, classical CG only works for symmetric positive definite systems of

equations.

In the past few years many new generalizations of the conjugate gradient method

to nonsymmetric linear systems háve been proposed. It is well-known that for generál

nonsymmetric linear systems no method exists which minimizes a given norm of the

residual in each step using only short recurrences (cf. Faber and Manteuffel [4]). For

example, the residual vectors of the GMRES method, developed by Saad and Schultz

[15], satisfy a rninimization property in the Euclidean norm:

| | r „ | | 2 = min | | b - j 4 x | | 2 ,
xex0+Kn{r0,A)

but long recurrences are required to update the iterates. Therefore it is usually

impossible to run the full algorithm and it is necessary to use restarts. In the

following, we refer to GMRES(ra) as the GMRES algorithm restarted after each

cycle of m iterations.

Alternatively, generalized CG-type methods háve been based on other concepts

such as biorthogonality (like BCG, cf. Lanczos [9], as its most popular representa-

tive), tha t still allow short recurrences. Unfortunately, most of these algorithms lack

numerical stability. Therefore, several modifications háve been suggested recently.

One of them, the quasi-minimal residual (QMR) algorithm by Freund and Nachtigal

[7], uses a look-ahead version of the Lanczos algorithm [6] and in addition imposes

a quasi-minimization principle. This combination leads to a stable algorithm. An

other modification is Van der Vorsťs BiCGStab algorithm [19], which appends a
smoothing step on top of the BCG algorithm, but does not address the breakdown
problém. For an excellent overview on Krylov subspace methods for nonsymmetric
linear systems we refer the reader to the survey páper [5].

All methods mentioned so far are parameter-free, in the sense that no a priori
information on the spectrum of the matrix A is ušed. Another important class of
Krylov subspace methods consists of parameter dependent or semiiterative methods
as introduced by Varga [20]. These require some spectral information on the matr ix
A before the algorithm itself can be started. With this information at hand, tools
from complex polynomial approximation theory can be applied to determine suitable
residual polynomialsp n for (5). We refer to the survey páper by Eiermann, Nietham-
rner and Varga [3] for an extensive exposition of semiiterative methods. The most

443

important representatives out of this class are the Chebyshev algorithm (cf. Man-
teuffel [10]), stationary &-step methods (Niethammer and Varga [13]), and cyclic
Richardson methods (cf., e.g., Smoiarski and Saylor [16]).

From an implementation point of view, the main difference between parameter-free
and semiiterative methods is that , for the latter, no computation of inner products
is necessary. On massively parallel machines the computation of inner products
represents a bottleneck of the implementation, and therefore semiiterative methods
háve a certain advantage in cornputational tirne per iteration over parameter-free
methods.

Since spectral information is usually not available and expensive to obtain, new hy
brid methods (cf., e.g., Smoiarski and Saylor [16], Nachtigal, Reichel, and Trefethen
[11], and Starke and Varga [17]), which try to combine the advantages of parameter-
free and semiiterative methods, recently háve gained importance. The basic idea
of hybrid algorithms is to start with a parameter-free method such as GMRES, to
determine suitable parameters for a semiiterative method. In the second phase, one
switches to a much cheaper semiiterative method, using the above parameters. If the
semiiterative method does not converge, another GMRES phase is run to improve
the set of parameters, and so forth.

For our experiments on the M A S P A R we concentrated on four particular methods:
BiCGStab, as a representative of parameter-free methods based on the Lanczos pro-
cess, restarted GMRES(16) which is based on the Arnoldi process, stationary two-
and four-step semiiterative methods, and the hybrid GMRES-Richardson method
by Nachtigal, Reichel, and Trefethen. For the latter, Hybrid(16), we ušed cycles of
length 16 and based the implementation of the Richardson cycle on Horner's scheme.
However, we noticed that this variant is susceptible to numerical instabilities. We
did not consider the QMR algorithm in this páper because preliminary experiments
with QMR showed that look-ahead is substantial for our examples. An actual im
plementation of QMR with look-ahead on the M A S P A R is currently under work.

