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1. INTRODUCTORY DEFINITIONS AND LEMMAS

1.1 Definition. A semilattice is a set G with an idempotent, commutative, and
associative binary operation o which assigns to each pair (z, y) € G a single element
zoyed.

1.2 Lemma. Let G be a join-semilattice (a semilattice under U). Then G is partially
ordered set (poset) where the partial ordering < s defined by the following condition:
xS yiffxoy=y. Forallz, y€ G, we have x U y = x o y. (Proof for lattices see [1],
Theorem 2.)

1.3 Definition. Let G be a poset, E = G. The set E is called an end of G if, for all
elements z € E and y € G, the condition z < y implies y € E.

1.4 Lemma. Let G be a join-semilattice, E = G its end. Then E i3 a join-subsemilat-
tice in Q.

Proof. Let , ye E. Then z o y = « which implieszoy€ E.

1.5 Definition. Let G be a semigroup, @ a equivalence relation on @. The relation @
is called a congruence relation if for all a, b, ¢, d € G the conditions a@b, c@d imply
aoc@bod.

1.6 Agreement. Let @ be a congruence relation on a semigroup G. We denote the
elements of G/@ by capital letters X, ¥, ..., W.

1.7 Remark. Let © be a congruence relation on a semigroup G. For each X € G/®
and each Y € G/@ there existssucha Ze @/@that X o Y ={roy;z€ X,y Y} = Z.
We put Y o Y = Z. (See [4] page 188.)

1.8 Lemma. Let G be a join-semilattice, @ a congruence relation on G. The set G|@
18 a join-semilattice. (See [4] page 189.)

1.9 Lemma. Let G be a join-semilattice, © a congruence relation on @, X,YeG/[@.
Let < be an ordering on G|@ generated by the join-semilattice operation o. Then X < Y
if for each x € X there exists ye Y such that x < y.

Proof. Let X < Y. Then XoY =Y and hence Xo Y < Y. For arbitrary
elements ze X, ye Y, we have zoy€ Y and < 2 o y. Now we suppose that for
each z € X there exists an element y € Y such that x < y. Hence zoy = y and
therefore X o ¥ < Y. The last inclusion is, by 1.7, equivalent to the equation
XoY=Yand X LY.

1.10 Lemma Let G be a join-semilattice, @ a congruence relation on G. Then each
O-class is a join-subsemilattice in G.

Proof. For lattices see [4] Theorem 75.

1.11 Lemma. Let @ be a join-semilattice, © a congruence relation on G. Let X, Y €
€G|Obesuchthat X < Y.Theny o X < Y holds for eachye Y.

Proof. Let x € X be arbitrary. Then there exists an element z € Y such that z < z.
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It holds £ 02 = z€ Y. Simultaneously z o y®@z o2 and we have zoy € Y. Hence
yoXcY.

1.12 Definition. Let G be either a jon-semilattice or a monoid, L < @ its subset.
For z, y € G we put (z, y) € Eg, 1y if, for each u, v € G, the condition u o xove L
is equivalent to v oy ove L

Some well known results concerning monoids can be formulated for join-semilat-
tices.

1.13 Lemma. A4 relation Eg, 1) i3 a congruence relation on the join-semilattice G.

Proof. See [5] page 386. (The proof is given for monoids).

1.14 Remark. Let G be a join-semilattice, @ a congruence relation on G. Then @
is called principal if there is a set L = @ such that @ = Eg, 1). (The definition of
principal congruences on semigroups see [6] page 530.)

1.15 Lemma. Let G be a join-semilattice, L = G its subset and X € G|E ¢, 1). If
XNL# , then X c L.

Proof. Let z€ X. There exists ye XN L. It is 25, 1yy and y =yoy€e L
hence x oy L and also x =xoxz€ L. Thus X L.

1.18 Corollary. Let G be a join-semilattice, L = G. Then L= |J {X; X € G|Eg, 1)
XNL+ o}

1.17 Definition. Let G be a semigroup, L = G a set, u€ G. We say that the
elements x, y € G, x # y, are distinguished by u with respect to L if the conditions
wox €L, uoy¢ L are equivalent. We say that L distinguishes G and we write L6G
if, for each x, y € G, x # y, there is u € @ such that z, y are distinguished by » with
respect to L. ‘

It is easy to prove the following two Theorems. The proofs are similar to the proof
of the Theorem 2.6 in [7].

