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Commentationes Mathematicae U n i v e r s i t n t i S ' 0 - rol inae 

4, 3 (1963) 

AN ANALOGCN OF THE FIXED-POINT THEOREM AND ITS APPLi J:\TIGN 

FOR GRAPHS 

A. PULTR, Praha 

§ !• Introduction 

In the § 2 of the present paper the notion of the N -

space and the N-map is defined. The reasons for using the 

new notation for something, what is, in fact, a finite sym­

metrical graph with the diagonal, are partly technical: In 

the last paragraph we deal with more general graphs, which 

fact would force us all the same to some shortified nota­

tion of the term "finite symmetrical graph with diagonal" 

in the medium paragraphs. Another idea leading to ,our ap­

proach can be demonstrated in the following way. Let us 

say, for example, that two vertices of a simplicial com­

plex are neighbours, if they belong to a, common simplex 

(consequently, if they are different, they belong to a 

common 1-simplex). This way, we get a reflexive symmetri­

cal relation on the O-skeleton of the complex. Observe 

that for many complexes (e.g. for every complex repre^en-

table as the barycentrical subdivision of another one), 

the structure of the whole complex is completely defined 

by the structure of its O-skeleton with the relation, and 

that the simplicial mappings of such complexes correspond 

with the relationrpreserving mappings of their O-skeletons-

Consequently, the properties of a polyhedron may be studied 
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from the p rope r t i e s of i t s adequate d i s c r e t e subse t endOY/ed 

with an adequate r e f l e x i v e symmetrical r e l a t i o n . Another point 

of view: A polyhedron may be , fo r many purposes , r ep resen ted 

by some of i t s £ - n e t s provided by the r e l a t i o n , e . g . , " t o 

have l e s s than 2 6 i n d i s t a n c e " . 

The main r e s u l t s of the paper are the theorems 6.3 , 6 .4 

and 6*5 • The theorem 6.5 i s a g e n e r a l i z a t i o n of t h e fo l low­

ing , e v i d e n t , f a c t : A mapping c? of the s e t -fO,l, * . . , n } 

i n t o i t s e l f , such t h a t / <? ( i ) - 9 ( i + 1) I ^ 1 , need not 

have a f ixed p o i n t , but i f i t has none, i t has a f ixed s e t of 

a type { i , i + i f . 

§ 2 . N-spaces 

2*1« Def in i t i on . An N-space (X; R) i s a non-void f i n i t e 

s e t X endowed with a r e f l e x i v e symmetrical r e l a t i o n R . An 

N-map f: (X; R) —> (Z; S) i s a mapping f: X - * T such t h a t 

x R x ' « - * f ( x ) S f ( x ' ) . A subspace of an N-space (X; R) i s 

an N-space (T; S) t where X i s a subse t of X , S = R n 

n XxX . i n f u r t h e r , un le s s otherwise s t a t e d , a subse t of an 

N-space wi l l be regarded always as i t s subspace . 

2 . 2 . Convention, l ) We are going t o wr i t e simply X i n s t e a d 

of (X; R) , e t c . , i f t he re i s no danger of misunders tanding . 

2) We s h a l l wr i t e R(x) =-fy ly R x f . 

3) The elements of N-space w i l l be f r e q u e n t ­

l y c a l l e d p o i n t s . 

2»3* Remarks, l ) N-spaces with N-maps form a ca t egory . 

2) A mapping t: X-> X i s an N-map of (X; R) 

i n t o (£; S ) , i f f , fo r any x e X , f (R(x)) c S ( f ( x ) ) . 

2*4» Theorem* A 1-1 N-map onto need not be an isomorphism 

(see 2 .3*1 )• However, a 1-1 N-map of an N-space onto i t s e l f 
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i s always an isomorphism. 

Proof; Let X be the s e t { 0 , 1 } , R = / ( 0 , 0 ) ; ( 1 , 1) / , 

S » X x X • Then <f : (X; R) —> (X; S) , defined by cf (0) - 0 

y ( l ) = 1 , i s a 1-1 N-map on to , but i t i s not an isomorph­

ism* 

Now., l e t (X; R) be an a r b i t r a r y N-space, cp : X-^X a 

1-1 N-map. As cf i s 1-1 , t he mapping- 9>*- cp *< <? i s 1-1. 

