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ON THE POWER OF O R D E R E D SETS 
M I L A N S E K A N I N A , B R N O 

(Received March 6, 1965) 

Under the notion "an ordered set" we understand a set e. g. A on 
which a reflexive, antisymmetric and transitive relation is defined. If 
we denote this relation by the symbol <^, we write detailed (A, 5^), 
In several parts of this paper we shall deal with several ordered sets 
at the same time. We shall use for them — if there does not occur the 
danger of mistake — the same symbol. In opposite case the symbol will 
be provided with an index (e. g. <^1). The ordered set will be said to 
fulfil the condition of decreasing chains, when for every decreasing 
sequence xt ^ x2 >̂ . . . ^ xn ^ . . . there exists m so that xm = xm+1 = 
= . . . . We write then (A, < )̂ e Ctf (or simply A e J f ) . A set of minimal 
elements of the set A we denote by m(A). We shall say that A fulfils 
the condition of minimality when there exists m e m(A) for every a e A 
such that m <̂  a. In this case we write A eJK. Let A, B be sets (they 
do not need to be ordered). AB is a system of all mappings of a set B 
into A. Let / , g e AB. We put n(f, g) = {x : x e B, f(x) ^ g(x)}> 

The one-to-one mapping / o f a set (A, ^ ) on (B, 5^) is called a similar 
mapping, if x <J y = f(x) 5^ f(y). The set A is said to be similar to B 
and we write A ~ B. The category of ordered sets, where morphisms 
are similar mappings, is denoted by °ll. The category of sets with one 
binary relation is denoted by 88. Morphisms are isomorphic mappings. 

The aim of this paper is to present the definition of a certain operation 
in tft, which is a modification of the ordinal power of ordered sets. The 
ordinal power of ordered sets BA has been defined by G. Birkhoff 
in [1], [2] and M.M. Day in [3] (the definitions, presented in these 
papers, are formaly different; in what follows we shall define BA according 
to [2]). BA is not in general case an ordered set. According to [3], p. 23, 
the theorem 4.17, the following statement holds: (D) BA is an ordered 
set just when A is an antichain or B e Ctif. 

In the paragraph 2 there is defined an operation exp^ B which in 
case, when all presumptions from (D) are fulfilled, is equal to BA. If A 
and B are totally ordered, then exp^ B is equal to general power of 
Hausdorff ([4] p. 150). 

Ordinal and cardinal operations with ordered sets are denoted like 
in [2] with the difference that no symbol for a cardinal power is intro
duced (definition AB see above) 
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Lemma 1. A e Ctf => A eJK. 
Evident. 

Lemma 2. Let H be an ordered set, H{ for i e H an ordered set. Then 
<i, a> e w ( 2 H{) is equivalent to the validity of one of these statements. 

ieH 

1. a G ra(JE^) and i e m(H) 

2. a e m(H{) and j < i => H?- = 0. 

2 -?t- denotes a lexicographic sum. 
ieH 

Proof. Let <t, a> em\2,H^). Let aeH{. If there existed 6 < a, 
ieH 

6 e H{, then (i, 6> < (i, a> in^H* what is impossible. Let there exist 
ieH 

j < i. Let us admit that ceH^. Then <j, c> < <t, a> what is again 
a contradiction to the presumption. 

Let there hold 1 or 2. Then from <k, 6> e^?Hif (k, 6> < <i, a} there 
ieH 

follows either k < i and then 6 e Hk = 0, or A: = i and 6 < a, so 
a non e m(H{). Both is in contradiction with the presumption. 

Consequence of the lemma 2. 

AtBeJK-> A + B, A ® B, A O BeJK. 

Lemma 3. 

Let A, BeJK. Then A .BeJK. 
Proof. Let a e m(A), 6 £ m(B). Then evidently <a, 6> e m(Ai . B). If 

<c, d> 6 A . .£, so there exists a 6.m(i), 6 e m(B) such that a ^ c,b % d. 
Then <a,6> ^ <c„<f>. 

There hold even these evident statements. 

Lemma 4. 
Let A = B + C. Then 

AeJK ~B, CeJK. 

Lemma 5, 
Let A = -B© C. (then 

A € ^ -\B=0 *>CeJK. 
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Definition 1. Let / g e ^4«, .4, J5 G Ql. Let us put / ^ ^ = n(/, g) ej( 
and for m G ra(n(/ g)) there is f(m) < g(m). 