1.18 Theorem. Let G be a monoid, L = G, @ a congruence relation on G. Then the
Jollowing two assertions are equivalent:

(A) @ = E@,1).
(B) There exists a subset L in G[@ such that L = \J X and L distinguishes G/0.
XeL

1.19 Theorem. Let G be a join-semilattice, L < G, a congruence relation on G.

Then the following two assertions are equivalent:

(A) @ = Eg,1.

(B) There exists a subset L in G|O® such that L = \J X and L distinguishes G'/@
XeL

1.20 Remark. It is not possible to formulate previous Theorems as one Theorem
for semigroups.

1.21 Example. Let B be a semigroup with two elements 0 and a with the follow-
ing operation: aoa =0,200=0,00a =0, 000 = 0. Let us put L = {a}. For
all uveB woaov=0EB—L,u000v=0€B—L and hence a 5z, 1) 0. The
congruence relation has only one class which is equal to B. Hence the equation
L= {X;X€e€GlEg,L1,XNL#* @} does not hold.

2. JOIN-SEMILATTICES WITH THE PROPERTY (f)

2.1 Definition. Let G be a join-semilattice. We say that G has the property () or
that @ is of the type (B) if it has the greatest element ¢ and for each pair z, y € G,
x # y, for which o ¥ < ¢ there exists an element z € @ such that either x < z and
simultaneously 2z || ¥ or y < z and simultaneously z || z.
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2.2 Lemma. Let G be a join-semilattice of the type (B) satisfying the mazimum
condition. Then for each pair x, y€ G, x # y there exists an element u € G such that
either xou =1, you #10rxou # 1,y o u = 14 holds.

Proof. Let z, ye Q.

I. Let oy = i. Forz # y,itisx # i ory 5 ; let us suppose the first case. Then
it is sufficient to put u = z.

II. Let z o y < ¢. Let us denote by the letter a that of the elements z, y to which
there exists an element z, € G such that a < 2o, and such that it is incomparable
with the other of the elements z, y. We denote the other element by b. It is obvious
that zo < 1.

o) Let zpob = ¢. We put thenu = 2pand wegetaou =ao20 =120 < t,bou =
=bozy=1.

B) Let zg0b # ¢. We consider the pair 29, b 0 2o. To this pair there exists an
element z; < 7 for which zp < 21, 21 || bo2o. If o2 = ¢, then we put u = 2;. In
the reverse case we construct an element z, by similar way as element z, with the
property @ < zp < 21 < 22 < 4, b || 2z,. As G satisfies the maximum condition we
attain, in a finite number of steps, an element 2, such that a o2z, < ¢, boz, = 1.

2.3 Corollary. Let G be a join-semilattice with the property (f) satisfying the
maximum condition. Then {1} distinguishes G.

2.4 Lemma. Let @ be a join-semilattice with the greatest element i. Suppose {i}0G.
Then G has the property (B).

Proof. Let us admit that G has not the property (8). Then there exist z, y, z # y,
Z oy < i such that every z > z is comparable with y and etery z > y is comparable
with z. There are two possibilities.

I. The elements z, y are comparable, for instance x < y. Then for each z > =
either z < y or 2 > y holds. Let € G be arbitrary. If u o £ = 7, then it is obvious
oy =1, too. Let uoy =14, uozx < 4. If uox ==, then v < x hence v < y and
UoYy =Y =20y < i. It is a contradiction. Therefore x < uw o z. Hence uoz < y
oruox = y.Inthe first caseu S uox S yandthenuoy=y=zoy <t Itisa
contradlctlon too. In the second case i = u o YS (uox)oy=uoz < ¢ and it is
again a contradiction. We get that u o y = ¢ implies u o z = 1.

