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FUNDAMENTAL CENTRAL D I S P E R S I O N S 
IN A DOUBLE SYSTEM «<5» 

E . BARVÍNEK, BRNO 

Reoeived November 15, 1970 

1. The double system « © » . The fundament of the abstract theory of dispersions 
is an arbitrary group © (with the unit t) in which, in addition to the fundamental 
subgroup 3f, is still an invariant subgroup $P of the index 2. Besides the decomposition 
©/rg we have also the decomposition ^P/r(^P O g). The one-to-one mapping of all 
classes ga, a e © onto the set of all carriers determines also a one-to-one mapping of 
all classes (*P n g) /?, /? € ^J, but generally only into the set o fall carriers, see fig. 1. 
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Fig. 1. 

In every class ga, a e © there is always contained at most one class (3JJ C\ %) ft, 
fiety, namely $ n %<x, since ($$ n g) 0 c g a gives /? e ffa and thus %{f = gj8 and, 
with regard to the circumstance of 0 e ^5, we have (S$ n %) 0 == ty C\ $/$ == ty Cs %oc. 

Iff for any a e © there is Ĵ n g a -^ 0, every class fjfa, a 6 © will contain just one 
class (*P n g) /?, j8 6 P̂ since for arbitrary a 6 © there exists 0 e S$ n g a and thus 
( « P n g ) j 8 c gfa, see Fig. 2. 
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FiSГ. 2. 

For an arbitrary subgroup 81 £ © let us denote c2l = © \ 2 l the complement, 
f*9l =* {»6.0; a#t = 91a;} the normaUzator, *5I = {a;effi; a» = ax for all a e S } the 
centralizator, *9l = {a:6ffi; a?a = a"1^ for all A G K } the inverter, and 35l =» {a?eSt; 
#a ^ cue for all a e 31} the centre of'51. . ' 
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1.1. Lemma. Have arbitrary sii^grptips *$ and g in an arbitrary group ®. Then 
the following statements are equivalent 

a) for any a G © there holds ^ n g a ^0, 
b) for any a e © there holds g n ^3a # 0. 
If, moreover, *p has the index 2, then the mentioned statements are equivalent 

with any of the Rtatementn 
c) there holds g n c^3 =£ 0, 
d) for any a E @ there holds cty n ga =j£ 0. 
Proof. The equivalence of the statements a), b) follows from the equality 

v$ O go. == (^Ja~l.n g) a. Their equivalence with the statement c) follows from that 
c^j _. yr for arbitrary yecty so that then g n c ^ J ^ 0-^ g n * P y -£ 0 for any 
y 6 <*P, whereas for any /? e ^ there is ^ S = *P and thus g n ^ = g n ty # 0 
automatically. The equivalence of the statement d) with b) follows from the equality 
<*P n g a = (c^Ja-1 n g) a = (tyyor1 n g) a for arbitrary y e f 

1.2. Definition. A double system « © » will be called an arbitrary group © 
(with the unit t) in which a so-called fundamental subgroup g and an invarinat 
subgroup ty of the index 2 are given, where the centre 3 of the subgroup 5̂ n g is an 
infinite cyclic group (with a generator B) whereas the centre of the fundamental 
subgroup g is trivial. 

1.3. Corollary, g n cty ^ 0. 
Proof. There holds g n c$ = 0 == g c $ -== g n 3̂ = g =• 3 ( ^ n g) == 3 g and 

this is a contradiction. 

1.4. Lemma. For arbitrary a e © there holds 3(a_1(^J n g) a) = or^ot-
Proof. The function y — oc^xoc, x e g is an isomorphism of g onto a _ 1 ga where 

Ĵ n g is mapped on orx(ty n g) a and 3 on oc^Soc. We have ye 3 ^ xy = ?# &>r 

all x e g n *P s= yCa-^a) — (a"xya) # for all «/ e a_ 1(g n $P) a == a^ya G 
e 3(«-i(8f n * ) «). 

<* 1.5. Corollary. For all a e g there holds a M 3 « = 3> a n ( i * n u s 3 1S a n invariant 
subgroup in g. 