From t h e d e f i n i t i o n of the N-map we get g^iB.) c R and t h e ­

re fo re <p*(R) - R , because of f i n i t e n e s s of R . Hence 

<f ( a ) R 9? (b) impl ies a R b , q . e . d . 

2»5* D e f i n i t i o n . An N-space (X; R) , where R =* X x X , i s 

c a l l e d s imple. 

§ 3 . Homotopical t r i v i a l i t y and r e t r a c t i o n 

3*1« Def in i t i on . The product (X; R) x (Y; S) of the N-spa-

ces (X; R) , (Y; S) , i s t h e N-space (X x Y; T) , where 

T * { ( (x , y) , (*', y ' ) ) / x R x' , y S y'J . 

3«2» Def in i t i on . Let us denote Iv̂  the s e t -£"0, 1 , . . • , k j 

with the r e l a t i o n R defined by: i H ( i + l ) , i R i , 

( i + 1) R i . N-maps f, g : X~* Y are sa id t o be homotopical, 

i f t h e r e e x i s t a k and an N-map h : X x l j . - > T such t h a t 

h ( x , 0) - f ( x ) , h (x , k) =- g(x) f o r every x e X . 

3 - 3 . De f in i t i on . An N-space X i s sa id t o be homotopically 

t r i v i a l ( h . t . ) , i f i t s i d e n t i c a l map i s homotopical v/ith a con­

s t a n t map. 

3»4« Def in i t i on . An N-space Y i s sa id t o be a re ' t rec t of 

an N-space X i f there e x i s t N-maps j : Y—*• X , r ; X->Y 

such t h a t r © j i s the i d e n t i t y map of Y . The N-map r 

i s c a l l ed a r e t r a c t i o n * 

3*5» Theorem. Every r e t r a c t of a ' h . t . N-space i s h . t . 
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Proof: Let Y be a r e t r a c t of X , j , r the correspond­

ing maps. Let h : X x ^V"* x b e a komotopy between the i d e n t i ­

c a l map and a constant one. Let us denote i t he i d e n t i c a l map 

of I k and define h ' = r o h o ( j x i ) . We have h ' : Y x 1^ 

--> Y and h ' ( x , 0) - r o h o ( j >< i ) (x , 0) - r o h ( j ( x ) , 0) -

- r 0 J (x) = x , h ' ( x , k) = r o h ( o ( x ) , k) = r ( c ) * cons t . 

§ 4« Contractibility 

4»-U Definition. Let X be an N-space, x, y e X • We say 

that x is contrsctible to y if R(x) c R(y) , which fact 

will be denoted by x >• y . Elements x and y will be call­

ed equivalent (notation x E y ), if R(x) - R(y) (which is 

the same as x > y and y _> x ). Obviously > is a reflexi­

ve and transitive relation, E reflexive, transitive and sym­

metrical one. A point x € X , such that there exists a point 

y € X with y 4* x, x ;> y , is called contractible. 

4* 2. Theorem. Let 9 : (X; R) —* (Y; S) be an isomorphism. 

Then x > y implies 9* (x) > $? (y) , x E y implies 

9> (x) E g* (y ) and the image of a contract ible point is con-

tractive. 

Proof: Let R(x) c R(y) , ze S ( ^ ( x ) ) . Hence z S 9> (x) 

and the re fore ? (zl R x . Hence p"^{z) R y and we get 

z € Sicp (y)) . 

4-3# Theorem. A h . t . H-space X , c o n s i s t i n g of more than one 

p o i n t , contains a c o n t r a c t i b l e p o i n t . 