II. The elements z, y are incomparable. Then the element z > z is comparable
with y, it is 2 < y or 2z > y. The first case implies x < z < y and it is impossible.
Therefore z > « implies 2 > y and conversely. Let u € @ bearbitrary. Let u o z = ¢,
oy <t Thenuoy 2y Ifuoy =y, thenitis v < yand hence ¢ = uor < yo
o < ¢ and this is a contradiction. Therefore o ¥y > y and it implies u o y > =.
Hence we get 1 = uox < uo(¥oy) =uoy < ¢anditis again a contradiction.

We get that for each u € G the relation u o # = ¢ implies u o ¥ = ¢ and conversely
%oy =t implies u o z = ¢. This is a contradiction with the asumption that {i}G.
We have proved that G has the property (8).

2.5 Theorem. Let G be a join-semilattice satisfying the maximum condition with the
greatest element i. Then the following statements are equivalent:

(A) {i}64.
(B) G has the property (B).

2.6 Theorem. Let G be a dually atomic join-semilattice with the greatest element 1.
Let M be a set of all dual atoms in G. Suppose {i}6Q. Then MSG.

Proof. Let z, y € G, z # y. Since {¢}6G, there is an element » € G such that u o z =
=14, UoY #LOrUox # ¢, uoy = t. Let us denote by the letter a that element of
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x, y for which the join with the element u is equal ¢ and by the letter b the other
-element.

Let woa =14, u o be M. Then the proof is finished.

Let uoa =1, uob¢ M. G is a dually atomic semillattice and simultaneously
# ob < ¢. There exists p € M for whichu o b < pand hence (po%)ob = po (wob)=
=peM and (pou)oa=po(uoa)=poi=1i¢ M. We have found u €@,
u' = uopsuchthat w’' oa¢ M and ' 0 b€ M. Thus MéG.

2.7 Remark. We cannot formulate theorem 2.6 as an equivalence.

2.8 Example. Let G be a join-semilattice with the following diagram:

Y A Y
\,

—lr e s

Then M = {b, $}, MSG but {i} does not distinguish G.

2.9 Theorem. Every Boolean algebra has the property (f).

Proof. In the proof of this theorem we denote the operation o by U.

Let B be Boolean algebra, z, y€ B, x # y. Let us choose the notation in such
a way that y £z. If 2Uy =4, then y=yNi=yN (U y') = yNz which
implies ¥y < = and we have a contradiction. Therefore U ¥ < ¢, yU y = ¢ and
{i}6B. The statement follows from Lemma 2.4.

3. DISTINGUISHING SUBSETS IN JOIN-SEMILATTICES

3.1 Lemma. Let G be a join-semilattice, E = G its end and MSE. Let x€G — E
and suppose the existence of at least one element s € E such that, for each w €E, M con-
tains either both elements uo x, w o s or none of them. Then there is precisely one element s with
this property. .

Proof. Suppose the existence of s;, s; € E, 8; # 8, with this property. Then, for
each u € E, the condition o8 € M implies v o x € M which implies uos, € M
and conversely, % o 8, € M implies u o0 s, € M.

It is a contradiction to the hypothesis MJE.

3.2 Definition. Let G be a join-semilattice, ¥ = G its end, M < E, MJE,
ze@—E. ~

We put

{M, M U {z}} if, for each t € E, there is u € E such that M contains
precisely one of the elements u oz, u o t.

{21} if there is te€ E such that t oze M and, for each
u € E, M contains either both elements u o x, w ot or
none of them.

{MuU{x}} if there is te E such that tox¢ M and, for each
u € E, M contais either both elements wox, u ot or

l none of them.

LE,M, )=
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3.3 Lemma. Let G be a join-semilattice, B = G its end, M < E, MOE,x€ G —E.
Then L (E, M, x) is the system of all sets L distinguishing E U {x} suchthat LN E = M.

Proof. We denote by 2(E, M, z) the system of all sets L distinguishing E U {z}
such that LN E = M.

Clearly, Le2(E, M, ) implies either L = M or L = M U {x}.

(i) Ift,z€ E, t # 2, then there is u € E such that M contains precisely one of the
elements u o f, % o 2. The following cases can occur:

(1) For each t € E, there is u € E such that M contains precisely one of the ele.-
ents uox, wolt.

We have L(E, M,z) = {M, M U {z}} 2 2(E, M, z).

