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ARCH. MATH. 2, SCRIPTA F A C SCI. NAT. U J E P BRUNENSIS , 
IX: 73—82, 1973 

DISTINGUISHING SUBSETS IN SEMILATTICES 
Josef Zapletal, Brno 

(Received July 24, 1972) 

1. I N T R O D U C T O R Y D E F I N I T I O N S A N D L E M M A S 

1.1 Definition. A semilattice is a set G with an idempotent, commutative, and 
associative binary operation o which assigns to each pair (x, y) e G a single element 
x o ye G. 

1.2 Lemma. Let G be a join-semilattice (a semilattice under U). Then G is partially 
ordered set (poset) where the partial ordering ^ is defined by the following condition: 
x^yiffxoy = y. For all x, yeG, we have x U y = x o y. (Proof for lattices see [1], 
Theorem 2.) 

1.3 Definition. Let G be a poset, E c G. The set E is called an end of G if, for all 
elements xeE and yeG, the condition x S y implies yeE. 

1.4 Lemma. Let G be a join-semilattice, E c G its end. Then E is a join-subsemilat-
tice in G. 

Proof. Let x, y e E. Then x o y ^ x which implies x o y e E. 
1.5 Definition. Let G be a semigroup, 0 a equivalence relation on G. The relation 0 

is called a congruence relation if for all a, b, c, deG the conditions a0b, c0d imply 
a o c0b o d. 

1.6 Agreement. Let 0 be a congruence relation on a semigroup G. We denote the 
elements of G\0 by capital letters X, Y, ..., W. 

1.7 Remark. Let 0 be a congruence relation on a semigroup G. For each X e G\0 
and each Y e G\0 there exists such aZe G\0 that X o Y = {x o y; x e X, y e Y} c Z. 
We put YoY = Z. (See [4] page 188.) 

1.8 Lemma. Let G be a join-semilattice, 0 a congruence relation on G. The set G\0 
is a join-semilattice. (See [4] page 189.) 

1.9 Lemma. Let G be a join-semilattice, 0 a congruence relation on G, X,YeG\0. 
Let ^ be an ordering on G\0 generated by the join-semilattice operation o. Then X ^ Y 
if for each xeX there exists yeY such that x ^ y. 

Proof. Let X £ Y. Then XoY=Y and hence X o Y c Y. For arbitrary 
elements xeX, ye Y, we have x oyeY and x ^ x o y. Now we suppose that for 
each x e X there exists an element yeY such that x ^ y. Hence x o y = y and 
therefore X o Y £ Y. The last inclusion is, by 1.7, equivalent to the equation 
X o Y = Y and X ^ Y. 

1.10 Lemma Let G be a join-semilattice, 0 a congruence relation on G. Then each 
0-class is a join-subsemilattice in G. 

Proof. For lattices see [4] Theorem 75. 
1.11 Lemma. Let G be a join-semilattice, 0 a congruence relation on G. Let X, Y e 

e G\0 be such that X ^ Y. Then yoX^Y holds for each yeY. 
Proof. Let x e X be arbitrary. Then there exists an element zeY such that x £ z. 
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It holds xoz = zeY. Simultaneously x o y&x o z and we have x o y e Y. Hence 
j / o l c Y. 

1.12 Definition. Let G be either a jon-semilattice or a monoid, L c G its subset. 
For x, yeG we put (x, y) e S(G, D if, for each u, veG, the condition uox oveL 
is equivalent to uoy oveL. 

Some well known results concerning monoids can be formulated for join-semilat-
tices. 

1.13 Lemma. A relation S(G, D is a congruence relation on the join-semilattice G. 
Proof. See [5] page 386. (The proof is given for monoids). 
1.14 Remark. Let G be a join-semilattice, 0 a congruence relation on G. Then 0 

is called principal if there is a set L c: G such that 0 = S(G, D • (The definition of 
principal congruences on semigroups see [6] page 530.) 

1.15 Lemma. Let G be a join-semilattice, L c: G its subset and XeGjS(G,L)- If 
X O L # 0 , then X c: L. 

Proof. Let xeX. There exists yeXC\L. It is XS(G,D y and y = y oyeL 
hence x o y e L and also x = x oxe L. Thus I g r . 

