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T O P O L O G I E S C O M P A T I B L E W I T H O R D E R I N G 

A. AND M. SBKANINA (Brno) 

Received March 31, 1066 

I. INTRODUCTION 

Many sets, occurring in the mathematical considerations, are simul
taneously both ordered and topological spaces. Mostly investigated 
cases were cases when the topology was defined by means of the ordering. 
The general case of connection of an ordering with a topology occurs 
in studying topological lattices/ordered topological groups, semi-groups 
and similarly (see [14]). The general concept of compatibility of an ordering 
and a topology, the so called "Dedekind's compatibility", was delt in 
papers [4], [11]. In this paper, we are going to treat in details two 
kinds of compatibility of ordering and topology. 

II. BASIC C O N C E P T S 

Under a relation on a set A we understand a subset of the cartesian 
product A X A. Relations on A are ordered by means of set inclusion. 
When speaking of ordering of the set A we mean a reflexive, antisym-
metrical and transitive relation on A. If in this relation every two 
elements from A are comparable, we say that the ordering is complete 
and A is called a chain; if every two different elements a and b are 
incomparable, i.e. a \\ b, A is called an antichain. In what follows, the 
terminology and notation are the same as in [10] as far as ordering 
of the set is concerned. 

Under a topological space we shall understand a topological space 
(P, u) in the sense of Bourbaki. C(u), 0(u), respectively, denotes the 
system of all closed, or open sets in (P, u). If (P, u) and (P, v) are two 
topological spaces with the same carrier we write u ^ v whenever 
C(u) 3 C(v) and we say that v(u) is a coarser (finer) topology than u(v). 
By this relation the set &$(P) of all Bourbaki's topologies on P is ordered. 
As for further concepts referring to topological spaces see [2]. « 

III . COMPATIBILITY OF A TOPOLOGY WITH 
AN ORDERING 

Definition 3.1. Let A be an ordered set and u a topology on A. Say 
that u is compatible with the ordering, if u is a Tvtopohgy and if for every 



m 
pair a, be A, a < b, there exist a neighbourhood Ox of the point a and a 
neighbourhood 02 of the point b so that 

x e Ox •=> x < b or x 11 b, 
y e02=> y > a or y || a hold. 

Definition 3.2. Let A be an ordered set, u a topology on A. Say that u 
is strongly compatible with the ordering, if u is a Tx4opology and if for 
every pair a, be A, a < b there exist a neighbourhood Ox of a point the 
<ind a neighbourhood 02 of the point b such that 

xeOt, ye02z> x < y or x \\y. 

Theorem 3.3. Let A be an ordered set* u a topology on A. If u is strongly 
compatible with ordering then u is compatible with the ordering, too. 

Proof is evident. 
Theorem 3.4. Let A be an ordered set and u, v, v ^ u two topologies 

on A. Let u be compatible (strongly compatible) with the ordering. Then v 
is compatible (strongly compatible) with the ordering. 

Proof is evident. 
Theorem 3.5. Let nx, n2 be two orderings on A. Let nx <-= -^2. Let u 

be compatible with n2. Then u is compatible with nx, too. 
Proof is evident. 
Theorem 3.6. Let A be an ordered set, B c: A. Let ubea topology on A 

compatible (strongly compatible) with the ordering. Let u\B be the topology 
induced by means of u on B. Then ujB is a topology on B compatible 
(strongly compatible) with the ordering. 

Proof is evident. 
Definition 3.7. We say that a subset B in an ordered set A is densely 

imbedded, if for every xeB, ye A—B, x <y or y < x there exists 
& € B such that x<b<yory<b<x. 

Theorem 3.8. Let B be densely imbedded in a ordered set A. Let u 
be a topology on B compatible (strongly compatible) with the ordering. 
Then, there exists a topology v on A compatible (strongly compatible) with 
<Ae ordering, for which v/B = u. 

Prool. Let us define a topology ux on A—B as the discrete topology. 
Let (A, v) = (B, u) + (A—B, ux) be the sum of two topological spaces. 
Then v is evidently compatible (strongly compatible) with the ordering 
an! u = v/B. 

IV. SPECIAL TYPES OF TOPOLOGIES 
ON AN ORDERED SET 

Let A be a given ordered set. Let us set [x) = {y | y e A, y *5 a?}, 
(x] = {y | y e A, y £ x} for x e A. For x, yeAfx<Zy, [x, y\ = 



~ {z I x % z ^ y}, N(a, b) = {x \ it does not hold x & a, x < b 
x ^ 6}. A set O cz A is called convex if 
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oг x Ş o, 

x,yeC,x<Ly=>[x,y\cC. 

Let J5 be an up-directed ordered set, (i.e. for x, y e B z exists such 
that x ^ z, y ^ z), {x$}pBB a net in A. Say that a net {a^}^ converges 
to x if there exists a set M of majorants for {^}^eB

 a i-d a set N of 
minorants for {x$}peB with the property ixtf M = x = sup N (see [3], 
0 2 — convergence in [13]). We write lim x^ = x. A minorant or a 
majorant of the net {X^^B -8 a n element y such that y % x$ or xff < y, 
respectively, for all indices /? "g /?x, for a suitable &. 

