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FUNDAMENTAL CENTRAL DISPERSIONS
IN A DOUBLE SYSTEM «G5

E. BARVINEK, BRNO
Received November 15, 1970

1. The double system <{(®))>. The fundament of the abstract theory of dispersions
is an arbitrary group ® (with the unit ¢) in which, in addition to the fundamental
subgroup §, is still an invariant subgroup B of the index 2. Besides the decomposition
®/:& we have also the decomposition P/r(P N F). The one-to-one mapping of all
classes Fa, « € G onto the set of all carriers determines also a one-to-one mapping of
all classes (B N &) B, B € P, but generally only into the set o fall carriers, see fig. 1.
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Fig. 1.

In every class §a, o € ® there is always contained at most one class (P N F) B,
‘BB, namely P N Fa, since (PN F) f < Fa gives f € Fa and thus FF = Fp and,
with regard to the circumstance of f€ B, we have (PN F)f=PN B = PN Fa.

Iff for any a € ® there is P N Foe # G, every class Fa, « € G will contain just one
class (PN &) B, B P since for arbitrary « e ® there exists g PN Fa and thus
(PN F P = T, see Fig. 2.
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- Fig. 2.

For an s.rbltra.ry subgroup U < G let us denobe Y = G\U the oomplement
MU = {r€ ®; U = Wz} the normalizator, 2A = {z € G; za = az for all a € G} the -
centralizator, 9 = {z € &; za. = a~'z for all a & A} the invertor, and 39! = {z e¥;
2a = ax for all a € A} the centre of A. i
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1.1. Lemma. Have arbitrary subgroups % and ‘{; in an ar bltmty group 6. Then
the following statements are equivalent -

a) for any o € ® there holds P N For # 0,

b) for any « € ® there holds § N Pa #~ 0.

If, moreover, B has the index 2. then the mentloned statements are equivalent
with any of the statements

c) there holds § N <P # 4,

d) for any « € ® there holds P N Fa # M.

. Proof. The equivalence of the statements a), b) follows from the equality
P O Fo = (PN F) . Their equivalence with the statement.c).follows from that
P = Py for arbitrary y P so that then FNeP =B = FN Py # 0 for any
y € P, whereas for any §eP there is P =P and thus FNPF=FNP £ 0
automatically. The equivalence of the statement d) with b) follows from the equality
PN Fa=(Pal1NF a=(Pya—1 N §) a for arbitrary y € eP.

1.2. Definition. A double system ({(®)) will be called an arbitrary group &
(with the unit ¢) in which & so-called fundamental subgroup & and an invarinat
subgroup P of the index 2 are given, where the centre 3 of the subgroup B N Fis an
infinite cychc group (with a generator &) whereas the centre of the fundamental
subgroup § is trivial.

1.3. Corollary. § N <P +# 0.
Proof. There holds FNP =F=F<P=FNAP=F=3(PNF) =3F and
this is a contradiction.

1.4. Lemma. For arbitrary o« € ® there holds 3(xa~}(P N F) &) = 1 3ax.

Proof. The function y = a~lza, z € § is an isomorphism of § onto a~1Fe where
PN Fis mapped on a (P N F) ¢ and J on x-13e. We have y.€ 3 = xy = yz for
all zeFNP=ylalya)= (a"lya)y for all yea(FNP)a = alyace
€Na Y F N P) ). ’

* 1.5. Corollsry For all x€ ‘,} there holds a:“13a = 3. and thus J'is an invariant
subgroup in §. o .

* 1.6. Theorem. For any a € § N °P there holds ae = e 1a.

Proof. Since e transforms 3 on 3, it transforms ¢ to ¢ or to £, and thus there
holds a1 = &*1 with a suitable sign.Because of eeFNcPand P havmg the index
2, there is & = af, ﬁe‘{yﬂ‘ip & one-to-one mapping of FN P onto FNeP. If

a~lga = ¢, then for all & we should have X-1ex = f-la~leaf = f~1¢f = ¢ and thus
£ € 3%, which is a contradiction. Therefore it necessarily holds a—leax = £-1.

1.7. Remark. In the system ({(®)) we have not only a one-to-one correspondence
between all carriers ¢.and all classes Fa, « € 6, but also between all carriers ¢ and all
classes (PN §) B, B € B owing to the condition F N P # B. Every class (F N P) B,
p P is of the form (e, g) N P for just one carrier ¢ where f € (e, ¢).