Notě that none of the methods under consideration involves multiplications with
AT, i.e., they are transpose-free. We would like to stress that the implementation
of the multiplication with A does not involve any difficulties in our particular ap-
plication. It can be implemented similar to the multiplication with A at exactly the
samé expenses.

Today, Krylov subspace methods are rarely applied to the basic linear systém
without preconditioning. Preconditioning means that one transforms the underlying
equation into an equivalent one by multiplyingyl with adequate nonsingular matrices
Qi and Qi from the left and /or from the right. This leads to the preconditioned
problém

QiAQ2z = Qib , x = Q2z.

444

The idea is to determine Q\ and Q2 ín such a way that the new systém has better
spectral properties, and thus, iterative methods can converge faster. As a rule of
thumb, a good preconditioner somehow satisfies Q2Q1 « A~l.

Usually, the matrices Q\ and Q2 are only given implicitly. To gain good speedup,
it is impor tant that their implernentation has an inherent parallel structure that
can be employed on the M A S P A R . In our numerical experiments we ušed (i) the
originál mat r ix without preconditioning, and (ii) symmetric SSOR preconditioning
with red/black ordering and relaxation pararneter u; = 1. Notě that u) = 1 is the
optimal relaxation pararneter for SSOR in our applications (cf., e.g., Ortega [14,
p. 175]). For implernentation details concerning SSOR we refer to [14, Section 3.4].

3. IMPLEMENTATION

The SIMD machine M A S P A R MP-1 has 16,384 (4-Bit) processors, arranged in a
regular two-dimensional toroidal grid of 128 x 128 processors. Another processor takés
the exceptionai role of the array control unit (ACU) which controls the execution of
the grid processor's operations, and carries out the seriál parts of the algorithm. The
ACU also contains the shared memory. The MP-1 uses a UNIX workstation as front-
end computer. All programs are written and compiled on the front-end; in addition,
there is a feature to switch to front-end routines to execute bigger sequential parts
of the program. Our codes were written in M P L , a parallel extension of C.

Each of the M A S P A R processors has fořty 32-bit registers, and can use up to 16
Kbytes local memory for so-called p l u r á l variables; 128 Kbytes shared memory of
the ACU contain the s i n g l e variables. All our computations háve been perforíned
in double precision.

Employing the natural da ta mapping of the unit square domain Q = (0, 1) x (0,1)
onto the M A S P A R processor array (cf. [14]), each processor maintains one of the grid
unknowns of a regular mesh with mesh size h — 1/129; notě that we did not reservě
processors for grid points 011 the boundary T = díl. The N-dimensional vector x
and the right hand side vector b thus reduce to simple p l u r á l doub le variables in
M P L .

The block tridiagonal matr ix A from a centrál difference discretization of the
partial differential equation (1) can be represented as a five-point stencil in the usual
way, cf., e.g., [14]. The stencil elements per grid point are stored in the respective
processors in a parallel initialization step.

A multiplication with A then simply requires the extremely fast xnet-commu-
nication with the nearest neighbors in the North, West, East, and South. Extra
considerations are necessary concerning the grid points on the boundary. As in con-
ventional seriál discretizations we eliminate boundary elements from the systém by

445

incorporating their contribution into the right hand side. Due to the "wrap around"
concept of the M A S P A R , stencils of close-to-boundary grid points refer to grid points
on the opposite side of the square. This is easily fixed by initializing the respective
stencil elements to zero. In this fashion, the finál matrix-vector product reduces to
a one-line s ta tement in M P L , cf. the first part of Figuře 1. Again, we ernphasize the
simplicity of the M P L routines.

p l u r á l double x , y , z ;
p l u r á l double c , n , s , w , e ;