A subset C c A is called an ideal (see [6], p. 227) (a dual ideal) in A 
if it holds 

F c O, F -£ 0, (0 denotes the empty set), F finite => (F*)+ c 
c: O ((F+)* c: O), when 

JP* = {z | 2 £ x for all a; e F}, F+ = {z\z<> z for all a; e F}. 

An ideal C (a dual ideal) is called totally irreducible if it is not an 
intersection of ideals (dual ideals) different from C. 

A set C cz A is called finite separable if there exist xx, ..., xn e C 
such that 

C c ( s j u . . . u (xn]U fo)U . . . U [ag. 

Definition 4.1. We call a topology on A which has as subbasis of closed 
$ets intervals [x), (x] for xeA, an interval topology. We shall denote this 
topology by i or iA (see [5]). 

Note. The interval topology is evidently always a ^-topology. 
Theorem 4.2. (see [7]). The interval topology on A is Hausdorff exactly 

when the set N(a, b) for a, b e A, a -?-= b is finitely separable. 
Note. The condition for a topology to be Hausdorff can be easily 

transcribed into the notation of closed sets in the following way: A 
topology on A is Hausdorff exactly when for every two points b, c e A, 
b 7-= c there exist closed sets B and C, beB, b$C, ceC, c$B such 
t h a t . B u O = = . A . 

Theorem 4.3. If the interval topology i on A is Hausdorff then it is 
strongly compatible with the ordering. 

Proof. Let an ordered set A with a property that N(a, b) is finitely 
separable for all a •=£ b be given. 

We are interested in pairs of comparable elements, thus let a < b, 
and we seek a neighbourhood Ot of the point a and a neighbourhood 0t 

of the point b so that for every xeOt, ye02 there were x < y or x \\yf 

The set N(a, b) is finitely separable, so there exists a finite set of 
elements cx, . . . , cn from N(a, b) such that every element from N(a, b) 
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belongs to any of the intervals [cx), ( c j , . . . , [ c j , ( c j . Let us construct closed 
sets X = U (ct.] VJ (a], F = U fo) U [6), for which a e X, a $ Y, 6 e 7 , 
6 $ X , I u F = i hold. Put 0 ^ - A — y , 0% = A—X. Then aeOl9 

b G 0 2 , 0 t O 0 2 = 0. Suppose that a ; 6 0 1 , y 6 0 2
 e x i s t s u c n t n a t ^ > ^» 

a?e 0X => a: ^ 0 2 => a;G K rz> ct. exists so that x€ (c{] or xe(a] =>c^ ^ a? 
or a ;> a: => ct- > y or a > y =>ye (c{] orye(a]=>yeX=>y$ A—X = 
~ 0 2 which is a contradiction. 

Theorem 4.4. The interval topology is compatible ivith the ordering. 
Proof. For every pair of points a < b we look for a neighbourhood 0t 

of the point a and for a neighbourhood 0 2 of the point b so that for all 
xeOx and all ye02 there hold x < b or x || 6 and y > a or y \\a. Let 
us put O2 == A—(a], Ox -= A—[6). 0X, 0 2 are open sets and ae0lt 

be02. 
If there existed xeOx, x > b then xe[b). But a; eOx = A—[&). 

Analogously for 02 . 
Definition 4.6. A topology on A in which a set is closed exactly when 

it contains with every convergent net simultaneously its limit is called the 
convergent topology (see [3], [10], this topology is sometimes called order-
topology). Let us denote it by x, more precisely by xA. 

Note 4.6. The convergent topology is always a ^ — topology. 
Theorem 4.7. The convergent topology is compatible with the ordering. 
Proof. It holds x 51 i (see e.g. [3], [5]). By Theorem 3.4 and Theorem 

4.4 x is compatible with the ordering. 
Before showing that there exists an ordered set A with Haudorff 

convergent topology which is not strongly compatible with the ordering., 
we shall introduce sonic auxiliary statements. 

Lemma 4.8. Let {x^}^ &• Then, for the set M of all minorants and 
the set N of all majorants V M = x = /\N hold (see [3]). 

Lemma 4.9. Let A he an ordered set. Then for xt g . . . <̂  xn <i . . . 
(xx^ . . . £xn.£ . . . ) 

Urn xn = x *== x = V xn (x ==-. A x
n) holds. 

Proof. Let lim xn = x hold, for xx <j . . . <> xn ^ . . . . xn is a minorant 
for {a.n}JJLi; consequently if M denotes the set of all minorants it holds 
\/M = x ^ xn by lemma 4.8. On the contrary m ^ xn, forall^=>m 

is a majorant, thus m ^ x. Hence \J xn = x. 
Let V #„ = %• Then a^s form a certain set of minorants. {x} is a one 

element set of majorants. Thus, lim xn — x. In the similar way for 
xx^ x2^ 

Lemma 4.10. A net { a ^ } ^ , for which there exists (ix such that for /8, 
(}x £ /? is a^ = a for a suitable a, converges to a. 