1.16 Corollary. Let G be a join-semilattice, L c: G. Then L=\J {X; XeG/S(G,L) 
XnL^ 0} 

1.17 Definition. Let G be a semigroup, L c: G a set, ueG. We say that the 
elements x,yeG,x^y, are distinguished by u with respect to L if the conditions 
u oxeL, u o y $L are equivalent. We say that L distinguishes G and we write LdG 
if, for each x, yeG, x 7-= y, there is u e G such that x, y are distinguished by u with 
respect to L. 

It is easy to prove the following two Theorems. The proofs are similar to the proof 
of the Theorem 2.6 in [7]. 

1.18 Theorem. Let Gbe a monoid, L c: G, 0 a congruence relation on G. Then the 
following two assertions are equivalent: 
(A) 0=5(G,L). 

(B) There exists a subset L in G\0 such that L = \J X and L distinguishes G\0. 
X*L 

1.19 Theorem. Let G be a join-semilattice, L c: G, a congruence relation on G. 
Then the following two assertions are equivalent: 
(A) 0=S(G,L). 
(B) There exists a subset L in Gj0 such that L = \J X and L distinguishes G/0. 

XeL 

1.20 Remark. It is not possible to formulate previous Theorems as one Theorem 
for semigroups. 

1.21 Example. Let B be a semigroup with two elements 0 and a with the follow­
ing operation: a oa = 0, a o0 = 0, 0 oa = 0, OoO = 0. Let us put L = {a}. For 
all u,v eB u oa ov = OeB — L, u o0 ov = OeB — L and hence a S(B, D 0. The 
congruence relation has only one class which is equal to B. Hence" the equation 
L = (J {X; X e GjS(G,Lh X n L ^ 0} does not hold. 

2. J O I N - S E M I L A T T I C E S W I T H T H E P R O P E R T Y (/?) 

2.1 Definition. Let G be a join-semilattice. We say that G has the property (/9) or 
that G is of the type (/?) if it has the greatest element i and for each pair x, yeG, 
x ^ y, for which x o y < i there exists an element z e G such that either x < z and 
simultaneously z \\ y or y < z and simultaneously z\\x. 
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2.2 Lemma. Let G be a join-semilattice of the type (/8) satisfying the maximum 
condition. Then for each pair x, yeG, x ^ y there exists an element ueG such that 
either x o u = i, y o u y- i or x o u ^ i, y o u = i holds. 

Proof. Let x,yeG. 
I. Let x o y = i. For x ?- y, it is x ?- i or y -̂  i; let us suppose the first case. Then 

it is sufficient to put u = x. 
II . Let x o y < i. Let us denote by the letter a that of the elements x, y to which 

there exists an element z0eG such that a < z0, and such that it is incomparable 
with the other of the elements x, y. We denote the other element by b. I t is obvious 
that Zo < i. 

a) Let z0ob = i. We put then u = z0 and we get aou = aoz0 = z0 < i, b ou = 
= b o z0 = i. 

P) Let z0ob 7«- i. We consider the pair z0, b OZQ. TO this pair there exists an 
element z\ < i for which z0 < Zi, zx 11 b o z0. If b o zi = i, then we put u = z\. In 
the reverse case we construct an element z2 by similar way as element Z\ with the 
property a < z0 < z\ < z2 < i, b \\z2. As G satisfies the maximum condition we 
attain, in a finite number of steps, an element zn such that a o zn < i, b o zn = i. 

2.3 Corollary. Let G be a join-semilattice with the property ({}) satisfying the 
maximum condition. Then {i} distinguishes G. 

2.4 Lemma. Let G be a join-semilattice with the greatest element i. Suppose {i}6G. 
Then G has the property (ft). 

Proof. Let us admit that G has not the property (/?). Then there exist x, y, x ^ y, 
x o y < i such that every z > x is comparable with y and every z > y is comparable 
with x. There are two possibilities. 

I. The elements x, y are comparable, for instance x < y. Then for each z > x 
either z ^ y or z > y holds. Let ueG be arbitrary. If u o x = i, then it is obvious 
u o y = i, too. Let u o y = i, u ox < i. If u o x = x, then u ^ x hence u ^ y and 
u o y = y = x o y < i. I t is a contradiction. Therefore x < uox. Hence u o x ^ y 
or u o x ^ y. In the first case u ^ u o x ^ y and then u o y = y = x o y < i. It is a 
contradiction, too. In the second case i = u oy ^ (uox)oy = uox< i and it is 
again a contradiction. We get that u o y = i implies u o x = i. 