We prove MO(E U {z}).

Indeed, if t,z€ E U {x}, x # t # 2, then we have the following two possibilities:
(a)t # x # z (b) t # x = z. In the case (a), the condition (i) implies the existence
of v € E such that M contains precisely one of the elements u o ¢, u o z. In the case
{b), the condition (1) implies the existence of u € £ such that M contains precisely
one of the elements v 02 = u o, u o t.

We prove (M U {x}) 6(E U {z}).

Indeed, if t,z e {E U {x}},  # t # z, then we have the following two possibilites:
(a)t # x # 2z (b) t # = 2. In the case (a), the condition (i) implies the existence
of u € E such that M contains precisely one of the elements « o ¢, % o0 2. Since w o ¢ #
# « # u oz the set M U {x} contains precisely one of the element u o ¢, % o z. In the
case (b) the condition (1) implies the existence of u € E such that M contains preci-
sely one of the elements uo2z =uoz, uot. Since oz = uox # == u o t the set
M U {x} contains precisely one of the elements u o ¢, u o z.

We have proved L(E, M, z) = {M, M U {z}} cD(E, M, z).

Thus, #(E, M,z) =29(E, M,

(2) There is precisely one element s € E such that s o x € M and, for eachuc E, M
contains either both elements % o z, % o 8 or none of them.

We have L (E, M, z) = {M}.

We prove M(E U {z}). :

Indeed, if tze EU{x}, x #t # 2, then we have the following possibilities:
fa) t#x#2z(b)t#8 2=z (c)t=38, 2=z In the case (a), the condition (i)
implies the existence of u € E such that M contains precisely one of the elements
% ot, uoz In the case (b), Lemma 3.1 implies the existence of u € E such that M
contains precisely one of the elements u ot, 0 2 = % o 2. In the case (c), we have
Zot=x08SEM, x0z=zo0x=2x¢ M.

We prove that (M U {z}) 8(E U {z}) does not hold. Indeed, s # z. If u € E, then M
contains either both elements u o 8, % o  or none of them by (2). Since w0 8 # x #
# u o z for each u € E the set M U {x} contains both elements % o 8, % o  or none
of them.

Finally, rose M < MU {x}, z0z =2 M U {z}.

We have proved Z(E, M, z) = {M}.

It follows L (E, M, z) = {M} =D(E, M, z).

(3) There is precisely one element s € £ such that s o z ¢ M and, for each v € E,
the set M contains either both elements % o x, % o 8 or none of them.

We have L(E, M, z) = {M U {z}}.

We prove (M U {x}) O(E U {x}).

Indeed, if tze EU{z}, £t # 2, then we have the following possxblhtles
(a)t#£x#£2(b)t#s8 z=2x(c)t=23s, z= 2. In the case (a), the condition (i)
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implies the existence of u € £ such that M contains precisely one of the elements
uotf, uoz Since uotl # x # u oz the set M U {z} contains precisely one of the
elements % o £, % 0 z. In the case (b), Lemma 3.1 implies the existence of u € Esuch
that M contains precisely one of the elements % o f, w 0 2 = % o . Since uo t # x #
# % oZ = % o2, the set M U {«} contains precisely one of the elements u o ¢, u o z.
In the case (c), we have x 0 8¢ M, 2 0 8 # = which implies zos¢ MU {2}, 202 =
=zeMU {z}.

We prove that M(E U {x}) does not hold.

Indeed, s # z. If w € E, then M contains either both elements « o 3, u o x or none
of them.

Finally, z o8¢ M,z 0z =2 ¢ M.

We have proved 2(E, M, z) = {M U {x}}.

Thus, $(E, M, z) = {M L {z}} =D(E, M, z).

The cases (1), (2), (3) represent all possibilities by 3.1. Thus, we have proved
L(E, M, x) =2(E, M, x) which is the assertion of the Lemma.

8.4 Definition. Let G be a join-semilattice, I = G. Then L is called kereditary in G
if, for each end E of G, the condition (E N L) % is satisfied.