Definition 4.11. A net, described in lemma 4.10, is called an almost 
stationary net. 
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Lemma 4.12. Let {ty}^ be a net converging to x which is not almost 
stationary and let its elements form a chain yt < yz < . . . < yn < . . . 
Then x. = V yn • Similarly for a decreasing chain. 

Proof. For every n §n exists such that for /? > fin x^^{yx, . . . , yn} 
(it follows from the theorem on convergence of a subnet). Thus, yn 

for all n are minorants of *{x^^B. Hence yn g x. 
Let z >. yn for all n, so z is a majorant to {X^}^B • Then z *g x, because x 

is an infimum of the set of all majorants. For that reason x = sup yn. 
Lemma 4.13. Let A be a, set where no two incomparable elements 

possess the upper und the lower bound at the same time. Then every 
convergent net {x^}^eB in A has the property that for a certain /?-., 
{xffh>fiiis a chain. 

Proof. Let x = lim {x^}^€B. Elements a and 6 exist such that starting 
from a certain index pt it is a ^ x$ <; b, /? > pt. Thus, for p,y > Pxa,b 
are common upper and lower bounds consequently x$ and x? are com
parable. 

Theorem 4.14. Let A be a set where every chain is finite or of a type OJ 
or CD* and no two incomparable elements from A possess simultaneously 
the upper and the lower bounds. Then, a set M c- A is in xA closed exactly 
when for every chain xx < x2 < . . . < xn < . . . , xn e M there is \J xneM 
and every chain xx > x2 > . . . > xn > . . . , xneM is f\xneM (in the 
case when \Jxnor f\xn, respectively, exists). 

Proof. Let M be a closed set. Then the statement on chains holds 
by Lemma 4.9. 

Let M contain with every convergent, increasing or decreasing 
chain of a type OJ or co* its limit. Let {x^}^B ^ e a convergent net in M 
with a limit a and x^eM. According to the preceding Lemma pt exists 
such that {z^fepi is a chain. In consequence of Lemma 4.10 we can 
suppose that the net {xp}geB is not almost stationary so that the set formed 
by the elements x$ with p >. pt is a chain of the type OJ or co*. Fur
thermore by Lemma 4.12. Thereby the proof of Theorem 4.14 is finished. 

Let F{ be a chain of the type co,ieN, where N is the set of all positive 
integers, F{ n F^ = 0 for i,jeN,i -j-= j . Let Gj be a chain of the type co*, 
j 6 R, where R is the set of all real numbers, Gj n Gk = 0, for j , ke R, 
j & k. Let u J^ H U Gt: = 0. 

•eJV* ieR 
Furthermore, let a, b be two different elements not belonging to 

VFtUUQf.Ftbeto^K... < xirk < .. }and Gj = {yjA > ... yitk > 
> ...}. Put H=[SF{® {a}] + [{&} ® S <?,], where S, + denote a 

ieN jeR 
cardinal sum, 0 an ordinal sum. 

The ordering on H will be completed in such a way: 
First we put a *> 6. Let A =- II Nv where N« = N, card I == K0. 
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Card A = 2-<«. Let / be a one-to-one mapping of A on the set R. Let 
a = ( . . . , ai9 . . . ) e i . Then, let us put xitk < yf(a)j for k <J a( an<J 
j <: i. The set H, the ordering of which is completed in the above 
described way. will be denoted by H*. 

Theorem 4.16. The convergent topology on H* is Hausdorff and fails 
to be strongly compatible with the ordering. 

Proof. First we are going to show that H* fulfills the conditions of 
Theorem 4.14. An arbitrary chain in H* is either finite or of the type eo 
or <o*. If c and d are incomparable elements in H* then one of these 
possibilities occurs under a suitable notation. 

1. ceF., deF/, i ^ V. 
2.cGGj,deG/J^j'. 
Z.ceFiydeGv 

4. c = a, deGj. 
5. rf = M e . F t . . 

Ad 1. Elements c and d have no common lower bdund. 
Ad 2. Elements c and d have not an upper bound in common. 
Ad 3. Let us admit that there exist elements e, g such that e . <* c, d 

and c, d <i g. Then eeFi. If it is c = xit9, then e = a:fjfc for k <j s. 
Similarly geGj, if d == y^%l then e? = y^m for m ^ l , . .. 

According to the definition of ordering in H* there holds furthermore: 
if f(a) = J, then at- <£ s, because gf ^ c. As e ^ rf it is I <J i. Thus 
a?t*tt <J y ^ . Hence c <d which is a contradiction. 