/ * c , n , s , w , e contain the five-point stencil */

/ * matrix-vector product: */
y = c*x + n*xnetN[l] .x + s*xnetS[l] .x

+ w*xnetW[l].x + e*xnetE[l] .x

/* SSOR preconditioned matrix-vector product: */
z • 0;
i f (red)
{ z * n*xnetN[l] .x + s*xnetS[l] .x

+ ¥*xnetW[l].x + e*xnetE[l] .x; }
y * x - n*xnetN[l] .z - s*xne tS[l] . z

- w*xnetW[l].z - e*xnetE[l] .z ;

Figuře 1: MPL-listings of the basic routines

For the red-black-SSOR preconditioned matrix-vector product we obtain a slightly
more complicated subroutine (cf. Figuře 1): in a first substep, the stencil is evaluated
for all red grid points; the second substep then cornputes the finál update in all grid
points. In this way, the SSOR implementation takés about twice the time as a
s tandard matrix-vector product (cf. Table 1).

Compared with these local communication routines, the implementation of the
inner product involves globál communication. We compute inner products with the
built-in function reduceAddd, which performs a globál suinmation over one p l u r á l
d o u b l e variable of all processors.

For illustration, we provide the execution times for our basic linear algebra routines
in Table 1. The consideration of seiriiiterative inethods is justified by the fact that
one inner product is more time-consuming than a matrix-vector product.

x + a y 95 //secs
x T y 480 /xsecs
Ax 445 //secs
Q1AQ2X 805 f.isecs

Table 1: Timings of the basic routines

446

4 . EXPERIMENTAL RESULTS

For our numerical experiments we considered two particular partiai diíferential

equations (1) with operators

(a) Lu = —Au + | u 5 ,

(b) Lu = -estAu + (50(5 4-1) - test)us - sestut + (5 -f y ^ K

In both exampies, the functions / and g were chosen such that u = 1 is an exact

solution of Lu = / . The first exampie, which is taken from [17], is chosen such that

the associated cell-Reynolds number is four, and thus gives a highly nonsymmet-

ric but well-conditioned linear systém Ax. = b ; the coefficient matr ix of the second

exampie—taken from [1]—is more ill conditioned. Thus, the two exampies empha-

size different properties of the iterative solvers. We would like to stress, that it is

not mereiy the condition number which affects the rate of convergence of iterative

methods, but tha t the location of the eigenvalues and the condition number of the

associated eigenvalue problém play an important role.

In the first exampie, the spectrum of A can be computed explicitly (cf. [17]):

it irlls up a rectangle with vertices 2 < Re A < 6 and |Im A| < 2y/Tb. Following

Eiermann [2, Séct. 4] we ušed this information to determine parameters for an almost

opt imals ta t ionary four-step method (SIM) with a convergence factor K « 0.84. Using

Young's functional equation between the eigenvalues of the Jacobian and those of

the SOR iteration matr ix, we computed the eigenvalues of the SSOR matrix, too.

Its spectrum is better suited for a two-step semiiterative method than for a four-step

method. ManteuffePs algorithm [10] was ušed to find the parameters for the optimal

stationary two-step method; the corresponding convergence factor is K « 0.74.

In Table 2 we present the time that is required in the average to perform one

iteration by SIM, BiCGStab, GMRES(16), and Hybrid(16), respectively; the tim-

ing of Hybrid(16) is based on the (quite pessimistic) assumption that one out of

seven cycles of Hybrid(16) is a GMRES(16) cycle while the remaining six cycles are

Richardson cycles of length 16, each. Our timings concern the basic iteration and

the preconditioned iteration, respectively.

without precond. with precond.

BiCGStab 3.98 4.69

GMRES(16) 11.30 11.68

SIM 1.02 1.37

Hybrid(16) 3.10 3.49

Table 2: Average time per iteration (in msecs)

W h a t is irnportant here is that the semiiterative method is by far the most in-

expensive per iteration; the most expensive method is GMRES(16). On the other

447

hand, we can see that SSOR preconditioning leads to an overhead of 10 to 4 0 % in
time, the precise number depending on the particular iterative scheme. Clearly, it
is the semiiterative method where the time per iteration increases the inost with
preconditioning, because here the inatrix-vector multiplication dominates the overall
costs.