II . The elements x, y are incomparable. Then the element z > x is comparable 
with y, it is z ^ y or z > y. The first case implies x < z <| y and it is impossible. 
Therefore z > x implies z > y and conversely. Let ueG be arbitrary. Let uo x = i, 
u o y < i. Then uoy ^ y. If u o y = y, then it is u ^ y and hence i = uo # rg y o 
o x < i and this is a contradiction. Therefore u o y > y and it implies u o y > x. 
Hence we get i = uox<>uo(uoy) = uoy< i and it is again a contradiction. 

We get that for each ueG the relation uox = i implies u o y = i and conversely 
u o y = i implies u o x = i. This is a contradiction with the asumption that {i}SG-
We have proved that G has the property (ft). 

2.5 Theorem. Let G be a join-semilattice satisfying the maximum condition with the 
greatest element i. Then the following statements are equivalent: 
(A) {i}dG. 
(B) G has the property (/?). 

2.6 Theorem. Let G be a dually atomic join-semilattice with the greatest element i. 
Let M be a set of all dual atoms in G. Suppose {i}6G. Then MdG. 

Proof. Let x,yeG,x^y. Since {i}6G, there is an element u e G such that uox = 
= i, u o y # i or u o x 7-= i, u oy = i. Let us denote by the letter a that element of 
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-a?, y for which the join with the element u is equal i and by the letter b the other 
•element. 

Let u o a = i, u o b e M. Then the proof is finished. 
Let u o a = i, u ob $ M. G is a dually atomic semillattice and simultaneously 

u o b < i. There exists p e M for which uob < p and hence (p ou) ob = p o (u o b) = 
= pe M and (p o u) o a = p o (u o a) = p o i = i $ M. We have found u' e G, 
u' = u o p such that u' o a $ M and u' obe M. Thus MdG. 

2.7 Remark. We cannot formulate theorem 2.6 as an equivalence. 
2.8 Example. Let G be a join-semilattice with the following diagram: 

Then M = {b, $}, MdG but {i} does not distinguish G. 
2.9 Theorem. Every Boolean algebra has the property (/J). 
Proof. In the proof of this theorem we denote the operation o by U. 
Let B be Boolean algebra, x, y e B, x / y. Let us choose the notation in such 

a way that y ^ x. If x U y' = i, then y = y Hi = y n (x\J y') = y r\x which 
implies y ^ x and we have a contradiction. Therefore xKJ y' < i, yKJy' = i and 
{i}6B. The statement follows from Lemma 2.4. 

3. D I S T I N G U I S H I N G S U B S E T S I N J O I N - S E M I L A T T I C E S 

3.1 Lemma. Let G be a join-semilattice, E c G its end and MdE. Let xeG — E 
•and suppose the existence of at least one element s e E such that, for each u eE, M con­
tains either both elements uox,UoSor none of them. Then there is precisely one element s with 
this property. 

Proof. Suppose the existence of Si, s2eE, Si # s2 with this property. Then, for 
each ue E, the condition u o Si e M implies u oxe M which implies u o s2e M 
and conversely, u o s2 e M implies u o Si e M. 

It is a contradiction to the hypothesis MdE. 
3.2 Definition. Let G be a join-semilattice, E c G its end, M c E, MdE, 

xeG — E. 
We put 

&(E,M, x) = { 

{M, M U {x}} if, for each teE, there is u e E such that M contains 
precisely one of the elements u o x, u ot. 

{M} if there is t eE such that t oxeM and, for each 
ue E, M contains either both elements uox, u ot or 
none of them. 

{M U {x}} if there is teE such that t o x $ M and, for each 
ueE, M contais either both elements u o x, uot or 
none of them. 

76 



3.3 Lemma. Let G be a join-semilattice, E £ G its end, M c E, MdE, xeG — E. 
Then Se(E, M, x) is the system of all sets L distinguishing E U {x} such that LC\E = M. 

Proof. We denote oyS$(E, M, x) the system of all sets L distinguishing E U {x} 
such that LoE = M. 