Ad 4. and 5. a is a maximal and b a minimal element from H*. 
By the statement of Theorem 4.14 it is necessary to deal with con

vergent chains of types ay or co*. The only such convergent chains are 
subchains of the Ff (converging to a) and subchains of the Gj (conver
ging to 6). All points except for a and b are, thus, isolated in xH*. 
*JGj VJ {6}, \jF{ U {a} are in xn * closed sets, fulfilling for points a and b 
the properties mentioned in the remark following Theorem 4.2. Con
sequently xh* is Hausdorff. We shall show that it is not strongly 
compatible with the ordering. Let O be a neighbourhood of the point a. 
Then there exists a = ( . . . , ait . . . ) e A such that xifk for k ^ ai is an 
element of 0. Let 0X be some neighbourhood of the point 6. Then there 
exists j x such that for j > j l 9 yf(a)^e01. Then xjta^ < 2//<a),7-. At the 
same time a > b. Consequently KH* is not strongly compatible. 

Definition 4.16. Let A be an ordered set. The topology in which totally 
irreducible ideals and totally irreducible dual ideals form asubbasis of open 
sets is called the ideal topology ([6] p. 232). 

Lemma 4.17. Let Ax c A2 c . . . c Ai c . . . be a transfinite 
sequence of ideals or of dual ideals, respectively. Then KJA. is an ideal 
or an dual ideal, respectively. 
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Proof is evident from the definition of ideal. 
Lemma 4.18. Every ideal (dual ideal, respectively) is an intersection 

of totally irreducible ideals (dual ideals). 
Proof. Let Ax be an ideal in B. Let b$Ax. By Lemma 4.17 and 

Zorn lemma there exists a maximal ideal 4 2 3 Ax not containing b. Admit 
that this ideal is not totally irreducible. Then 4 2 = nAn, An are ideals 
different from 4 2 . At least one of them, let us denote it by 4 , does 
not contain 6. This is a contradiction with the maximality of 4 2 . 

Corollary of Lemma 4.18. Ideal topology of 4 is a Trtopology. 
Proof. Let xeA, y .9-= x. At least one of the sets [y) and (y\ does 

not contain x. Let it be [y). [y) is a dual ideal. By 4.18 an totally 
irreducible dual ideal I exists for which I ^=> [y), x non £ I. I is an open 
set in the ideal topology of 4 . Similarly tot (y]. Hence 4 —{x} is an 
open set in the ideal topology, so the ideal topology is a jTrtopology. 

Lemma 4,19. Every ideal (dual ideal) is convex. 
Proof. Let Ax be an ideal, x < y < z, x, zeAx. Then ({z}*)+ = (z] 

thus, y e Ax. Similarly for a dual ideal. 
Theorem 4.20. Let A be an ordered set, u its ideal topology. Then u 

is compatible with the ordering. 
Proof. Let a < b. (a] is an ideal in A. As 6 $ (a] there exists by 

Lemma 4.18, a totally irreducible ideal Ax which contains (a] and fails to 
contain b. As Ax is convex, it does not contain z > b. Thus Ax is a 
neighbourhood of a with the demanded properties. Similarly for 6. 

Problem 4.21. Let the ideal topology be Hausdorff. Is it strongly 
compatible? 

Naito in [8] has defined P-ideal topology (OP-ideal, JfP-ideal topo
logy) on a lattice. From Lemma 2 and 3 on page 242 in [8] there follows 

Theorem 4,22. Let the P-ideal (GP-, MP-ideal) topology on a lattice A 
be a TX(T2)-topology. Then, this topology is compatible (strongly compatible) 
with the ordering. 

Definition 4.23. Let A be an up-and-down directed set. Let the sets of a 
form [a, b] form a subbasis of the closed sets. Then, let us denote by vA 

the topology defined in such a way and let us call it the B-interval topology 
(see related concepts in [1]). 

Theorem 4.24. Let A be an up-awd-down directed set. Then vA is comp
atible with the ordering exactly when A has the smallest and the greatest 
elements. 

Proof. Let vA be compatible with the ordering. For card 4 = 1 
Theorem is evident. Let card 4 ^ 2 . Let a > b (such two elements 
exist, the set A is directed). Let [cx, dx], . . . , [cn, dn] be such intervals 
that, when putting 4X = [cx, dx]U . . . U [cn, dn], 0 = 4—A x is an 
open set for which beO and x e 0 => x < a or x \\a. Consequently 
# * > a = > 2 / e 4 1 . Thus, especially if c g dx, . . . , dn (c exists, 4 i» 
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directed) it is c > y for y > a i.e. c is a maximal element over a, i.e. 
a maximal element of the set A. But the directed set has at most one 
maximal element. In a similar way we can prove the existence of the 
smallest element. 

When A has the greatest and smallest element then vA = iA. 
Consequently by Theorem 4.4 B-interval topology is compatible with 

the ordering exactly when it coincides with the interval topology. 
Definition 4.25. Let 8 be a lattice and u a Tvtopology on it. Let there 

exist to every neighbourhood 0 of a point a V b(a f\ b)a neighbourhood Ot 

of the point a and a neighbourhood 02 of the point b such that for arbitrary 
xeOx, ye02x V yeO (x /\ yeO). Then 8 together with the topology u 
is called a topological lattice. 