Proof: Let h : X x ^ " ^ X be a homotopy between the i -

d e n t i t y map and a constant one. Without l o s s of g e n e r a l i t y we 

may assume t h a t t he re e x i s t s a point x e X such t h a t y = 

=* h (x , 1) # x • We are going to show t h a t R(x) c R(y) . Let 

us denote T the r e l a t i o n i n X H I ^ , Let z e R(x) . 
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Because of (z, 0) T (x, l) , we have z = h(z, 0) R h(x, 1) = 

=- y and hence z e R(y) . 

Evidently holds: 

4«4« Lemma. Let A c X , x, y e A , :* •> y in X . Then~ 

x > y in A . 

§ 5 . Strongly contractible points 

5-l« Definition. A point x c X is said to be strongly con­

tractible, if: 

1) There exists a point y e X such that x > y and it 

is not y z> x . 

2) z 5* x implies x > z . 

5»2» Theorem. Let 9>:(X; R) - .* tY; S) be an isomorphism. Let 

x £ X be a strongly contractible point. Then 9> (x) is 

strongly contractible. 
x) 

Proof: There exists a point y e X , x > y , y 3r x . 

Hence, according to 4«2 , <f (x) > 9> (y) and it is not 

5?(y) > <p (x) . 

Let z > <f (x) . Hence <? (z) > x and therefore x > 

></""1(z) . Hence finally cp (x) > s • 

5*3» Lemma. Let X be an N-space. Let A be a subset of X 

such that af b e A implies a > b • Then the following sta­

tements hold: 

1) If we choose an a € A and define r(x) - a for 

x € A , r(x) -* x for x ^ A , the mapping r is a retrac­

tion. 

2) If there is x > y in Y = (X V A) U (a) » r(X) f it 

x) i.e. y non> x • 
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i s x > y in X » 

Proof; 1) I t su f f i ce s t o prove r t o be an N~map; as 

the N-map j from the d e f i n i t i o n of r e t r a c t i o n w i l l be used 

the embedding of Y = r(X) i n t o X . Let x , y e X , x R y . 

I f i t i s x, y e X v. Y , or x , y € Y , we have obviously 

r ( x ) R r ( y ) . Now, l e t x e Y , y € X ^ Y . As R(y) -* R(a) , 

we have r (x ) = x R a = r ( y ) . 

2) Let x > y i n Y , i . e . R(x) ^ (Ax (a ) ) c 

c R(y) v (A ̂  (a) ) . Let x £ R(a) . The ex i s t ence of z € A , 

z € R(x) , impl ies x € R(z) =- R(a) . Therefore R(x) = R ( x ) x 

\ (A x (a)) c R(y) x ( A S ( a ) ) c It(y) . Let x € R(a) . 

Hence, a e R(x) x (AN. ( a ) ) c R(y) and consequent ly y e 

e R(a) . Hence, y e R(z) for every z € A aid t h e r e f o r e 

A c R(y) . F i n a l l y , R(x) c R(y) . 

5*4* Lemma. Let X be an N-space. Let Ej_, Ep, • • •» ^m D e 

a l l equivalence c l a s se s of the equivalence E and l e t us 

choose a point e* i n each E* . Define a mapping e by : 

e(x) - e* i f f x c E i . Then e i s a r e t r a c t i o n and the 

fol lowing ho lds : 

x , y e e(X) , x > y , y > x •-> x a y •• 

Proof: Le us denote E i = % x (®±) * Let ' u s form a r e ­

t r a c t i o n r ^ X - t X t - X S E ^ by the lemma 5*3 • I n t h e X^ 

we get the equivalence c l a s se s ( e i^» E 2 ' •••» Em * (For i f 

e-, > x , x -> e, i n X, , t h e same holds i n X and hence 

x c E-, A Xn = (e^) ; as f o r o ther equivalence c l a s s e s , the 

statement i s obvious according t o 5.3 . ) • 

I f v/e have X.̂  with equivalence c l a s se s ( e i ) > • •*» (•&$) » 

%+!» *••» Em » l e t u s form t n e r e t r a c t i o n r i + 1 : X^ —> 

~ * ' X i + r 3 X i N E i + 1 b y 5 * 3 • Obvious^, rm° r ^ ^ © . . . o rx(x) -

= e (x) 
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and therefore e is a retraction. The rest is evident, for all 

equivalence classes consist of one point. 