Clearly, Le@(E, M, x) implies either L = MOTL = MU {X}. 
(i) Iit,zeE,t 7-: z, then there is u e E such that M contains precisely one of the 

elements u o t, u o z. The following cases can occur: 
(1) For each t e E, there is u e E such that M contains precisely one of the ele.-

ents u o x, u ot. 
We have Se(E, M, x) ={M,Mu {x}} 2 Q)(E, M, x). 
We prove Md(Eu{x}). 
Indeed, if t,z e E U {x}, x ?- t ^ z, then we have the following two possibilities: 

(a,) t ^ x ^ z (h) t ^ x = z. In the case (a), the condition (i) implies the existenoe 
of u e E such that M contains precisely one of the elements u ot, uoz. In the case 
(b), the condition (1) implies the existence of ue E such that M contains precisely 
one of the elements u o z = u o x, u ot. 

We prove (M U {x}) d(E U {x}). 
Indeed, if t,z e{E U {%}}, x 7-= t # z, then we have the following two possibilites: 

(a) t ^ x 7- z (b) t 7-= x = z. In the case (a), the condition (i) implies the existence 
oiueE such that M contains precisely one of the elements u ot, u oz. Since u ot ^ 
7̂  x 7-- u o z the set M U {x} contains precisely one of the element u o t, u o z. In the 
case (b) the condition (1) implies the existence of ue E such that M contains preci­
sely one of the elements u o z = u o x, u ot. Since u o z = u o x # x ^= u ot the set 
M U {x} contains precisely one of the elements u ot, u oz. 

We have proved &(E, M, x) ={M,MU {x}} c@(E9 M, x). 
Thus, Sf(E, M, x) =Q)(E, M, x). 
(2) There is precisely one element seE such that s o x e M and, for each ue E, M 

contains either both elements u o x, u o s or none of them. 
We have &(E, M, x) = {M}. 
We prove Md(E U {x}). 
Indeed, if t,ze Eu {x}, x 7*- t 7-= z, then we have the following possibilities: 

(a) t 7-̂  x 7*- z (b) t # s, z = x (c) t = s, z = x. In the case (a), the condition (i) 
implies the existence of ue E such that M contains precisely one of the elements 
u ot, u oz. In the case (b), Lemma 3.1 implies the existence of ue E such that M 
contains precisely one of the elements u ot, u o z = u o x. In the case (c), we have 
xot = xoseM, xoz = xox = x$M. 

We prove that (M U {x}) d(E U {x}) does not hold. Indeed, s ^ x. If u e E, then M 
oontains either both elements u o s, u o x or none of them by (2). Since u o s # x ^ 
=fi u o x for each ueE the set MU {x} contains both elements u os, u o x or none 
of them. 
Finally, xose M c Mu {x}, x ox = xeMu {x}. 

We have proved <2)(E, M, x) = {M}. 
I t follows Se(E, M, x) = {M} =Q)(E, M, x). 
(3) There is precisely one element seE such that s o x $ M and, for each ueE, 

the set M contains either both elements u o x, u o s or none of them. 
We have S?(E, M, x)={MU {x}}. 
We prove (M U {x}) d(E U {x}). 
Indeed, if t,ze Eu {x}, x + t ^ z, then we have the following possibilities: 

(a) t # x 7-- z (b) t 7-- s, z = x (c) t = s, z = x. In the case (a), the condition (i) 
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implies the existence of u € E such that M contains precisely one of the elements 
u ott u oz. Since uot ^ x ^ Uoz the set M U {x} contains precisely one of the 
elements u o t, u o z. In the case (b), Lemma 3.1 implies the existence of u e J^such 
that M contains precisely one of the elements uot, uoz = uox. Since u o t ^ x ?-
=̂  u o x = u o z, the set M U {x} contains precisely one of the elements u o t, uoz. 
In the case (c), we have xos^M,xos^x which implies x o s $ M U {x}, x o x = 
= xeMKJ{x}. 

We prove that Md(E U {x}) does not hold. 
Indeed, s -̂  x. If u e E, then M contains either both elements u o s, u o x or none 

of them. 
Finally, x os$ M, x ox = x$M. 
We have proved^(^, M, x) = {M U {x}}. 
Thus, &(Ef Mf x) = {Mu {x}} =Q)(E, M, x). 
The cases (1), (2), (3) represent all possibilities by 3.L Thus, we have proved 

S£(E, M, x) =@(E, M, x) which is the assertion of the Lemma. 
3.4 Definition. Let (?bea join-semilattice, L c G. Then L is called hereditary in G 

if, for each end E of G, the condition (E n L) dE is satisfied. 
3.5 Remark. If G is a join-semilattice, E its end and L is hereditary subset then 

E n L is hereditary in E. 
Proof. Indeed, if F is an end of E, then it is an end of G which implies (F n L) 6F. 