Theorem 4.26. Let (8, u) be a topological lattice, u a Tvtopotogy. Then 
u is compatible with ordering. 

Proof. Let a < b. Let 01 and 02 be neighbourhoods of the point a 
or b respectively, not containing 6 or a, respectively. Then there exist 
neighbourhoods 0 3 and 04 of the point a or b, respectively, not con
taining b or a, respectively, such that 

x e 03 , y e 04 => x A y e Ox 

xeOz,ye04^>x V yeO^ 

Let us admit that there exists zeO% such that z > b. Then z /\ 6 == 
= be Ox which is a contradiction. Similarly for 0 4 . 

Theorem 4.27. If the topology of a topological lattice is Hausdorff, then 
it is strongly compatible wit% the ordering. 

Proof. Let a lattice 8 be a topological lattice ($, u) with a topology u 
which is Hausdorff. Let us choose a, be8, a < b. Then there exist a 
neighbourhood Ox of the point a and a neighbourhood 0 2 of the point &„ 
ox n o2 .= o. 

It holds a V b == 6. Furthermore there exist a neighbourhood 0 8 of 
the point a and a neighbourhood 0 4 of the point b so that for all xeOz, 
yeO^x \j ijeOz holds. Now, let us denote 0' = Ox O 0^,0" = 02nO^ 
For xeO\ yeOn it holds x V ye02, O ' n O " = 0. If xeO',yeO\ 
x > y existed, then x \/ y = xe 0 2 , so 02n O* -^ 0 but O' <= Ox and 
0 2 n Ox ~ 0 which is a contradiction. Thus no such x, y exist and 
consequently the topology u is strongly compatible with the ordering-

V. EXTREMAL P R O P E R T I E S OF THE I N T E R V A L 
TOPOLOGY 

Let A be an ordered set, £f(A) be the system of all topologies on A 
which are compatible with the ordering. 

LetO = {c1? . . . , cm},D^{dly ...,<*„}, C c: A, D a A, C\J D # 0. 
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Put P(C, D) = P(ex, ..., cm; dx, . . . , dn) = (A — [cx))n ...n(A — 
- [cj) n (.A - (dj) n . . . n (il - (<y). 

Let be A. Let us call an ordered pair of subsets C and D (C # 0, or 
D ^0) for which P(O, D) n [&)?-- 0 holds up-admissible (more concisely 
an admissible pair) with respect to b. Let 3)if>) be the system of all such 
admissible pairs. 

Let a || b. Let us call 0 i^2x c 2^ft> a system up-admissible with 
regard to <a, 6> (more concisely an admissible system) when it holds: 
(1) Se@x=>S^0. 
(2) Sx, . . . , Sme@x=> there exists S G ^ such that (Cx, D1>eSl, 

. . . , <Om, Dm> e Sm exist for which <O1U . . . U Om, Dx U . . . U 
U D m > e S . 

(3) a) x > a => there exists £ e S x such that <C, D> e S => P(O, D) c 
c A[ _ [»). 

b) a; < a => there exists 8G^ such that <0, D}eS=> P(C, D) <= 
c ^ _ (*]. 

(4) # ^ a => there exists Se3)x such that for every <<7, D> e $ 
x $ P(0, D) holds. 

In a similar way we define down-admissible pairs and a down-
admissible system. In what follows we are going to deal with properties 
of the up-admissible system. By means of dualization we get correspond
ing statements for the down-admissible system. Let Q)x be a system 
up-admissible with regard to <a, 6>. 

Let us put 
0(Q)X) = {X j Xe0(iA), a $ X } u { X | X = O U 0 1 , OeO(iA), aeO 

and Ox = U P(C, D) for certain S e 9)x}. 
<0,D>e/S 

Let 0(3) x) be a subbase of open sets of a topology u(3x). Then it holds 
a) u(3)x) > iA. 
Proof. u(3x) ^ tA follows from the fact that 0X is an open set in iA. 

u(3) •=£ 1A follows from the fact that [b) is not closed set in u(3x). 
A—[b) is not a neighbourhood of a point a in u(3x), because for 
0[, . . . , 0{k> e 0(3 x) constructed by means of Sx, . . . , Sk e 3X, it is by (2) 
possible to find S and <CX, D-> e Sx ... <Ck, Dk} eSkm that <CX U . . . 
...UCk, DXU ...uDk>eS a n d P ^ U . . . U Ck; Dx U . . . U Dk)n 
n [b) =£ 0, hence 0[n ...nO^n [b) =£ 0. 

b) u(3t) is a Tj-topology. 
Proof. Let y i^x. 
bj) Let y ^ a. Then there exists a set not containing either a or x 

and containing ^ in 0(tA). This set belongs to 0(u(3t)), as well. 
b2) Let y = a. Then by (4) there exists *S 6 3>x such that for <C, D> e 5 

it is * $ P(C, D), thus, for 0^ = U P(C, D) it is a: non e 0 , . 
<CU>>*S 
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Furthermore, 0 e 0(iA) exists for which a e 0, x £ 0. Consequently 
aeOuOx, X$OKJ01. 