1.6. Theorem. For any a 6 g O C^J there holds oce = e-1a. 
Proof. Since a transforms 3 o n 3» -* transforms e to e or to e'1, and thus there 

holds oc~xeoc = e^1 with a suitable sign.Because of a 6 g n C^J and ^J having the index 
2, there is a = a/8, /?e g n P̂ a one-to-one mapping of g n i p onto g n c < p . If 
oc^eoc = s, then for all 5 we should have oc^eoc = /Ha^eajt? = /He/? = e and thus 
F G 3g, which is a contradiction. Therefore it necessarily holds a^eoc =-= e -1. 

1.7. Remark. In the system « © » we have not only a one-to-one correspondence 
between all carriers # and all classes ga, a G ©, but also between all carriers q and all 
classes {fy n g) fi, /S € ty owing to the condition g n c^3 ^ 0. Every class (g n ^}) /ff, 
P G P̂ is of the form (e, g) n ip for just one carrier q where fi e (e, q). 

The condition g n c ^ J -5-= 0, or its equivalent $ O ga 7- 0 for all oce® resp., 
guarantees that for any complex a~1g A, a, A e © there exist phases /S, J? e 5̂ such 
that a^g-4 = / M g B because for arbitrary /8 £*P n ga, Befyn %A we have 
r^A-'^ii^ftU^^^i^^y^)^ jS^gJST. Heiice it further follows®&*$ :n 
A <x^A -^ $ n jS^gJB ==- j8^($ n g) B so that between" all complexes o-i&g; in 
© and all complexes /H(^P n g) B in Ŝ we have a one-to-one correspondence on the 
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basis of the equation <p n orx%A = f}-i(<$ n g) #. t e# e v e r y c o m p l e x p~i(%n%)B 
in Ĵ is of the form (q, Q)nty where /? G (e, Q), JB G (e, <?). 

1.8. Lemma. For a, /3 6 (e, g) there holds a^ea = p^ep iff, either a, j3 G ty n (e, q) 
or a, j86 c^}n (e, g). 

Proof. For a, ^G (e, g) we have a^ea = /He/? == jSa^g == e^a"1 = poc^e gn^=s= 
• == j8 G (e, q) n tyot = a, 0 G <-p n (e, q) or a, j8 e c ^ n (e, g). 

1.9. Corollary. All a G (e, q) n ty transform g to the only and same element <pt 

whereas all ft e c^p n (e, g) transform e to the element <p~x or g-1 to 99. 

1.10. Remark. In comparison with <©> the inclusion g £ n 3 holds in « © » , but 
it does not hold an inclusion like % c 23. Further in <<©», for oc, /? G ©, we have 
a -1£a = /He / J iff /Ja - 1GZ3- According to 1.6., moreover, we- have here that 
z 3 n (3f n c<$) = 0, and evidently g n ^ c 23. Hence g n z 3 s «P and thus 
g n z 3 £ ^} n g c z 3 n 5 so that there holds g n z 3 = ty n g. As a matter of 
fact, it is another proof of the lemma 1.8. 

Further, in « © » for a, p G © we have a ^ a = /H3j8 iff por1 e n 3 -

1.11. Theorem. For an arbitrary carrier g the centre 3(^J n(q, q)) of the subgroup 
IP n (q, q) is an infinite cyclic group. For all a G (e, g) there holds 3(^J n (g, g)) = 
= a - 1 3a . One of its generators is a_1ea, independently on the choice of a in 
ip n (e, g), the second is /He/}, independently on the choice of /? in c*p n (e, g), being 
necessarily (/He/?)-1 = a~1ea. 

Proof. We are going to link up with 1.4. Every subgroup a-1HP n g) a, 
conjugated with ^ n g by means of the element a 6 © is of the form *P n (q, q) for 
& suitable carrier q, where a G (e, g), see 1.7., and vice versa, for every carrier there is 
P̂ ̂  (#> tf) = <z~l(ty n g) a where a G (e, g) being arbitrary. 

According to 1.4. it is evident that for all a G (e, g) 3(^J n (g, g)) = a~"13<x is an 
infinite cyclic group with generators a~1e±1a. For all ozety n (e, q), according to 1.8., 
a^ea is always the same generator, whereas for all /? G G*P n (e, q) is /He/? the other 
generator. At the same time P&-1 €c<$ n$ and thus /fcHe = e^fior1 or /He - 1 /) = 
= a~x£a or (/He/?)-1 = a~1ea. 