Theorem 1. (AB, ^) is an ordered set. 
Proof. 1. Reflexivity is evident. 
2. Let / <; g, g S / Then necessarily n(f, g) = 0, so / = #. 
3. Let / g gr, g S h. Let 6 e n(f h). Then b e n(f g) U n(gr, h). There 

exists m e m(n(f, g)) or me m(n(g, h)) such that m S b. In what follows 
we shall investigate the first case. The second case can be investigated 
analogously. Let us admit that there exists mx ^ m such that g(mt) ^ 
7- h(mx). Then there exists m2 S % , m2em(n(g, h)). I t must be 

f(m2) ^ rI(ra2) < h(m2). Simultaneously m2 G m(n(f, h)). If there does not 
exist mx with the above mentioned property, there is mem(n(f, h)) 
and f(m) < g(m) = h(m). Thus n(f h)eJK and f % h. 

Definition 2. Let us put expAB = (.A5, ^ ) . 

Theorem 2. Le£ 4̂ be an antichain or BeJJT. Then expAB = BA. 
Proof. A being an antichain, BA and exp^ B are antichains. 
Let B G JT. Let / , g G -4B. Let / ^ g in 5 ^ . i? G JT => n(/, g) s Jf => 

^ n{f> 9) e ^ - According to the definition BA we have m e m(n(f, g)) => 
=> /(m) < gr(ra), thus f < g in expA B. Let / S g in expA B. Then for 
every x e B for which /(#) ^ (̂a:) there exists y e m(n(f, g)) such that 
?/ ^ a; and/(y) < gr(i/), t h u s / ^ g in BA. 

Theorem 3. Exp^ (B + G) ~ exp^ JB . exp^ C. 
Proof. Let feexpA (B + O). Let fB,fc (similar in the following 

explication) be partial mappings induced by the mapping/ of the set B 
into A, eventually G into A. Then / -> <fB>fc> *s a one-to-one mapping 
exp^ (B + G) on exp^ B . expA G. We shall show that it is a similar 
mapping. 

a) Let / g e exp^ (B + G), f <; g. In general it holds 

(1) n(f, g) =.= n(/^, £g) + n(fc, gc) and 
«(«(/, 9)) = wW/u. fe)) + ™Mfc> 0c))-

Thus 

a: G m(n(fBi gB)) -=>xe m(n(f, g)) =• /(a;) < jr(a?) => fB(x) < gB(x). 

According to the lemma 4 there is n(fB,gB) e~4f. Hence fB S g# *n 

exP_4-®. In a similar way one can prove fc £ gc in expA0. Thus 
</B>/C> IS <9B>9C>-

b) Let < / B , / C > -S <9B>9C>-
 ¥rom (l) t ^ 6 folloW8 xem(n(f,g))^ 

=*•/(*)* < y(«). As according to the lemma 4 *(/, g)e^> it is / ^ 0-
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Theorem 4. exp^ (B © C) ~ exp^ 15 O exp^ 0 . 
Proof. We prove that .also in this case a mapping / - > <fB,/c> is 

a similar mapping. Let / , g e expA (B © C). 
I t is n(f, g) = n(fB, gR) © n(fc, gc). 
a) L e t / . g g. 
ax) Let » ( /B , gB) ̂  0 . According to the lemma 5 there is tt(/g , aB) e Ji'. 

For xem(n(fB, gB)) there is /5(z) = / (« ) < g(x) = gB(x). Consequently 
fB < 9B a n d therefore </B,/c> < <9B> 9c>-

a2) Let n(fB,gB) = 0. Then n(fc,gc)eJ( and similarly as in ax) 
there is fc < gc. Thus </B , / c> ^ ^ 0c>-

b) Let < / B , / C ) = <9B>9C)' According, to the lemma 5 there is 
n(f, g) eJ(. Let m e m(w(/, a)). 