c) u(9)eST(A). 
Proof. Let x, ye A, x > y. For x^a^y the existence of the 

neighbourhoods with the demanded properties is evident. 
Let y = a. Then evidently there exists a demanded neighbourhood 

of the point x. The demanded neighbourhood of the point a can be con* 
structed in the following way. According to (3) a) S e @x exists such 
that 0X = U P(C, D) <= A — [x). Let 0e0(iA), 0 <=. A — [x), aeO 

<<7,2)>eS 

(0 exists because iA eS?(A)). Then 0 U Ox <= A. — [a:). 
For x = flwe can proceed similarly. 
Thus following Theorem holds 
Theorem 5.1. Let A be an ordered set and let for suitable points a\\b 

there exist an up or down admissible system Q)x to (a, 6>. Then u(3)x) e £f(A) 
and u(Q}x) > iA. 

There holds in a certain sense the converse of the introduced Theorem. 
Theorem 5.2. Let A be an ordered set and u > iA, u e £f(A). Then 

there exists a pair of points a, b a \\b such that there exists a system 2$x 

up or down admissible to this pair (a, 6>. 
Proof. As the sets of the type (x], [x) for xe A form a subbasis of 

closed sets in tA, be A exists such that [b) or (b] does not belong to 
C(u). Let the first case occur, in the second one proceeds in a dual way. 
Thus a e A exists such that A — [6) fails to be a neighbourhood of a 
in u i.e. any open set for the topology u containing a has with [b) the 
non-empty intersection. We shall show that a || 6. If a < b, then the 
fact that every neighbourhood of a in u contains an element from [b)f 

would be a contradiction with UG6^(A). 

0(u) <= 0(iA). Let 0 =£ A, 0 e 0(u). Then it is O =- U n 0{ h, where 
* &=i ' 

Oifk =B A—(cifk] or A—~[citk) for suitable citk. Naturally, the system of 
elements cik is not, in general, uniquely defined in this way. Let aeO. 

n, 
o 

Then at least one i0 exists such that n OiQ &n [b) -5-= 0. Let O{0 & = 
• Jk-=i ; ' . 

= A — [ck) for cx, ..., cm, Oiok = A — (dk] for dm+1, . . . , d^. Put C = 
{cx, . ..., cm}, D = {dm+x, ..., dnt}. <O, D> is up-admissile pair to b. I t 

• " * . 

is n Oiak == P(C, D). Let us denote by S(0) the system of all ordered 
k=*i ' 

pairs W, D> which can be constructed in the mentioned way. Put 
Bx^($(6) \OeO(ul a e O , O ^ A}. Evidently Q)x =£ 0. We shall 
show that 0^ is up-admissible system to <#, 6>. 

Ad (1) S(0) € Q[.x is evidently a non-empty set. 
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Ad (2) Let/8,. . . . , Sme^. Let S. =.5(0,.), .-..,Sm'= S(0J. 
Let o1h...nom = o. oso(w), a e o , o =£ 4 . thus S(0)e3>y. 

Put S == 8(0). As 0 = U Cs 0t>tkn . . . n u n Ot<«>ifc there exist indices 
i' h=l ' •<«> & = 1 

to tg10 such that 
'* . " \ . m , П ( m > 

4 < m 

П0.> ҺГ\ ... nn • O,<m> ř П [ò) ^ о, 
го>л- го , л, L / / 

fc=l Ä = l 
i.e. <(?!, Di> e Sl9 ..., <OW, Dw> e Sm exist such that <CX U . . . U O^, 
DXU . . . u D , ) e ^ , 

ad (3) a) Let x > a. Then there exists O e O(^) such that aeO, 
0 c .4—[a). Put S = S(O). As P(O, D) c O for <C, D> e 5, it is 
P(O, D) <= A—[x) for <O, D> G S. 

(3) b) can be proved dually. 
Ad (4). Let x =£ a. As ^ is a ^-topology, there exists O e O(w) such 

that a e O , x $ O. Consequently for S = S(O) it is <O, D} e S => 
=> P(C, D) cz 0=>x none P(C, D). Thereby the proof of Theorem is 
accomplished. 

Example 5.3. Let A = B © C, where B is a two element antichain 
{a, b}, C a chain of the type co*c1 > c2 > .... 

Let s/ = {<D, {b}> | D c: O is a finite set}. Let ^ be the system of all 
one point subsets from $£. Then Qx is up-admissible with respect to 
<a, 6>. Thus iA fails to be a maximal element in £f(A). 