1.12. Definition. Put <pq = /He/? for every carrier q, where j J e ^ H (e, q). Iff 
for all aG p̂ there holds {q; 3(*P n (q, q)) = a~x3a} = {#*> fq = a^ea}, then fq is 
called the central dispersion of the carrier q, and <<©» is called the system with 
fundamental central dispersions. 

1.13. Remark. In the system « © » with fundamental central dispersions the 
same centres have the same central dispersion without regard to which carriers they 
belong. 

1.14. Theorem. If <p is a fundamental central dispersion, then q>~x is not a 
fundamental central dispersion for any carrier. 

Proof. If (p-1 = a_1ea were for some a e ( e , q)nty, then it would be 
ip-1 G 3(<t{J n (q, q)) and also q> G 3(^P n (g, g)), where <p = a-1£a owing to <p being a 
fundamental central dispersion. Hence gH = a~16"1a and thus e = e -1, which is 
a contradiction. 

1.15. Lemma. If for one a e ip there is {q; 3(*p n (q, q)) = «~-3«} = {#» fa = 
= *-*««}, then it holds »3 n f = *3 n ^ and **3 n cip = *3 n «fj. 
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Proof. Put N = {$'> 3 ( ^ n (?» ?)) = a - ^ a } . Let us mention that a e <$. 
I. There holds y (e, q) H P̂ = (n3 n <P)a because /? E (J (e, g) n $ = j8 e (e, g) n 

n ^J, g e N s jl G (e, g) n ^3, 3<p n (g, g)) = ^ -13^ = a ^ a == 0-130 = a~i3a, 
/8e <p = 0a-1 G n3 n $ = iff e (n3 n <p) a . 

I I . There holds U (e, g) n <*P = (113 n <*P)a because 0 e \J (e, g) n c<p = 

s @e(e,q)n <*P, *g G N = £ e (e, g) n <*P, 3(<p n (g, q)) = /J--30 = a - ^ a = 
s ^-13/J =- a - ^ a , ^ € c $ = iffa-1 e n 3 n C<P = 0 e (n3 n C<P) a. 

III . Suppose that JV = {g; % = a^ea}. We are going to show that n 3 n ^ c 
£ z 3 n $ , n 3 n c$$ S *3 n c<p. For y e n 3 n $ put 0 = ya. Then fie(*3n ty)oc 
and thus 0 G U (e, q) n ^}, and consequently 0-^0 = a-%a so that 0a"1 e z 3 and 

therefore y G z 3 n ^J. Similarly put 0 = ya for y e n 3 n <*P. Then 0 e (n3 n $ ) a 
and accordingly #G U (e, g) n c^p so that, according to 1.9., we have /He"1/? = 

= a_1ea and thus 0a""1 G *3 and consequently y e ^ H ^ . 
IV. In the system « © » always holds n 3 = z 3 U *3 and thus z 3 n <P = 

<= n 3 n *P, J 3 n c<p c n 3 n <*p. Hence with regard to III . the assertion follows. 

1.16. Lemma. In the system « © » the statements are equivalent 
a) n3 n *p = z3 n «p, n3 n^^^n <*p, 
b) n3 n <p = z3, n3 n c<p = *3, 
c ) n 3 n $ = z3> 
d)n3nc^p = i 3, 
e) for arbitrary q and arbitrary a e (e, q) in the denotation <pq = <x--£a for 

5 G Ĵ n (e, g) there holds 0 G <P n (n3) « = j 5 f - = e0, 
f) for arbitrary g and arbitrary a G (e, g) in the denotation g?Q = oi^eoc for 

a G ^ n (e, g) there holds pec<$n (n3) a =. 0g>q = e^fi, 
g) for arbitrary a G n 3 n P̂ and arbitrary 0 G n 3 n C P̂ there holds a-16a = 0-1e~10, 
h) for arbitrary a, jff G © there holds a - 1 €a= 0-1£-10 iff a, 0 are in the same class 

of the decomposition ®/ r
n3 a n d m ^be opposite classes of the factor group 

Proof. I. Evidently b) => a). Let a) hold. Then z 3 n c $ = (23 n <*P) n 
n (n3 n <*p) = z 3 n «p n c<p = 0 and thus z 3 e p̂ so that n 3 n p̂ = z 3 . 
Similarly *3 n <P = (J3 n <P) n (n3 n <P) = *3 n z 3 n <P = 0 and consequently 
*3 £ C P̂ so that n 3 n <*p = 13. We have proved that a) => b). 