"The condition § NP @, or its equivalent PN Fa # 0O for all xe® resp.,
guarantees that for any complex a1 4, «, 4 € ® there exist phases 8, B € P such
that «-1FA4 = 1B because for a.rbltrary BePN Foe, BePN FA we have
«a1FA = (a‘lﬁ) (§4)= (B1F)(§B) = ~1§B. Hence"it further fcllows that: %h
N atFA =P N f1FB = f-YP N §) B so that between-all complexes a1 in
® and all complexes f-{(P N §) Bin P we havea ore-to-one correSpondence on the
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basis of the equation P N ¢ 1F4 = BYPBN R B. L e. ~
in P is of the form (g, @) N P where g E?e, Q)ﬁ,)B - (e’eqfvery complex S~(FNP)B

1.8. Lemma. For «, f € (e, ) there holds a-lea = f-1¢f iff, either a, f € P N (e, q)
or e, BB N (e q).
Proof. Fore, B € (¢, g wehave a~lea = B-1ef = fa—le = efa-l = fale FNP=
=fe(egNPa=o, PN (e, q) ora PN (e q)

1.9. Corollary. All € (e, q) N P transform ¢ to the only and same element ¢,
whereas all 8¢ N (e, g) transform ¢ to the element @=! or £1 to ¢.

1.10. Remark. In comparison with (G the inclusion § < 23 holds in ({6}, but
it does not hold an inclusion like § < 23. Further in <((®)), for «, # € G, we have
alea = f-1ef iff Ba~lez3. According to 1.6., moreover, we have here that
23N (FNeP) =0, and evidently FNPcz23. Hence FNz23 < P and thus
FNz3 € PN F < 23N F so that there holds FNz3 =P N F. As a matter of.
fact, it is another proof of the lemma 1.8.

Further, in ((®)) for a, € ® we have a-13a = 138 iff fa—1en3.

1.11. Theorem. For an arbitrary carrier ¢ the centre 3(P N(g, q)) of the subgroup
P N (g, ¢) is an infinite cyclic group. For all x € (e, g) there holds 3(P N (g, q)) =
= a~'13a. One of its generators is a~lex, independently on the choice of a in
B N (e, g), the second is f~1¢f, independently on the choice of §in P N (e, g), being
necessarily (8-1ef)~1 = a~lea.

Proof. We are going to link up with 1.4. Every subgroup a (PN §F)a,
conjugated with 8 N §F by means of the element « € ® is of the form P N (g, g) for
a suitable carrier ¢, where € (e, ¢), see 1.7., and vice versa, for every carrier there is
BN(g,q = (PN F) x where x € (e, q) being arbitrary.

According to 1.4. it is evident that for all xe (e, ) 3(P N (¢, ¢)) = 13 is an
infinite cyclic group with generators e~le=1x. Forall e € B N (e, ¢), according to 1.8.,
a~lex is always the same generator, whereas for all €PN (e, g) is f-1¢f the other
generator. At the same time fa-1€P N F and thus fole = e71fa-1 or f-1e71f =
= a~lex or (f~1ef)"! = a~lea.

1.12. Definition. Put @, = p-1¢ff for every carrier q, where Se PN (e, q). Iff
for all « € P there holds {g; 3(P N (¢, ¢)) = a'Ja} = {¢; ¢q = x~lea}, then @q is
called the central dispersion of the carrier ¢, and {(®)) is called the system with
fundamental central dispersions.

1.13. Remark. In the system <{(®)) with fundamental central dispersions the
same centres have the same central dispersion without regard to which carriers they
belong.

1.14. Theorem. If ¢ is a fundamental central dispersion, then ¢-! is not a
fundamental central dispersion for any carrier. :

Proof. If ¢! = a~lex were for some «€(e,g)NP, then it would be
@ 1e3(PN (g, q) and also g €3(P N (g, ¢)), where ¢ = a~lex owing to ¢ being a
fundamental central dispersion. Hence ¢! = a~l¢~'a and thus ¢ = &1, which is
a contradiction.

1.15. Lemma. If for one a€ P there is {g; 3(P N (¢, q)) = x-13a} = {¢; Pq =
= o~leat}, then it holds 23 NP =23 N P and 23 NP = 1FJ N eP.