8.5 Remark. If G is a join-semilattice, £ its end and L is hereditary subset then
E N L is hereditary in B.

Proof. Indeed, if F is an end of E, then it is an end of G which implies (¥ N L) 6F.
Since F < E we have FN\ (EN L) = FN L. Thus (F N (E N L)) 6F.

3.6 Lemma. Let G be a jotn-semilattice, B < @ its end, L a hereditary subset in E,
x a maximal element in G — E, M < E U {z} a subset such that M§(E U {z}), E N M =
= L. Then M 1is hereditary in E U {z}.

Proof. Let N = EU {z} be an end, t,s€ N, t # s. Since t,s€ E U {x}, there is
u € E U {x} such that M contains precisely one of the elements u o ¢, u o 8. It follows,
especially, ot # uos. Clearly, uot, v 0ose N. We can suppose, without loss of
generality, that v o 8 # x.

(a) If uot 2 x # uos, then uot, uwose £ which implies uot, uose E'N N,
the latter set being an end in E. Since L is hereditary in B, we have (E N N N L)
6(EN N). Since L < E, we have EN NN L= NN L. Thus (NN L) 5(E N N).
It follows the existence of v € £ N N such that N N L contains precisely one of the
elements vo#uotl, vouos. Clearly, vouol # x #vouos Since NNLc NN
NM c NN (LU {z}), the set N N M contains precisely one of the elements v o u o ¢,
vouod. Clearly voue N.

(b) If uot =2 #* uos, we have u < z, ¢t < 2 which implies v = ¢t = 2. Thus,
Z# o8, xo8€N and M contains precisely one of the elements x = x oz, Z 0 8.
Thus, z€ N and M N N contains precisely one of the elements zot = zoz, zo8s.

We have proved (N N M) N and M is hereditary in B U {z}. '

8.7 Corollary. Let @ be a join-semilattice, £ = @ its end, L a hereditary subset.
in E, x a maximal element in @ — E. Then each M € #(E, L, z) is a hereditary subset
in E U {z} such that M N E = L.

Proof. By 3.3, each M e Z(E, L, x) distinguishes EU {z} and MNE = L.
Then M is hereditary in E U {z} by 3.6.

3.8 Lemma. Let G be a join-semilattice, & a chain consisting of ends in G which is
ordered by inclusion, £ a chain of subsets in G ordered by inclusion. Let f be a sur-
Jjection of & onto L such, that, for each E € &, the set L = f(E) is a hereditary subset in E.
Suppose that f has the following property:

78



() If E,E' €6, E < E', then f(E) = E N f(E'). Then U L is a hereditary subset
of U E.

Proof Let P < U E be an end in U E. Suppose s, te P, 8 # t. Then thereis

Eye& such that s, ¢ e Eo We put Lo = f(E'o Then P N E, is an end in K, ; it follows
that (PN EyN L) (P N E,). Thus, there is an element uwe€ P N E, such that
PN Eyn Ly = PN L contains precisely one of elements % o 8, % o ¢. For instance,
we can suppose o8 € P N Ly, uot¢ PN L. Since PNLy, = PN (Y L) we
have uosePnl(rﬁU L). Leg '

Let us admit the{xistence of E €& such that u o t € f(E) N P. Since t € E, we have
ol 2t and uote Ey. If E < E,, then f(E) =EN f(Ey) = EN Ly and uote
JBYNP =EN LN P < PN Ly which is a contradiction. Thus, E, & E which
implies f(Bo) = Eo N f(E). It follows uotef(EYN PN Ey=f(E)NP=PN L
which is a contradiction.

Thus, uot¢ f(E)N P for each E €& which implies uot¢ U f(E) N P) =

=PN (U{ (E))=Pn (U L).
We have proved (P N (U L)) 6P which is by Definition 3.3 the assertion of Lemma.

Legy

3.9 Lemma. Let G be an ordered set satisfying the maximum condition. Then there
18 a set & of ends in G having the following properties:

(i) & is well ordered by inclusion; thus, there is an ordinal o such that & = {E,;
A < o+ 1} and, for A, u < «, the condition E, = E, is equivalent to A < pu.