II . Evidently b) => c), d) Let c) hold. Then *3 = n 3 \ z 3 = n 3 n c z 3 = n 3 n 
n c ( n 3 n <P) = n 3 n (cn3 (J <*P) = \ 3 n <*p. We can see that c) => d), b). Similarly 
d)=>c), b). 

III . Let q be an arbitrary carrier. Put <pg = 5 -Hot, for 3c G P̂ n (e, g). For arbitrary 
a G (e, g) there is (n3) a = (n3) 3c because 3c e ga. There holds/ff^ = ^ = >S—*«:>S = 
=. S--c5 s= ^Sc"1 G z 3 . From the other side ^Sc^1 G n 3 n ^ P ^ i 8 G ^ p 3 c n (n3) a = 
= $ n (n3) a. We can see that, iff c) holds, then (t<pg = eft zs P e ty n (n3) a holds 
for arbitrary aG (e, g) adn consequently e). 

Similarly 0<pg = e"1^ = /S-^-i^ = «-ic3c === ^^c-1 G iS . On the other hand iS^-1 e 
G n 3 n <*P = /? G c<P3c n (n3) a = C^J n (n3) a. We can see that, iff d) holds, then 
P(pg = 6-i|9 s p e C P̂ n (n3) a holds for arbitrary a G (e, g) and thus f). 

IV. Evidently b) => g). Let g) hold. Put a^aa = ^ for arbitrary a G n 3 n ^ J . 
Then p^e^fi = 9? holds for arbitrary /g e n 3 n c«p. As an arbitrary y e n 3 transforms 
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3 to 3 , there is <p = e±1. As 99 does not depend on the choice of /? in n 3 H c1p, we can 
choose ^ e j r i 0 ^ . As 99 depends neither on the choice of a in n 3 n 1p, we can 
choose <% G 5 ^ ^P. Hence <p = ar-e3c = jS~16~1j8 = e. We get a_1ea == e = /9~%--/? 
and accordingly a e z 3 n ^J, /S G *3 n C^J. By this it is proved that g) => a) and thus b), 
as well. 

V. For a,j8e(5 there holds a_1ea = /S^e-1/? == /8a_1 G *3 and likewise there holds 
jSa"1 G n 3 n C^J == jg G (n3) a n (<*P) a. Iff there holds d), there is por1 G *3 =s 
•=--. fior1 ^^3^ CS-P a n ( i consequently h) holds. 

1.17. Lemma. If n 3 H $ = z 3 holds in a system « © » , then « © » is a system 
with fundamental central dispersions. 

Proof. Take arbitrary aG^3 . Evidently there always holds {q; <pa = a^ea} <= 
c {q; z(«p n (g, a)) = a - ^ a } . Denote by N = {q; z(ty n (g, g)) = o r ^ a } . Under 
the supposition of b) we have—-see the proof of 115.—that \J (e, q) n ty = 

geN 

= (z3) a- For arbitrary g G N and arbitrary /? G (e, q) C\ S$ we have then /? G ( Z 3 ) a 
so that <pq = /5_1e/? = a_1ea and consequently q e {q; <pQ = a_1ea} so that 
N == {q; (pq == a_1ea} also holds. According to the definition 1.12., «©>> is then 
a system with fundamental central dispersions. 

1.18. Theorem. Iff n 3 n Ĵ == z3> then « © » is a system with fundamental central 
dispersions. 

Proof. The consequence of 1.17., 1.16., and 1.15. 

1.19. Theorem. In a system « © » with fundamental central dispersions for every 
carrier q, arbitrary phase oce(e, q) together with fundamental central dispersions 
<p G 3(^3 n (q, q)) and e G 3(^3 H gf) fulfils the Abelian relations 

(1) acq) = eoc for a G (e, g) n *P 

(2) a<p -= e^a for a G (e, g) n c $ 

Proof. The fundamental central dispersion <p of the carrier q is defined by the 
relation <p = oc~~xeoc for arbitrary aG(e, q)C\S$. So we have the relation (1). 
According to 1.9. we have the relation a_1£_1a = <p for aG(e, q) n C^J, which is 
the relation (2). 