bx) L3 t / B < gB. Then m em(n(fB, gB)) and/(m) < a(m). 
b2) Let /JB = gB, fc ^ 9c T h e n ™ e ™K/c ,0c ) ) and /(m) < g(m). 
Thus / < g. 
Theorem 6. expc (A O B) ^ expexpcB .A. 
Proof. L e t / e expc (A. O -#)• Le t /* e expexpci? 4̂ be such an element 

for which, for ae A, f* is a mapping of B into C defined by means 
of this equation 

f*a(b)=f(a,b) 

for every beB. 
It is easy to find out that / - > / * is a one-to-one mapping of the set 

expc (A O B) on expexpcB A. We shall show that the mapping is 
a similar one. 

a) Let / , 9 e e x p c ( A [ Q B), f ^ g. Let aen(f*,g*), t h u s / * * g*a, 
that is, there exists be B such that f*(b) ^ a*(6) thus f(a, 6) ^ a(a, 6). 
Let <ax,bx}em(n(f,g)), <ax,bx} <, <a,b}. It is f(a1,b1) < g(a1,b1). 
Let us admit that there exists a2 < ax such that/* a -̂  a* .̂ Then there 
exists 62 e B such that/(a2 , 62) # g(a2, 62) and at the same time <a2, 62> < 
< <ax,bxy which is impossible. Thus axem(n(f*,g*)). Let f*ai(bz)¥> 
9* 0*i(&a)- Then f(ax,b3) ?- g(ax,bz) and therefore there exists a4, 64 

such that <a4, 64> <; <a1? 63>, <a4, 64> e m(n(f, g)) and /(a4 , 64) < 
< gj(a4, 64)- For the reasons mentioned a while ago, there is a4 = ax-
Thus 646m(n(/ ; i ,a ; i)) 64 ^ 63. Consequently ^ ( / ^ , g*ai) e Jt and 
f\x < 9%- Accordingly n(f*,g*)e J( and /* ^ a*. 

b) Let / * S g*- ^ <a,b>en(f,g). Thus /(a, 6) ^ a(a, 6) which 
gives/* # £ • There exists ax < a, axem(n(f*, g*)) such that f*ai < g*a%-
Let for bx e B there bef*ai(bx) ^ g*ai(bx). Then there exists 62 e'm(n(f*ai, g*at)) 
such that 6a £ bx f*at(h) < g*ai(K)> i- e. f(ax, 62) < g(ax, 62). Let us show 
that <%, 62> e m H / , a)). Let <a', 6'> g <a1? 62>, <a', 6'> e **(/, </), 
then /(a1, 6') 9* rt*'> b')> *• e- /« * gj --> a' = ax. But then V = 62. 
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bx) Let ax < a. Then <ax, b2> < <a, b>. 
b2) Let ax = a. Then it is possible to put 6 instead of bx and again 

<al562> ^ (a, b}. 
Consequently n(f, g)eJK and f <, g. 
For purposes, of the following paragraph we pronounce this evident 

statement. 

Theorem 6. Let B be an antichain. Let f,ge exp^ B. Then 
f S g = / (# ) <£ g(x) for every xeB. 

Let (A, <;), (B, <> x), A c B and x, y e A, x <, y => x <,xy. Then we 
say that (B, <, x) is a prolongation of (A, <,). We write (A, <,) n(B, <, x). 
If it is even x, y e A => (x ^ y == x ^ x y) we say that (̂ 4, <.) is 
isomorphly embedded in (B, S x) and we write (A, <,) i(B, <x) or 
briefly A t B. 

Let (B, <,), A t B. We say that A is coinicial with B, when for 
every be B there exists a e A that a <, b. We write _A*i?. 

Let (A, <;) t(B, <,). Let .re A, i/ e B, y <, x=>yeA. Then A 
is an ideal of (B, S). . 

We say that (B, <.x) is an unsubstantial prolongation of (A, <.) 
when (A, <,) n(B, <,x) and there exists an ideal Ax in A, AxtB, AXKB. 

We write AaB. 
The following statement is valid. 

Lemma 6. Let A eJK. Then mAKA, mAaA, mA is an ideals of the 
set A. 

Proof is evident. Let us notice only that if it is not said anything 
else, in what follows, we suppose for the subset A of the ordered set B 
such an ordering that AtB. 

Lemma 7, Let AaB, A e<Jl. Then BeJK and mA 3 mB. 
Proof. Let Ax be an ideal from A, AxtB and AXKB. Let beB. There 

exists aeAx, a <.xb and further there exist axemA, ax<.a and 
axeAx. Then also axemAx and because of AXKB, also axemB. Let 
further b e mB. Then the < above constructed ax is equal to b and 
accordingly mB C mA. 