We now present the numerical results. In all our figures, the solid line represents
BiCGStab, the dashed line GMRES(16), the dotted line the semiiterative method,
and the dash-dotted line Hybrid(16). Our plots show the relative residual norms
llrnlh/Hrolh versus the iteration index n on the left, and the relative residual norms
versus t ime (in seconds) on the right.

Figuře 2 contains the results for equation (a) without preconditioning. Since A
is well-conditioned in this čase, the semiiterative method performs extremely well,
both with respect to nurnber of iterations and with respect to time. We point out
the five peaks of the plot of Hybrid(16) where the Richardson cycle changed the
iteration to the worse, forcing the program to switch back to GMRES. In total, seven
GMRES(16) cycles were performed in this čase. In this example, BiCGStab needs
more than twice as many iterations as GMRES(16) but nevertheless significantly less
t ime.

Figuře 2: Example (a), no preconditioner

The samé example with preconditioning gave the results in Figuře 3. In particular,
we emphasize the tremendous speedup of BiCGStab. It required fewest iterations,
and only the optimized semiiterative method was faster in time. Hybrid(16) needed
more iterations than GMRES(16) but was almost as fast as BiCGStab. The reason
is that Hybrid(16) required only one GMRES cycle in this test.

Next, we consider the more ill-conditioned second problém. For this example, we
only present the results with preconditioning, cf. Figuře 4. Our motivating remarks
from the introduction are clearly underlined: CG-type methods required (signifi-

448

-1

"J lBiCGSub

SIM | -Hybrid

' - , GMRES "j

O 50 100 150 200 250 300 350 400

Figuře 3: Example (a), SSOR preconditioner

•-, Hybrid

. CWRES a M

I ' :

-v\\
•BiCGStob

SIM- • Hybrid

\

\ GMRES

\ j
100 200 300 400 500 600

Figuře 4: Exaniple (b), SSOR preconditioner

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figuře 5: Eigenvalue estimates for Example (b)

cantly) less iterations in this exaniple than the semiiterative and the hybrid method;
nevertheless, as far as time is concerned, there is no significant difference between
BiCGStab and Hybrid(16); GMRES(16) is not competitive here.

449

To include a good semiiterative method for ease of comparison, we acquired eigen-
value estimations from the look-ahead Lanczos algorithm [6] (cf. Figuře 5). From
these estimates we determined a stationary two-step method as before with conver-
gence factor K « 0.92. Clearly, this is no practical approach, but our emphasis here
was merely to demonstrate the potential of semiiterative and hybrid methods.

5. CONCLUSION

We conclude that within our limited set of examples, the semiiterative method
would always háve been our favorite choice because it achieved the required accuracy
fastest. However, the a priori deterrnination of the parameters that are required to
start the semiiterative method is not always practical. In principle, it should be
possible to design hybrid methods that are close to the semiiterative ones as far
as computat ional time is concerned. Nevertheless, we observe that there is still a
significant gap between the timings of Hybrid(16) and the optimized semiiterative
methods. It is a topič of current research to narrow this gap.

A c k n o w l e d g e m e i i t . This project has been supported by the Deutsche For-
schungsgemeinschaft (DFG). We are grateful to Michael Eiermann, Gerhard Starke,
and Richard Varga for their helpful advice and to Noěl Nachtigal for his careful
reading of this manuscript .

References

[l] D. Baxter, J'. Saltz, M. Schultz, S. Eisenstat, and K. Crowley: An experimental study of
methods for parallel preconditioned Krylov methods, Tech. Rep. RR-629, Department
of Computer Science, Yale University, 1988.