Since F c E we have F n (E n L) = F n L. Thus (F n (E n L)) dF. 
3.6 Lemma. Let G be a join-semilattice, E c 6? its end, L a hereditary subset in E> 

x a maximal element inG — E, M c E U {x} a subset such that Md(E U {x}), E n M = 
== i . TAen M is hereditary in E U {x}. 

Proof. Let N c E U {#} be an end, J,s eN, t =£ s. Since t,seE\J {x}, there is 
UEEU {X} such that Jf contains precisely one of the elements u ot, u o s.It follows, 
especially, u ot / u o s. Clearly, u ot, u o se N. We can suppose, without loss of 
generality, that u o s ?- x. 

(a) Ifuot^x^uos, then u ot, uoseE which implies u o t, u ose E"n N, 
the latter set being an end in E. Since L is hereditary in E, we have (E n N n L) 
d(E n N). Since L c JS7, we have EnNnL = NnL. Thus (N n i ) <5(# n N). 
I t follows the existence of t> e J£ n N such that N n L contains precisely one of the 
elements v ouot, v ou os. Clearly, v ou ot ^ x ^ v ouos. Since N n L £ N n 
n Jf c N n (L U {a;}), the set N n iHf contains precisely one of the elements v ou otr 

v ouos. Clearly v oueN. 
(b) If u o t = x =̂  u o sf we have u ^ x, t ^ x which implies u = t = x. Thus, 

x T£ x os, x, x ose N and M contains precisely one of the elements x = x ox, x os* 
Thus, x e N and M n N contains precisely one of the elements xot = xox, x os. 

We have proved (N n M) bN and M is hereditary in E U {x}. 
3.7 Corollary. Let G be a join-semilattice, E £ Q its end, L a hereditary subset 

in E, x a maximal element in G — E. Then each M e S£(Ef Lf x) is a hereditary subset 
in EU{x} such that MnE = L. 

Proof. By 3.3, each Me&(EfLfx) distinguishes Eu{x} and M n E = L. 
Then Jf is hereditary in E U {«} by 3.6. 

3.8 Lemma. Let Gbe a join-semilattice, & a chain consisting of ends in G which w-
ordered by inclusion, J? a chain of subsets in G ordered by inclusion. Let f be a sur-
jection of & onto ££ such, that, for each EES, the set L = f(E) is a hereditary subset in E* 
Suppose that f has the following property: 
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(a) i / E, W eS, E c E', then f(E) = Enf(Ef). Then \J L is a hereditary subset 
of U E. I**? 

Ee£ 
Proof. Let P £ U E be an end in U &• Suppose s, teP, s ^ t. Then there is 

Eeg Eef 
E0eS such that s,teE0. We put L0 = f(E0). Then P n E0 is an end in E0; it follows 
that (Pn E0n L) d(Pn E0). Thus, there is an element uePnE0 such that 
P n E0 n L0 = P n L0 contains precisely one of elements uos, uot. For instance, 
we can suppose u os e P n L0, uot$Pn L0. Since P n L0 c P n ( L ) L) we 
have uosePn(\J L). Le# 

Let us admit the existence of E eS such that uot ef(E) n P. Since ^e.^owe have 
uot >t and uoteE0. If E c E0, then f(E) = Enf(E0) = En L0 and uote 
f(E) nP = EnL0nP^PnL0 which is a contradiction. Thus, E0 s E which 
implies f(E0) = E0n f(E). It follows u o t ef(E) n P n E0 = f(E0) n P = P n L0 
which is a contradiction. 

Thus, u o t $f(E) n P for each E eS which implies uot$ \J (f(E) n P) = 
Eef 

= Pn(\J (E)) = Pn(\J L). 
Ee£ Ug> 

We have proved (P n (\J L)) 6P which is by Definition 3.3 the assertion of Lemma. 
Le.s? 

3.9 Lemma. Let G be an ordered set satisfying the maximum condition. Then there 
is a setS of ends in G having the following properties: 

(i) S is well ordered by inclusion; thus, there is an ordinal oc such that S = {Ex; 
X < oc + 1} and, for X, JU < oc, the condition Ex c E^ is equivalent to X g ft. 