Theorem 5.4. Let A be an ordered set. Then iA is the greatest element 
in £f(A) exactly when there exist to every two points a, b a \\b two groups 
of elements ax, . . . , an > a and a[, a%, .. ., a'm < a such that [b) — 

n m 
— U [a{) and (b] — U (a[] are finite sets. 

i= l i^l 
Proof, a) Let ue6^(A), u d^ iA . A point be A exists such that [b)t 

or (b] is not in C(u). Let us consider the first case, the second one is dual 
to it. Thus A—[b) $ 0(u). So aeA—[b) exists such that A—[b) fails 
to be a neighbourhood of a in u, i.e. every neighbourhood of the point 
ain u has a non-empty intersection with [b). As u e£f(A)9 it is a \\ b. 
Let us admit that there exist points ax, . . ., an > a such that [&) — 
— U [a>i) — N is a finite set. 

' * 
Let 0{ be an open set in u containing a and contained in A—[a^. 

Such a set exists because ue£P(A). 0 = n Ot .c n (A-—[a^) =-
' ... . *"" * 

= 4 — U [d'i) is an open set in u containing a: [b)n O cz [b)n (A — 
i ' ' • ' " ' ' ' " - . . . 

— U K)) = U>) — y K ) n[b) = N. N is a finite set, consequently 
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[6) n O is finite, too, and therefore closed. 0' ~ 0 — [b) O 0 e 0(u) and 
a e 0'. At the same time 0 ' n [6) = 0 which is a contradiction to the 
statement that every neighbourhood of a has a non-empty intersection 
with [b). Consequently N is not finite. 

P) Let a, b e A, a \\ b. Let for every group of elements at, . . . , an > a 
be the set N(at, . . . , an) = [6) —U [at) infinite. Evidently it holds 

• 

N(at, . . . , an)nN(cly . . . , ck) = N(at, . . . , a t t, cx, ..., ch). Construct 
on [b) a free filter S such that it contains all N(ax, . . . , an). Such a filter 
really exists because ([6)—{x})nN(a t , . . . , an) is an infinite set for 
x e [b) and every N(ax, ..., an). Put T* = {X | X e 0(iA), a $ X} U 
U { X | X = FXU F 2 , F j e O ^ ) , a e F x , F 2 e £ } . T* be a subbasis of 
the system of the open sets of a topology u. 

1. u is a :rrtopology. 
Let a -7-= # zfcy.Oe 0(iA) exists for which a $ 0, y 4 0, x e 0. At the 

same time OeT*. 
Let ^ •=£ x = a. 0 6 O(^), a 6 0, # 4 0 and Y2eS exists such that 

y$Y2, because S is a free filter. Then 0 U F2 6 0(u) and y non 6 0 U F 2 , 
a e O u F 2 . 

2. ue&(A). 
For x ^ a ^y, x < y the existence of required neighbourhoods is 

evident from the existence of analogous neighbourhoods in iA. 
Let x > a. In O(e^) X exists such that xeX and yeX=>y > a 

or y a. There exists T x e 0(iA) for which a e ^ and y e Y1=>y < x 
or y x. In S there is contained as element the set N(x) = [b) — [x) 
for which y e N(x) =>y < xory \\x holds. Then Yx U N(#) is the sought 
neighbourhood of a in u. 

Let a > x. There exists F x e 0(iA), ae Yx c: A — (x]. Let F2 e £ . 
If y e F 2 existed for which y < x then a > y but «/ 6 [b), consequently 
a > b, which is a contradiction to a \\ b. Then YXKJ F 2 is the sought 
neighbourhood of a in u. 

There exists 0 e 0(tA), xeO, 0 c A — [a). Then 0 e 0(u), and it is 
the sought neighbourhood of #. 

3. u *g e4. 
We shall show that [b) non 6 0(u). Let 0 e 0(t*), a G 0 , 0 # l Then 

0 = U n X a , where X a 6 T*. Thus i0 exists such that ae C\ X*0f&, 

consequently aeXiQtk for all h, i.e. X ^ = F { u Ff, r> X^* = 

= n [Ffu F|] = [rju Y\]n ... n [F?°u *?•] = [F}n Ff n. . . . 
* - ! 
O r ? ] U . . . U [y|A Y* ... n 7?*]. Simultaneously 7|r, . . . r\ 
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•"<•_„ mL_„_r_ _ r J 1 - l л l _ * _ ™ . - _ . , Л n F2 ' £ « . Therefore [ n -_*„,.] n [6) _ F|f . . . . n y s V 0. Then 

"On [£)*-£ .0, too. For that reason A — [b) fails to be a neighbourhood 
of a in u, i.e. [6) <£ O(w). Consequently ^ is not the greatest element 
iwS?(A). 

Similarly for a[, ..., am < a. 
Consequence 5.5. (see [12], p. 44). If A is a chain then iA is the greatest 

topology in Sf(A). 
Proof, a, b e A, a || 6 do not exist. 
Corollary 5.6. is for a lattice S is the greatest compatible topology 

exaotly when for a \\ b Y — [b) — [a V b), Z = (6] — (a /\ b]are finite 
sets. 