[2] M. Eiermann: On semiiterative methods generated by Faber polynomials, Numer.
Math. 50(1989), 139-156.

[3] M. Eiermann, W. Niethammer, and R. S. Varga: A study of semiiterative methods for
nonsymmetric systems of linear equations, Numer. Math. ^7(1985), 505-533.

[4] V. Faber and T. Manteuffel: Necessary and sufficient conditions for the existence of a
conjugate gradient method, SIAM J. Numer. Anal. 21 (1984), 352-362.

[5] R. W. Freund, G. H. Golub, and N. M. Nachtigal: Iterative solution of linear systems,
Acta Numerica 1 (1992), 57-100.

[6] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal: An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Statist. Com-
put. 14 (1993), 137-158.

[7] R. W. Freund and N. M. Nachtigal: QMR: a quasi-minimal residual method for non-Her
mitian linear systems, Numer. Math. 60 (1991), 315-339.

[8] M. R. Hestenes and E. Stiefel: Methods of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards ^9 (1952), 409-436.

[9] C. Lanczos: An iteration method for the solution of the eigenvalue problém of linear
differential and integrál operators, J. Res. Nat. Bur. Standards ^5 (1950), 255-282.

450

[10] T. A. Manteuffel: T h e Tchebychev iteration for nonsymmetric linear systems, Numer.
Math . 28(1977), 307-327.

[11] N. M. Nachtigal, L. Reichel and L. N. Trefethen: A hybrid GMRES algorithm for
nonsymmetr ic linear systems, SIAM J. Matrix Anal. Appl. 13 (1992), 796-825.

[12] W. Niethammer: I terative solution of non-symmetric systems of linear equations, ín:
Numerical Mathemat ics , Singaporel988 (R. P. Agarwal, Y. M. Chow and S. J. Wilson,
eds.) , Birkháuser, Basel, 1988, pp. 381-390.

[13] W. Niethammer and R. S. Varga: The analysis of fc-step iterative methods for linear
systems from summabil i ty theory, Numer. Math. 41 (1983), 177-206.

[14] J. M. Ortega: Introduction to Parallel and Vector Solution of Linear Systems, Plenům
Press, New York, London, 1988.

[15] Y, Saad and M. H. Schultz: GMRES: a generalized minimal residual algorithm for
solving nonsymmetr ic linear systems, SÍAM J. Sch Statist . Comput . 7(1986) , 856-869.

[16] D. C. Smolař ski and P. E. Saylor: An opt imum iterative method for solving any linear
systém with a square matr ix , BIT 28 (1988), 163-178.

[17] G. Starke and R. S. Varga: A hybrid Arnoldi-Faber iterative method for nonsymmetr ic
systems of linear equations, Numer. Math. 64 (1993), 213-240.

[18] C. Tong: T h e preconditioned conjugate gradient method on the Connection Machine,
In: Proceedings of the Conference on Scientific Applications of the Connection Machine
(H. Simon, ed.) , World Scientific, Singapore, New Jersey, London, Hong Kong, 1989,
pp . 188-213.

[19] H. A. Van der Vorst: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetr ic linear systems, SIAM J. Sci. Statist . Comput . 13 (1992),
631-644.

[20] R. S. Varga: Matr ix Iterative Analysis, Prentice Halí, Englewood Cliffs, New Jersey,
1962.

Authors' addresses: Martin Hanke, Wilhelm Niethammer, Inst i tut fůr Praktische
Mathemat ik , Universitát Karlsruhe, Englerstr. 2, W-7500 Karlsruhe 1, Germany; email
a f 0 1 < 9 d k a u n i 2 . b i t n e t ; Marlis Hochbruck, Interdisciplinary Project Center for Supercom-
puting, ETH Zůrich, ETH-Zen t rum, CH-8092, Zůrich, Switzerland; email n a . h o c h b r u c k Q n a -
n e t . o r n í . gov.

451

		webmaster@dml.cz
	2020-07-02T08:24:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