147



Proof. Put N = {¢; (B N (¢: 9)) = «13a}. Let us mention that a € P.
I. There holds U (e 9) NP = ("J N P)a because f U (e,q) N B=Pec(e, N

NP, geN=fele NP, 3‘3”(4,9) B ‘3ﬂ~a"3a~ﬂ 13 = «'3a,
peP= ﬂa—lensn%*ﬂ ("3 N P) a.
II. There holds U (e, 9) NP = (23 N P)a because ﬁe U (e, q) NP =

= B e (e q) NP, qu Be (e ) N eP, (BN (g, 9) “ﬂ 136 = a3 =
=B136 — «13e, fEP=PalenZ NP =Fe (3 NP

III. Suppose that N = {g; ¢ = a—lea}. We are going to show that n3 NP <
€3NP, 2 3NnePcigNeP. For yenr3 NP put f = ye. Then fe (23N P«
and thus g€ U (e, ¢) NP, and consequently f-1¢f = a~lex so that fax—! €23 and

therefore y ez3 N P. Similarly put 8 = ye for ye 13 N eP. Then fe ("3 N P) «
and accordingly f.€ U (e, ) N °P so that, according to 1.9., we have f-1g-18 =

= a~lea and thus ,Boz'l €13 and consequently y €13 N eP.
IV. In the system <{(®)) always holds n3 =23 Ui13 and thus z23NP =
13N P, 13NeP < 13 NeP. Hence with regard to III. the assertion follows.

1.16. Lemma. In the system ((®)>> the statements are equivalent

8) B3NP=23NP, 23N P =13 NP,

b) 23NP =23,  "FNP=13,

) 23N P =13,

d)a3neP =13, )

e) for arbitrary g and arbitrary o€ (e, ¢) in the denotation @q = &lea for

XEPN (e Q) there holds Be PN (23) x = ﬂ(pq = &ff,

f) for arbitrary ¢ and arbitrary «€(e,¢q) in the denotation ¢@q = &lex for
ae P N (e, g) there holds feeP N (1F) & = Bpq = e71P,

g) for arbitrary €23 N P and arbitrary g e 23 N P there holds a~lea = f-1e714,

h) for arbitrary «, f € ® there holds a1 ea= f-1le-18 iff «, § are in the same class
of the decomposition G/,23 and in the opposite classes of the factor group

G/P.

Proof. I. Evidently b) = a). Let a) hold. Then z3 NP = 23 NeP)N
NE3NeP)=23NIPNeP =0 and thus z3 <P so that NP =23.
Similarly 13NP=(13NP)N (23N P) =13Nz3NP =0 and consequently
13 = P so that 23 N eP = 13. We have proved that a) = b).

II. Evidently b) = c), d) Let ¢) hold. Then 13 = a3\ 23 =3 N =3 =23 N
Nnea3 N P) =13 N (a3 Y °P) = 23 N PB. We can see that ¢) = d), b). Similarly
d) = ¢), b).

II1. Let ¢ be an arbitrary carrier. Put Po =& —1e% for x € P N (e, ). For arbitrary
€ (e, q) there is (2.3) « = (23) & because & € Fu. There holds Sy = &f = f*f =
= &~lex = fx~1€23. From the other side fx1en3NP = BePrN (23) a =
=P N (13) «. We can see that, iff'c) holds, then fp; = ¢f = f€ B N (23) holds
for arbitrary a € (e, ¢) adn consequently e).

Similarly B, = 18 = ﬂ‘ls‘lﬂ = &-1¢% = fZ-1€13. On the other hand Bx-1¢
erdNeP=FePxn (23)& =P N (23) «. We can see that, iff d) holds, then
By = e1f = P N (23) « holds for arbitrary x € (e, g) and thus f).

IV. Evidently b) = g). Let g) hold. Put a—lex = ¢ for arbitrary aeng N P.
Then f-1¢-1f = @ holds for arbitrary f € 23 M c¢§B. As an arbitrary y € 3 transforms
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3to 3, thereis ¢ = ¢=1. As ¢ does not depend on the choice of §in 0.3 N P, we can
choose Be FNeP. As ¢ depends neither on the choice of a in 23N P, we can
choose &€ &N P. Hence ¢ = &1ex = f-1e71f = &. We get alex = & = f-1g-18
and accordingly « €23 N P, f €13 N ¢P. By thisit is proved that g) = &) and thus b),
as well.

V. For «, f € 6 there holds a—leax = f-1e718 = fo—1 €13 and likewise there holds
Brtengd NeP = Be(n3) aN (°P) x. Iff there holds d), there is Pfa-1ei3 =
= Ba—1e 13 N P and consequently h) holds.