(ii) K0 = 0 EX=G 
(iii) for each X < oc there is axEG — Ex which is maximal in G — Ex such that 

Ex+i — Ex = {ax}. 
(iv) Ey = \J Ex for each limit ordinal y < oc + 1. 
Proof. The assertion is clear if G = 0. Thus we can suppose G ^ 0. Let ^ denote 

die order relation in G. By [4], Theorem 2.3, there is a linear ordering < on G which 
is an extension of < such that G is well ordered by the dual ordering of •*£. Thus 
there is an ordinal a and a sequence (ax)x<*. of elements of G such that each element 
of G appears in this sequence precisely once and that, for X, fi < oc the condition 
ax < «/i is equivalent to X ^ ft. We put Ex = {aH; K < X} for each X S oc, S = 
= {Ex; X < oc + 1}. Then, for X, fi < oc + 1, Ex £ EM is equivalent to the condition 
X ^ f*> Thus, S is isomorph to the set {X; X < oc + 1} which implies that S is well 
ordered by set inclusion. If A < oc + 1, x e Ex, y e G, x ^ y, then there are /u, v < oc 
such that x = a^,y = av. Since x e Ex we have //, < X. The condition x ^ y implies 
%^ y, i.e. aM < av which implies v 5j p. Thus, v < X and y = aveEx. I t follows 
that Ex is an end with respect to the order relation g for each X < a + 1. We have 
(i). The condition (ii) holds obviously. Clearly, Ex+i — Ex = {ax} for each X < oc; 
suppose xeG — Ex, ax ^ x. Then there is fi < oc + 1 such that x = aM and ax ̂  aM 

which implies X ^ p. Clearly, G — Ex = {aH; x ;> X}. Thus fi = X and x = ax is 
maximal in £ — Ex. We have (iii). If y < oc + 1 is a limit ordinal, then EY = 
= {ax; * < y} =- U {a*» H < ^} == U ^x and we have (iv). 

A<y A<y 
3.10 Definition. Let G be an ordered set satisfying the maximum condition. 

Then each set of ends in G having the properties (i), (ii), (iii), (iv) of Lemma 3.9 is 
called a suitable set of ends in G. 
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3.11 Definition. Let G be a, join-semilattice satisfying the maximum condition,. 
$ = {Ex; X < a + 1} its suitable set of ends. 

We put LQ= 0. 
Let 0 < P < OL + 1 and suppose that we have constructed, for any X < /?, a hered­

itary subset Lx of Ex in such a way that X < JLL < p implies Lx = KA n L^. 
If p is an isolated ordinal, we put Ep — Ep_\ = {ap_\} and we define Lp e &(Ep_\,, 

L$_\, ap_\). 
If p is a limit ordinal, we put Lp = \J Lx. 

X<fi 

By induction, we define Lx for each X < a + 1. Especially, we put L = Lx and 
we say that L has been constructed by means the suitable set of ends S\ 

3.12 Theorem. Let G be a join-semilattice satisfying the maximum condition, L _i G 
a subset. Then the following conditions are equivalent: 

(A) L is a hereditary subset in G. 
(B) If $ is an arbitrary suitable set of ends in G, then L has been constructed by 

means ofS. 
Proof. Let (A) hold. Let $ = {Ex; A < a + 1} be an arbitrary suitable set of 

ends in G. We put Lx = ExC\ L for each X < oc + 1. 
Then L0 = E0C\L = 0 . 
Let 0 < P < OL + 1. By Remark 3.5, Lx is a hereditary subset in Ex for any 

X < P and X < JU < p implies Lx = L n EK = L n EXC\ E^ = EXC\ LM. 
If /S is an isolated ordinal and if Ep — K^_i = {ap_\}, then Lp is hereditary in 

Ep = Ep_\ U {ap_\} by Remark 3.5 which implies Lpd(Ep_x U {ap_\}). Further, 
LpC\Ep_\ = Lp_\ and Lp_\ 6Ep_\. By Lemma 3.3, we have LpE^(Ep_\, Lp_ly 

If P is a limit ordinal, then 
Lp = Ep n L = (U Ex) n L = U (Ex n L) = U Lx. 