(ii) Bo= o B, =@

(iii) for each A < o there is a€ G — E; which is maximal in G — E, such that
Eya,—E,= {GA}

(iv) E, = |J E,; for each limit ordinal y < a + 1.

Proof. The<assertlon is clear if @ = & . Thus we cansuppose G # & .Let < denote
che order relation in G. By [4], Theorem 2.3, there is a linear ordering < on '@ which
is an extension of < such that G is well ordered by the dual ordering of <. Thus
there is an ordinal « and a sequence (@)1 of elements of G such that each element
of G appears in this sequence precisely once and that, for A, 4 < « the condition
a, X a, is equivalent to 4 2 u. We put E; ={a,; x < A} for each 1 £ «, & =
={E;; A < o + 1}. Then, for 4, u < « + 1, B, < E, is equivalent to the condition
A < u. Thus, & is isomorph to the set {4; 4 < « + 1} which implies that & is well
ordered by set inclusion. If A < « + 1, z€ E;,ye G, ¢ < y, then there are u, v < o
such that ¢ = a,, y = a,. Since z € E; we have u < A. The condition x < y implies
z<y, ie. a, <a, which implies » £ y. Thus, v < 1 and y = a, € E;. It follows
that E; is an end with respect to the order relation < for each A < « 4 1. We have
(i). The condition (ii) holds obviously. Clearly, E1+1 — E;, = {a;} for each 1 < «;
suppose z € G — E;, a; £ z. Then thereis 4 < & -+ 1 such that x = a, and a; £ a,
which implies A 2 u. Clearly, G — E; = {a.; * 2 A}. Thus y =1 and z =@, is
maximal in G — E;. We have (iii). If y < « + 1 is a limit ordinal, then E, =
={a.; x <y} = l<J {ax; » < A} = |J E: and we have (iv).

<y <y

3.10 Definition. Let G be an ordered set satisfying the maximum condition.

Then each set of ends in G having the properties (i), (ii), (iii), (iv) of Lemma 3.9 is
called a suitable set of ends in G.
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3.11 Definition. Let G be a join-semilattice satisfying the maximum condition,
& ={E;; A < a + 1} its suitable set of ends.

We put Ly = &.

Let 0 < # < a + 1 and suppose that we have constructed, for any 4 < f, a hered-
itary subset L, of K, in such a way that A < u < f implies L; = E; N L,,.

If B is an isolated ordinal, we put Es — E;_; = {as_,} and we define Lse L(Es_,,
Ls_a, aga).

If B is a limit ordinal, we put Ls = |J La.

A<p

By induction, we define L, for each A < « + 1. Especially, we put L = L, and
we say that L has been constructed by means the suitable set of ends& .

3.12 Theorem. Let G be a join-semilattice satisfying the maximum condition, L = G
a subset. Then the following conditions are equivalent:

(A) L is a hereditary subset in G.

(B) If & is an arbitrary suitable set of ends in G, then L has been constructed by
means of .

Proof. Let (A) hold. Let & = {E;; 1 < a + 1} be an arbitrary suitable set of
ends in ¢. We put L, = E; N L for each 1 < o + 1.

Then Ly =E,NL= g@.

Let 0 < f < o + 1. By Remark 3.5, L; is a hereditary subset in E; for any
A<fBand A<pu<fimplies Ly =LNE,=LNE,NE,=E,NL,.

If B is an isolated ordinal and if E; — Es_; = {as_i}, then Lg is hereditary in
Eg = Es_ U {ag_,} by Remark 3.5 which implies Lgd(Es_ U {as_,}). Further,
LiNEg y = Lg_; and Lg_y 6Es_;. By Lemma 3.3, we have Lgse L (Es_,, Ls_1,
a _1).

’ If B is a limit ordinal, then
Li=EsNnL=(U ExNnL=U (E.nL)= L.
A<p A<p A<lp

Finally, Ly = E,NL=GNL = L.

We have proved that L has been constructed by means of & which is (B).

Let (B) hold. Then, trivially, L, is a hereditary subset in E,.