2. In an arbitrary system « © » always ty n n 3 ¥~ 0 and C$P n n 3 7^ 0, since 
3 £ n 3 , 8̂ n g ¥• 0 and C*P n g -£ 0. So Vor any a G © there is also ty n (n3)oc = 
= (^Ja-1 n n3) a -56 0 and C<P n (*3) a = ( ^ a " 1 n*3)c*-£ 0. 

In an arbitrary system « © » for a given # G © there is {ye®; y~xe~ly = 
= a;-1^} = {*/ G ©; t/a;-1 G *3} == (*3) a; # 0 since g n C*P s *3 . 

2.1. Defmition. A binary relation < on the group © will be 
of the system « © » if 
a) oc < ß => oc Ф ß, 0< « 
b) ' oc < ß => xoc < xß for all xєЏ 

oc < ß => xoc > xß for all xєc<Џ 
c) oc < ß => ocx < ßx for all XЄ& 

d) the generator e of the centre 3 of the subgroup B̂ n g fulfils 1 < e. 
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2.2. Theorem. In a pseudo-ordered system <X©» hold 
oc, jffe^J, a < p=> oc-1 > p-i 
a , / 3 e c ^ , a < p => oc~x < fi~i 

Proof, a) Let oc, p e % oc < p. Then t =- oc^oc < oc~xp, p-i = tp~x < a"1, 
b) Let a, 0€«$,(*< p. Then e = a~*a > a"1^, / H == t/?"1 > a"1. 

2.S. Theorem. In a pseudo-ordered system « © » it follows from the relation 
oc < p that a, P lie in the same class of the factor group ©/*$. 

Proof. Admit that a < p, ocety, Pe <*p. The other case a e c $ , pe<$, by the 
multiplication from the right side by an arbitrary element yecty, gives ay < /?y, 
a y e ' p , /9y6c^3 so that, without any loss of generality, the first case can be 
considered. Then the multiplication from the left side gives t < oc~xp, P~xoc > t. By 
the multiplication from the right side of the first relation by the element p~xoc we 
get fi~loc < t which is a contradiction. 

2.4. Theorem. In a pseudo-ordered system « © » there holds 
n3r\y = *3> n 3 n c ^ = i3. 

Proof. Let xe n 3 n ^J. Then xe = e±xx and under the influence of t < e we 
have x < xe, e~xx < x and consequently it cannot hold xe = e~xx. Therefore it 
necessarily holds xe = ex and thus xez3- Then we have n 3 n i p c 23. 

Let &en3^ c <*P- Then xe = e±1x and under the influence of t < e we have 
x > xe, x < ex and consequently it cannot hold xe = ex. Therefore it needs hold 
xe = e~xx and thus x e i3- We have the relation D 3 ^ C P̂ -- i 3 -

Now we have * 3 n «p s z 3 = n3\l3 = n3r\ c*3 c 113 n (c-13 u $ ) = n 3 n ^ 
and thus equality holds everywhere. 

2.5. Corollary. A pseudo-ordered system « © » is a system with fundamental 
central dispersions. For any fundamental central dispersion cp there holds cp > tP 

since cp = orxeoc for ocety. For arbitrary pi < v e Z there holds cp*1 < cpv and 
therefore every centre {<pv}v € Z is completely ordered by the relation < . 

2.6. Theorem. Let n 3 ^ P̂ = z 3 hold in a system <©>. Then the relation < betwen 
the elements oc, P e © defined by 

(3) oc < p ~~ POT1 = x~lex for some x e ty 

is a pseudo-order of the system « © » • 
Proof. Let oc < p so that for some y e 3̂ we have Poc~x = y~xey. 
a) If it were oc = p, we should have t = y~xey and thus y = ey and consequently 

t = e, which does not hold. If it were P < oc, we should have for some y e *p the 
relation ocP~x = y~xey or Poc~x = y~xe~xy and thus y~xey = y~xe~xy or yy~x e *3 £ C P̂> 
which is a contradiction, since yy~x e ^J. 