A</3 A < 8 A</> 

Finally, La = EaC\L = Gc\L = L. 
We have proved that L has been constructed by means of<^ which is (B). 
Let (B) hold. Then, trivially, L0 is a hereditary subset in E0. 
Let 0 < p < OL + 1 and suppose that Lx is hereditary in Ex for each X < P and 

that fx < X < P implies L^ = E^n Lx. 
If p is an isolated ordinal, then Lp_\ is hereditary in Ep_\, Ep — Ep_\ = {ap_\}, 
LpeJif(Ep_\, Lp_\, ap_\), ap_\ is maximal in G — K^i. By Corollary 3.7, Lp is he­
reditary in Ep-i U {p_\} = Ep and Ep_\ C\ Lp = Lp_\. If X < p, then X <\ P — 1 
and ExC^ Lp = ExC\ Ep„\ n Lp = EkC\ Lp_\ = Lx by the induction hypothesis. 

If P is a limit ordinal, then Lp = \J L^ and Lp is hereditary in U - ^ = Ep by 
t*<P »<P 

Lemma 3.8. 
If X < P, then ExC\Lp = ExC\ (\} L,) = \J(Exn L,) = \J (Exn L,) U 

f*<P /"<£ <"_A 
U U (ExC\LM) = U (** n L„)KJ Lx = Lx because KA n L„ C L„ = EX n LA £= L x 

A < , u < 0 fi_A 

for each p _\ X. 
We have proved that Lp is hereditary in Ep and that X < p implies Lx=ExC\ Lp. 
I t follows by transfinite induction that Lx is hereditary in Ex for each X < OL + 1. 

Especially, L = La is hereditary in Ka = G, which is (A). 
3.13 Corollary. Let G be a join semilattice satisfying the maximum condition. Then 

there is a set L c G such that (E n L) 6E for each end E of G. 
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3.14 Remark. In [6] following definitions are given: A subset H of a semigroup G 
is called indivisible by an equivalence 0 (by a subset F) if H is contained in some class 
of 0 (S(G,F))- A subset H is called disjunctive if the only subsets indivisible by S(G,H). 
are empty and one-element. 

According to these definitions we can formulate the following Corollary: 
3.15 Corollary. Let G be a join-semilattice satisfying the maximum condition. Then 

there exists a set L c G such that for each end E c G the set L n E is disjunctive. 

4. SPECIAL CONGRUENCES ON MONOIDS 

4.1 Assumption. We shall suppose in the whole fourth paragraph that (? is a 
monoid and 0 a congruence relation on G such that G\0 is a join-semilattice satisfying 
the maximum condition. We denote its greatest element by I. 

4.2 Definition. Let G\0 have the property (ft). Then we say that the congruence 
relation 0 has the property (ft) or that 0 is of the type (ft). 

4.3 Theorem. Let L = I e G\0. Then the following statements are equivalent: 

(A) 0 = 5 ( G i / ) 

(B) {/} 6(Q\9) 
(C) 0 has the property (ft). 

Proof. The statements (A) and (B) are equivalent according to Theorem 1.18.. 
Simultaneously, by Theorem 2.6 the statements (B) and (C) are equivalent. 

4.4 Theorem. Let 0 be a (ft) congruence on G satisfying the assumption 4.L Let M 
be the set of dual atoms in G\0. (The set of elements which are covered by / ) . Then 
0 = 3(G, L), where L = \J m. 

meM 

Proof. From Theorem 4.3 follows that {J} d(G\0). So the conditions of Theorem 2.7 
are satisfied and the set Ld(G\0). By Theorem 1.18 we have 0 = S(G,D-

4.5 Main Theorem. Let 0bea congruence relation on G satisfying the assumption 4.L 
Then there exists a subset L c= G such that 0 = S(G, D • 

Proof. According to Corollary 3.13 there exists a subset L c G\0' L = {X; X e 
E G\0, I c / v j i n G\0 which distinguishes G\0. Hence by Theorem 1.18 0 = S(G,Ly 
holds. 

4.6 Corollary. Let 0 be a congruence relation on G satisfying 4.L Let L c= G\0' 
be constructed by 3.11. Then S(G\&,L) — idG\0. 

Proof. We haveL<56r/@ which is equivalent to S(G\S,L) = idG\0 by [3] Theorem 
1.7. 

4.7 Theorem. All congruence relations on a join-semilattice S satisfying the maxi­
mum condition are principal congruences. 

Proof. Join-semilattice S satisfies the maximum condition. All factor—join-
semilattices on S satisfy also the maximum condition and they are join-semilatices. 
By Corollary 3.13 we obtain a subset L c= S\0 for all congruence relations on S 
which distinguishes S\0. Hence by 1.19 0 = S(S,D holds. 

The author is indebted to Professor Miroslav Novotny for helpful discussions. 
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