Lemma 8. AKB, A eJK => B eJK and mA = mB. 
Proof. AKB, A eJK => AaB and the statement follows from the 

lemma 7. ^ 
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Lemma 9. A is an ideal of B, B eJK => AeJ( and mA C mB. 
Proof is analogous as in the lemma 7. 

. Let 0 be a twoplace functor mapping °ll X tfl into ^ with follo
wing properties: 

A 1 <P(A, B) = (AB, ^ ) for a certain ^ . 
A 2 Let 9?: A-> Ax, xp: B-+Bx. Then #>(<p, xp) is defined in such 

a way: 
[&(% V) (/)] (V(6)) = ?(/(&)) w h e r e / e 4 * 

.4 3 (Axiom of the initial condition). Let B be an antichain, (̂ 4, ^ ) e 
e<%. Then in 0(A, B) = (AB, ^±) there is / £l9 ==/(&) ^ g(b) 
for 6 G 5 . 

A[ 4 (Axiom of relative mappings). Let an ordered set A be isomorphly 
embedded in B. Let C be an ordered set. Let for / , g e 0(G, A), 
/*, g*e0(C, B) there hold: xen(f, g) =>f(x) =f*(x), g(x) = 
= g*(*). 

Then there holds 
a) If it is n(f, g) xn(f*, g*) then fig=>f*S9*. 
b) If »(/, r̂) is an ideal of n(f*, g*), then f* S g*=>fS 9-
A 5 (Axiom of relative orderings). Let (A, ^ ) , (A, < x̂) e<W. 
Let / , g G O^4 where C e * . Let (n(/, g), ^ x) <r(w(/, 0), ^ ). 
Then / < g in 0 (0 , (A[, ^ ) ) =>/ < g in #(£ , (.4, ̂ ) ) . 

Theorem 7. For 0(A, B) = expA B are the axioms Al, A3—A5 ful
filled and 0(<p, y) is a similar mapping. 

Proof. Validity of Al and statement on 0(<p, y>) are obvious. A3 
follows from the theorem 6. 

Ad A4 
a) Let n(f, g) xn(f*, g*) and /•«£ g. Then n(f, g)eJ( and according 

to the lemma 8 n(f*,g*)eJ( and m(n(f,g)) = m(n(f*,g*)). Thus 
/ * £ 9*. 

Ad A4 
b) Let n(f, g) be an ideal of n(f*, g*) and /* ^ 9*. According to the 

lemma 9 n(f, g)sjf and m(n(f, g) C m(n(f*, g*)). Thus fig. 
Ad A5 
From (n(f, g), < -) <r(n(/, 0), < ) and / < g in expc (A, ^ J there 

follows both (n(f,g), <x)eJ( and, according to the lemma 7, 
(n(f,g),£)eJt and m(n(/, gr), < J D m(n(f,g), g ) . Thus / ^ g in 
e x p c ( ^ , < ) . 

Theorem 8. -£eJ ^ x <% -> ^ 6e replaced in formulations Al—A5 
/or ^ X ^ - > & and symbols < , Si for 0(A, B) signify binary rela-
How, Tken 0(A, B) = BA fulfils Al—A5. 

The proof is evident from the definition of BA< 
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Theorem 9. Let &(A, B) be a functor on <% into <% x % fulfilling 
Al—A5. Then 0(A, B) = exp^ B. 

Proof. Let us denote the ordering in 0(A, B) as ^ , in exp^ B 
as g r First we prove that (AB, gx) n(AB, <;). Let / S x gr. Let us put 
N = m(n(f, g)), N i B. There is fN ^ gN in exp^ N. According to A3 
there is fN ^ gN in &(A, N) and according to A4 a) and the lemma 6, 
there is / <; g in 0(A, B). 

Let us suppose that there exists / and g in AB such that / ^ g and 
/non ^ x g. Thus it is / < g. For this reason either S = n(f, g) non e*JK 
or S £.># and there exists x emS such that f(x) non < gr(#). The second 
case can be immediately excluded, because according to A4 b) there 
is fmS g gmS in 0(A, mS) and then according to A3 f(x)m< g(x) what 
is a contradiction. 