Let 0 < B < « + 1 and suppose that L, is hereditary in E; for each 1 < § and
that u < A < f implies L, = E, N L,.
If B is an isolated ordinal, then L,_, is hereditary in Eg i, Es— Es_y = {ag_1},
Lye L(Es_1, Lg_1, ag_1), ag_y is maximal in @ — Ez_,. By Corollary 3.7, Lg is he-
redita,ry in Eﬂ_l V) {ﬂ_l} = Eﬂ and Eﬁ_l N ng = Lﬂ_]. If 2 < ﬂ, then A < ﬂ— 1
and E;NL;=E,NEsg1N Lg=E; N Lg_, = L; by the induction hypothesis.

If B is a limit ordinal, then Lgs = |J L, and Lg is hereditary in {J E, = Eg by

ulp u<lp

Lemma 3.8. .
If 1< ﬂ, then ElnLﬁZEgn(U LH)Z U(EA(NL,,) = U (E“‘\L,,)U
A

<

. u<p u<lp ns
vy EnNL,)= U (BN L,)VUL,=Lybecause E;NL,c L,=E,NnL,c L,
A<pu<lB Y
for each u < A.

We have proved that Lg is hereditary in Egand that A < Simplies L =E; N Lg.
It follows by transfinite induction that L, is hereditary in E; for each 4 < « + 1.
Especially, L = L, is hereditary in E, = @, which is (A).

8.13 Corollary. Let G be a join semilattice satisfying the maximum condition. Then
there is a set L = G such that (E N L) 8F for each end E of G.
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3.14 Remark. In [6] following definitions are given: A subset H of a semigroup &
is called indivisible by an equivalence @ (by a subset F) if H is contained in some class.
of O (Eg,r))- A subset H is called disjunctive if the only subsets indivisible by E¢, u).
are empty and one-element.

According to these definitions we can formulate the following Corollary:

3.15 Corollary. Let G be a join-semilattice satisfying the maximum condition. Then
there exists a set L = @ such that for each end E = G the set L N E is disjunctive.

4. SPECIAL CONGRUENCES ON MONOIDS

4.1 Assumption. We shall suppose in the whole fourth paragraph that G is a
monoid and @ a congruence relation on G such that G/@ is a join-semilattice satisfying
the maximum condition. We denote its greatest element by I.

4.2 Definition. Let G/@ have the property (§). Then we say that the congruence
relation @ has the property (f) or that @ is of the type ().

4.3 Theorem. Let L = I € G|@. Then the following statements are equivalent:

(A) O = Eg,
(B) {1} 6(G/0)
(C) O has the property ().

Proof. The statements (A) and (B) are equivalent according to Theorem 1.18..
Simultaneously, by Theorem 2.6 the statements (B) and (C) are equivalent.

4.4 Theorem. Let @ be a (f) congruence on G satisfying the assumption 4.1. Let M
be the set of dual atoms in G[O. (The set of elements which are covered by I). Then
© = ¢, 1), where L= |J m.

meM
Proof. From Theorem 4.3 follows that {I} 6(G/©). So the conditions of Theorem 2.7
are satisfied and the set L6(G/0). By Theorem 1.18 we have & = Eg, 1.

4.5 Main Theorem. Let @ be a congruence relation on G satisfying the assumption 4.1.
Then there exists a subset L = G such that @ = Zg, 1.

Proof. According to Corollary 3.13 there exists a subset L < G/@ L ={X; X €
€ G/@, X < L} in G/O which distinguishes G/@. Hence by Theorem 1.18 @ = S, 1.
holds.

4.6 Corollary. Let © be a congruence relation on G satisfying 4.1. Let L = G|O
be constructed by 3.11. Then Eglo,1) = tdG/6O.

Proof. We have L4G/® which is equivalent to E/e,7) = idG/® by [3] Theorem
1.7.

4.7 Theorem. All congruence relations on a join-semilattice S satisfying the maxi-
mum condition are principal congruences.

Proof. Join-semilattice S satisfies the maximum condition. All factor—join-
semilattices on § satisfy also the maximum condition and they are join-semilatices.
By Corollary 3.13 we obtain a subset L = S/@ for all congruence relations on §
which distinguishes S/6. Hence by 1.19 ©® = F s, 1 holds.

The author is indebted to Professor Miroslav Novotny for helpful discussions.
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