b) Choose xe ©. Multiplicating from the left side by x and from the right side 
by x~x we get (xP) (xoc)~x = xpoc~xx-x = xy^eyx'1 = (yx~1)-1e(yx-1). For xety 
we have yx~x e Ĵ and thus xoc < xp. For x e c^3 there is yx~x e C^J. According 
to the beginning of paragraph 2 there exists y e (l3) yx~x s u c n that y~xe~xy = 
== (y*~-)--e(ya?--) = (#/?) (xoc)-1 accordingly (xoc) (xP)-1 = y^ey. At the same 
time y - *p because -3 £ c^p. We get xP < xoc. 

c) Choose xe®. Then (/te) (aa;)"1 = par1 = y ^ y and thus there holds 
a# < Px. 

A) Since ce^J and it holds et~x = r^ci, we have « < e. 
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. ' Corollary. For any system « © » the following statements are equivalent: 
a ) n 3 n <p = 23, 
b) in « © » a pseudo-order may be defined, 
c) « © » is a system with fundamental central dispersions. 

2.8. Remark. Let « © » be a pseudo-ordered system. Then every <p > t fulfils 
(p e^S according to 2.3. Further, (p generates an infinite cyclic group {(pv}v € Z be­
cause there holds 

. . . < <p~2 < <p~x < t < (p < <p2 < . . . 

2.9. Definition. The pseudo-order from the definition 2.L will be called the 
pseudo-order with regard to e. Similarly it is possible to define the pseudo-order with 
regard to e~x. 

2.10. Theorem. Let < be a pseudo-order with regard to e. Then the relation 
a < /? defined by the relation a > fi is not a pseudo-order with regard to «, but 
it is a pseudo-order with regard to e~x. 

2.11. Definition. The pseudo-order (3) of the system « © » will be called canonical 
(with regard to e). 

2.12. Theorem. In the canonical pseudo-order there is t < (p iff (p is a fundamental 
central dispersion. 

Proof. t< <p~(p = x~1£X for some xe^~~(p is a fundamental central 
dispersion. 

2.13. Remark. The canonical pseudo-order of the system « © » (with regard to e) 
is unique. An arbitrary pseudo-ordered system «©»fulf is the condition n 3 ^ * P = z 3 
and therefore it is possible to be ordered canonically (with regard to e). 

2.14. Theorem. Let < be an arbitrary pseudo-order of the system « © » . If any 
<p > t is a fundamental central dispersion, then < is a canonical pseudo-order 
(with regard to e). I.e. that the canonical pseudo-order (with regard to e) is 
characterized by the property <p > t iff <p is a fundamental central dispersion. 

Proof. I. Let a < /?. Then (tor1 = x~xex for some xety. Then in the acnonical 
pseudo-order < x there holds t < \ fior1 and therefore a < 1 /9. 

II . Let a < 1 /? in the canonical pseudo-order. Then flor1 == x~lex for some 
x G ^} and therefore 1 < fiot'1 or a < /8. 

We can see both pseudo-order relations < and < 1 to be identical. 

2.15. Lemma. The pseudo-order < of the system « © » defines in © the order 
relation <, iff the relation < is transitive. 

Proof. According to 2.1. a) the relation ^ is reflexive and antisymmetric. The 
transitivity of < is then a necessary and sufficient condition for the transitivity of ^ 

2.16. Theorem. For the canonical pseudo-order < of the system <©> the relation <, 
is and order relation in © iff the composition of each two fundamental central 
dispersions is again a fundamental central diSPfersion^ 

Proof. I. Let < be transitive. Let 9?, %p be fundamental central dispersions. 
Then we have t < <p, q> < yxp and thus t < y)(p. According to 2.12., yxp is 
a fundamental central dispersion. 
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II . Let the composition of each two fundamental central dispersions be again 
a fundamental central dispersion. Let a < /?, fi < y. Then fior1, y/M are 
fundamental central dispersions according to 2.12., and consequently y or1 = 
= {yfi~l) (/8a"*1) is also a fundamental central dispersion so that yor1 = x^ex 
for some xety. According to the definition of the canonical pseudo-order is then 
a < y so that the relation < is a transitive one. 
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