1.17. Lemma. If 13 N P = 23 holds in a system {(G>>, then ((G)) is a system
with fundamental central dispersions.

Proof. Take arbitrary o€ PB. Evidently there always holds {g; ¢4 = a~lea} <
< {g; AP N (g q) = a'3a}. Denote by N ={g; (BN (g, ¢)) = «~1Jec}. Under
the supposition of b) we have—see the proof of 1.15.—that |J (e, ¢) NP =

geN
= (23) «. For arbitrary ¢ € N and arbitrary f € (e, ¢) NP we have then e (23) «
so that ¢, = B-1ef = a~lex and consequently ge{g; @, = a lea} so that
N ={g; @q= a~'ea} also holds. According to the definition 1.12., ((®>) is then
a system with fundamental central dispersions.

1.18. Theorem. Iff 13 N P = 23, then ((®>)is a system with fundamental central
dispersions.
Proof. The consequence of 1.17., 1.16., and 1.15.

1.19. Theorem. In a system ((®)>> with fundamental central dispersions for every
carrier ¢, arbitrary phase a € (¢, q) together with fundamental central dispersions
e3P N (g, q) and e €3(P N §F) fulfils the Abelian relations

1) ap=¢tx for ac(e,g)NP
@) ap =¢le  for ae(e,q) NP

Proof. The fundamental central dispersion ¢ of the carrier ¢ is defined by the
relation @ = x~lea for arbitrary ae(e, ¢) N P. So we have the relation (1).
According to 1.9. we have the relation a-l¢7lx = ¢ for x e (e, g) N P, which is
the relation (2).

2. In an arbitrary system <{{®)> always N 23 %~ 0 and P N 23 # P, since
Fcn3d, PN F £ 0 and PN F #~ 0. So for any x e G there is also P N (23)x =
= (Pa1N13)a # 06 and PN (23) & = (Pa1 N 13) & +# 6.

In an arbitrary system ({(®)>)> for a given z€ & there is {ye ®; y-lely =
=z lex} ={ye ®; yz1€13} = (13) z + 0 since FN P < 13.

2.1. Definition. A binary relation < on the group & will be called a pseudo-order
of the system (G>)> if

a) x<pf=a#fh f<La

b) a<f=xe<zfp forall zeP
o< f=>xa>zf for all z e °P

©) a<fB=>oax<fr forall =26

d) the generator ¢ of the centre 3 of the subgroup P N F fulfils ¢ < .
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2.2. Theorem. In a pseudo-ordered system <(®>> hold

x, feP, a<f=>al> g

wBeoP, «a<fal<po
Proof.a) Let«, P, a < f. Then ¢ = a~la < a”1f, f-1 = 4f-1 < o 1.
b) Let &, fe*P, « < f. Then ¢ = a~la > a”1f, f~1 = -1 > 1.

2.3. Theorem. In a pseudo-ordered system <{{(®)>) it follows from the relation
o < f that «, § lie in the same class of the factor group G/P.

Proof. Admit that « < f§, a€P, f€P. The other case a P, f &P, by the
multiplication from the right side by an arbitrary element y € ¢, gives ay < By,
ay€P, Py eP so that, without any loss of generality, the first case can be
considered. Then the multiplication from the left side gives ¢ < a~18, B~ > 1. By
the multiplication from the right side of the first relation by the element §-1x we
get f~la < ¢ which is a contradiction.

2.4. Theorem. In a pseudo-ordered system ((®))> there holds
"JNP=:3, 23NP=13.

Proof. Let e 3 N P. Then ze = e*lz and under the influence of ¢ < ¢ we
have z < ze, ¢~z < z and consequently it cannot hold xe = e-1z. Therefore it
necessarily holds ze¢ = ex and thus z €23. Then we have 13N P < 23.

Let aendNecP. Then zxe = ¢+lz and under the influence of ¢ < ¢ we have
x > xe, x < ex and consequently it cannot hold ze = ex. Therefore it needs hold
ze = ¢z and thus z €13. We have the relation 23 N ePp < 13.

Now we have n3 N P < 23 =13\ I3 =13 N3 = 13N CHSU‘B) =13NP
and thus equality holds everywhere.

2.5. Corollary. A pseudo-ordered system ((®>) is a system with fundamental
central dispersions. For any fundamental central dispersion ¢ there holds ¢ > ¢,
since @ = a~lea for a€P. For arbitrary u < »€Z there holds ¢* < ¢’ and
therefore every centre {¢'}, € Z is completely ordered by the relation <.

2.6. Theorem. Let 13 N P = z3 hold in a system (G ). Then the relation < betwen
the elements a, § € ® defined by :

(3) o < f= fol =z lex for some zeP

is & pseudo-order of the system ((®)).