Proof. Let is be the greatest element in S?(S), a\\b. Then for a 
certain finite group of elements ax, ..., an > a (<a respectively) it is 
(6) — U [a{), ((b]—U (a{], respectively) finite. Let us consider the first 
case. The second case is dual. Let xeU [a{)r\ [&). Then a; 2: a V 6, i.e. 
xe [a V b)n [&). Hence U [a{) n [6) c [ a V i ) n [b), i.e. [6) — U[a{) 3 
3 [6) — [a V &) = Y. Thus F is finite. 

If Y is finite, the condition of Theorem 3.4 is fulfilled for at=a\/ 6. 
Similarly for Z. 

Problem 6.7. Let A be an ordered set. When does the greatest element 
in Sf(A) exist? 

For illustration of thiŝ piK>bl©m4et_u$ introduce two examples. 
Example 5.8. Let A =. B © C as in example 5.3. Let _. be a topology 

on A, cfefined îiri the following wlty: every point _f is isolated and 
{(ctl — {b}} and {(cj — {a}}, respectively, are bases of the system of all 
neighbourhoods of the point a or 6, respectively. According to 3.8 and 
5.5, if v is the greatest topology in S?(A), then v induces the interval 
topology on C, i.e. in this case the discrete topology. Hence it follows 
easily that u is the greatest element in S?(A). 

Example 5.9. Let Z denote an Euclidian plane, provided with a 
Cartesian system of coordinates, ordered in the following way 

(x, y} :§ (u, i>> => x = u and y :§ v. 

Let A e Z, px, pz be distinct closed rays with the end-point A,pt parallel 
(even as the sense is concerned) with the negative ray in the axis x, 
p2 directs to the seeond quadrant, or it lies there. Lei us denote the 
interior of the angle <£ ptAp% both with the points of the ray jp2 by 
&(A, Px, Pz)- Let all, in such a way gained sets form a subbasis of open 
set* for the topology ut. uxeSf(Z). Similarly (px parallel with the 
positive half axis x and _p2 directed to the first quadrant) a topology 
up is defined, upeS?(Z), too. Let OeO(ut)C\0(up). Then there exists 



126 

a half-plane n directed to the first and the second quadrants such that 0 
contains a dense set in n. formed by straight lines parallel to axis x. 
Consequently the topology ux V up (supremum in 3S(Z) — see e.g. [9]) 
does not lie in Sf(Z). So £f(Z) has not the greatest element. 

Let us finally show that the statement of Theorem 3.8 does not hold 
for general subsets. 

Example 5.10. Let A = (—oo, 0 ] u [1, oo), B -= ( - co , 0 ] u (1, co), 
A, B ordered as subsets of real numbers. Every neighbourhood in iB 

Ox of the point 0 in B intersects (1,- oo). Thus, for u* on A for which 
u* IB = u, u* $£P(A) holds because a neighbourhood 0 in u* with 
the required properties does not exist for the couple 0 and 1. 

R E F E R E N C E S 

[1] ß i r k h o f f G., A new interval topology for dually directed sets. Univ. Nac. 
Tucuman. Rev. S r. A 14 (1962), 325—331. 

[Џ] B o u r b a k i N., Topologie gènèrale, Paris, deuxième édition. 
[3] F l a c h s m a y г J . , Einige topologiscҺe Fragen in der Theorie der Booleschen 

Algebren, Archiv d r Ma h ma ik, XVI (1965), 25—33. 
[4] F l o y d E. E., Boolean algebras гt th pathological order topology. Pac. Journa l . 

6 (1955), 687—-689. 
rø Fг ink O., Topology in lattices, Transac ions of A.M.S., 51 (1942), 569—582. 
[6] F r i n k O., Ideals in partially ordered sets, Arø. Ma h. Mon hly 61 (1954), 223 o 

234. 
[7) K o l i b i a r M., Bemerkungen über Intervalltopologie in iьalbgeordneten Mengen, 

G n. Topology and i s R la ions o Mod rn Analysis and Alg bra, Pragu , 
1962, 262—263. 

[8] N a i o T., Lattices with P-ideal topologies, Tôhoku Ma h. Journal, 12 (1960), 
235—261. 

[9] S k a n i n a M., Sist my topologij a dannom množestvë, öz ch. Ma h. Journal , 
15 (1965), 9—29. 

[10] S z á s z G., Einführung m die Verbandstheorie, Leipzig, 1962. 
[11] W o l k E . S . , Order-cofnpatible topologies on a pàrtially ordered set, Proc. of 

Ám. Ma h. Soc , 9 (1958), 524—529. 
[12] E i l n b rgк S., Ordered topological spaces. Am. J . of Ma h., L Ҳ Ш (1941), 

39—46. 
[13] R e n n i B . C , Lattices, Proc. of h London Ma h- Soc, 52 (1951), 386 400. 
[14] N a c h h i n L. t Topology and order, Nostrand, Toron o, 1965. 


		webmaster@dml.cz
	2012-05-09T12:42:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