Thus let be S n o n e ^ . By A 4b) fs < gs in 0(A, S). Let T c 8 
be a set of those x E S under which*"there exists no minimal element. 
Then x e T, yeS — T=>xnon^y. Consequently T © (S — T) is the 
unsubstantial prolongation of S because T is a demanded ideal of S 
coinicial with T ® (S — T) and T iT © (S — T). According to A5 
there is fs < gs in 0(A, T © (S — T)). According to A4 b) there is 
fT £ gT in 0(A, T). Let us put V = T Q Z, where Z is a set of all 
integers in natural ordering and let us identify t e T with (t, 0} eT Q Z. 
Let us define f'v and gr̂  in such a way 

fv(t,2i)=f(t),fv(t,2i + l) = g(t) 

gv(t,2i) = g(t),gv(t,2i + l)=f(t). 

According to A4 a) there is f'v < gv in 0(A, V). Let <p be a mapping F 
onto V for which y(t, i) = (t, i + 1>. Then <p is a similar mapping V 
onto V and #(e, <p)(fv) = gy, 0(e, 9?)(<7p) -= /r> where c denotes an 
identical mapping on A. According to A2 there is f'v > gv, which is 
a contradiction. In such a way is the theorem proved. 

The introduced system of axioms Al—A5 characterizes in a certain 
way exp^ B among possible modifications of ordinal power. Let us 
introduce, for interest only, those modifications that come into con
sideration in the first line. Let 0X(A, B) be defined as BA in ease that BA 
is an ordered set (see theorem (D)), otherwise we put 0X(A, B) == (AB, < ) 
where S is &n ordering into antichain. I t is easy to see that for this 
functor there holds a statement analogous to the theorems 3—6. But, 
there is not fulfilled the conditions of "embedding" given in A4 a). 
There naturally arises the question how strong a condition "of embed
ding" is to be demanded. For one of the weakest formulations is possible 
to take the following condition: 



82 

(P) Let 0(A, B) e % for A, B e # . Let B i Bv Let /, g e <P(A, Bx), 
f(x) = g(x) for xeBx — B. Then / S g in 0 ( ^ , J5X) ==//* S gs

 i n 

#(-4,-B). 
The most natural modification of the operation BA fulfilling (P) is 

the operation &2 defined in this way: Let A, B e°U. Then &2(A, B) = 
= (AB, < ) where ^ is defined as follows: /, g e AB, f ig g = n(f g) e Jf 
and m e m(n(f, g)) => f(m) < g(m). 

I t is easy to find that for 02 there hold theorems analogous to theorems 
1—4. On the contrary the statement of the theorem 5 is not valid as 
the following example will prove. 

Let A =={1,2}, B = {...,—n, . . . , 0}, n a positive integer, the 
ordering being equal to arithmetic ordering of integers. 

Let/*, g* e 02(02(A, B), A) be these mappingsf*(—n) = f*(—n) = 2 
for wnon negative, g*(—n) = 2 for n positive, g*(Q) = I, g*(—n) 

arbitrary. Thus there exist 2 ° of functions g*. At the same time fx > gx 

in 02(A,B), thus/* > g*. 
Let h, k e 02(A, A Q B), h < k. Then n(h, k) C A O B, n(h, k) fulfils 

the condition of decreasing chains, consequently n(h, k) is a finite subset 
in A O B. In A O B there areX0 finite subsets. For any finite subset 8 
(for a fixed k) there exist finite many h such that n(h, k) = 8. Thus 
there exist, for a given k, at most X0 functions h for which h < k. 

Accordingly 02(A, A O B) non ~ 02(02(A, B), A). 

R E F E R E N C E S 

[1] G. B irkhoff, Qeneraliгed Arithmetъc, Duk Math. J. 9 (1942) 283-302. 
[2] G. B irkhoff, Lattice Theory, Amer. Math. Soe. Coíloquium Рubl. 25, r vis d 

dition. N w Yoгk 1948. 
ĄЩ M. M. D a y , Arгthmetic of Ordered Systems, Transactions of the Ameг. Ma h. 

Soc. 68(1945) 1 - 4 3 . 
[4] F . Hausdoгff, Orundziige der Mengenléhre, Leipzig 1914. 


		webmaster@dml.cz
	2012-05-09T12:17:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