Proof. Let & < f 80 that for some y € P we have fa-1 = p-l¢y.

a) If it were o = f, we should have ¢ = p~lgy and thus y = ¢y and consequently
¢t = &, which does not hold. If it were f < «, we should have for some y €% the
relation oS! = y~ley or ﬂa-l = y~lg-1y and thus yley = y~lelyoryyle il < of,
which is a contradiction, since yy—1 € P.

b) Choose z € . Multiplicating from the left side by z and from the right side
by x1 we get (zf) (vet)~! = xfa~1x~! = xy~leyx~! = (yr~1)"le(yxr~1). For zeP
we have yz-1eP and thus za < zf. For zecP there is yx—1e°P. According
to the beginning of paragraph 2 there exists y e (13) yz~! such that y-le-ly =
= (ye-)te(ya~t) = (B) (w@)~! accordingly (ra) (zf)L=yley. At the same
time y € P because 13 < ¢B. We get xf < za.

‘¢) Choose ze€®. Then (Bz)(ax)!= fa~l=pley and thus there holds
azx < fx.

d) Bince ¢€ %P and it holds er~1 = ;~1¢t, we have ¢ < .
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2n3 (go‘;‘;llary For any system ((®)) the following statements are equivalent:
b) in <<®>) a pseudo-order may be defined,
¢) <(G>) is a system with fundamental central dispersions.

2.8. Remark. Let ({(®)>> be a pseudo-ordered system. Then every ¢ > ¢ fulfils
@ € P according to 2.3. Further, p generates an infinite cyclic group {¢’}, € Z be-
cause there holds

<Pl p< PE< ..,

2.9. Definition. The pseudo-order from the definition 2.1. will be called the
pseudo-order with regard to ¢. Similarly it is possible to define the pseudo-order with
regard to ¢1.

2.10. Theorem. Let < be a pseudo-order with regard to &. Then the relation
o < f defined by the relation a > f§ is not a pseudo-order with regard to ¢, but
it is a pseudo-order with regard to &1.

2.11. Definition. The pseudo-order (3) of the system ({®))> will be called canonical
(with regard to ¢).

2.12. Theorem. In the canonical pseudo-order there is ¢ < @ iff pis a fundamental
central dispersion.

Proof. ¢ < g =@ =alex for some zeP=g¢ is a fundamental central
dispersion.

2.13. Remark. The canonical pseudo-order of the system ((®)> (with regard to ¢)
is'unique. An arbitrary pseudo-ordered system ({®> fulfis the condition 23 NP = 23
and therefore it is possible to be ordered canonically (with regard to ¢).

. 2.14. Theorem. Let < be an arbitrary pseudo-order of the system ((&)>>. If any
@ > ¢ is a fundamental central dispersion, then < is a canonical pseudo-order
(with regard to ). I.e. that the canonical pseudo-order (with regard to &) is
characterized by the property ¢ > ¢ iff ¢ is a fundamental central dispersion.

Proof. I. Let « < . Then fo—! = z~1ex for some z € P. Then in the acnonical
pseudo-order <; there holds ¢ < ; 1 and therefore & <1 f.

II. Let « <; B in the canonical pseudo-order. Then fa~! = z-lex for some
2z € P and therefore ¢ < fa~! or x < B.

We can see both pseudo-order relations < and <, to be identical.

2.15. Lemma. The pseudo-order < of the system {(®)) defines in & the order
relation < iff the relation < is transitive.

Proof. According to 2.1. a) the relation < is reflexive and antisymmetric. The
-transitivity of < is then a necessary and sufficient condition for the transitivity of <

2.16. Theorem. For the canonical pseudo-order < of the system (&) the relation <
is and order relation in ® iff the composition of éach two fundamental central
dispersions is again a fundamental central di¥ersionyz

Proof. I. Let < be transitive. Let ¢, y be fundamental central dispersions.
Then we have ¢ < ¢, ¢ < yp and thus ¢ < yg. According to 2.12., yg is
a fundamental central dispersion. .
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II. Let the composition of each two fundamental central dispersions be again
a fundamental central dispersion. Let o <, B < y. Then fa-!, yB~! are
fundamental central dispersions according to 2.12., and consequently pa-1 =
= (pf1) (Ba~1) is also a fundamental central dispersion so that yo1! = x-lex
for some z € P. According to the definition of the canonical pseudo-order is then
a < y so that the relation < is a transitive one.
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