5«5« '.Lemma. Let there exists a contractible point in e(X) • 

Then X contains a strongly contractible point. 

Proof: First, we are going to prove the existence of a 

strongly contractible point in e(X) • There exist 

x0 9 y e e(X) , x0-> y , xQ 4* y . The point xQ is either 

strongly contractible or there exists a point x-, € e(X) , 
x l ^ xo * xl ̂  xo * I f xl i s n a t strongly contractible, the­

re is a point x^ € e(X), x-̂  4* x^ Xg >• x, , etc. After a 

finite number of steps vie get x^ strongly contractible ( x* 

never repeats). We are going to show that x is strongly con­

tractible in X • Let z € X , z > x • Hence e(a) *-> x and 

consequently e(a_) » x and hence finally x > z , 

5*6. Theorem. A h.t. N-space contains a strongly contractib­

le point, unless it is simple. 

Proof: Let X be a h.t. K-space, which is not simple. 

Hence, there exist x, y e X such that it is not x B y . Con­

sequently, it is not x E y and hence e(X) has more than one 

joint. Hence, by 5.5 '» X contains a strongly contractible 

>oint. 

5.7. Theorem. The set I of all points of an W-space X , 

which are not strongly contractible, is a retract of the K-

spsce X . 

-, Proof: First, let us remark that the set Y is always 

non-void, because the existence of a strongly contractible 

point implies the existence of a point, which is not strongly 

contractible (the point y from th§ definition). Let us find, 

for every x strongly contractible, a point r(x) such that 

x >- r(x), r(x) ^ x • Obviously, r(x) e X . We define 
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r ( x ) - x f o r x e Y * We want t o prove the imp l i ca t i on 

x R y *#• r ( x ) R r ( y ) , which i s obvious fo r x , y € Y • Let 

x e Y , y e X v Y . Then r ( x ) a x e R(y) c R ( r ( y ) ) and hen­

ce , r ( x ) R r ( y ) . Now, l e t x , y e X \ Y . l e have x e R(y)c 

c R ( r ( y ) ) and hence, r ( y ) c R(x) c R ( r ( x ) ) , and we get f i ­

n a l l y r ( x ) R r ( y ) • 

§ 6# An analogon of the f i x e d - p o i n t theorem 

6#1» Theorem. Let X be a f i n i t e s e t , <f a t r ans format ion 

of X • Then t h e r e e x i s t s a non-void s e t M c X such t h a t 

<f (M) = M . 

Proof: Let- us denote X-j * <? (X), X± » #> <x i . - i) • 

Obviously i 

X .3 X-j 3 X.2 3 • • • -P X j .D * * • 

Because of f i n i t e n e s s of X we have X^ - X fc+1 f o r s u f f i ­

c i e n t l y l a rge 3c • Therefore <f (X-J - X,_ and we may take 

M = Xk . 

^ • 2 . Lemma. Let i n 6 .1 X be an K-space , cp an N-map. 

Let M be the X^ i n the proof of 6 .1 . Then M i s a r e ­

t r a c t of X . 

Proof: Let us define y : X —> M by yr (x) = Cf>*(x) . 

Then ( 2 . 4 ) V - V / M i s an isomorphism. Let us denote j * 

t he N-map of embedding .M i n t o X f j - <j * V • E v i ­

d e n t l y , Y ° 3 i s i-*1®' i d e n t i c a l map of M • 

6*3» Theorem. Let X be an N-space. Let us denote X a , - X, 

X i - { x e X^-^I x i s not s t r o n g l y c o n t r a c t i b l e i n X^ , / • 

For a s u f f i c i e n t l y l a rge i n t e g e r k , Xk = X - ^ l e t us c a l l 

the N-space X^ the cen t re of the N-space X . and l e t us 

denote i t by K(X) . Then the fol lowing s ta tements h o l d : 

1) For an a r b i t r a r y isomorphism <f : X —^ X , ho lds 
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cf (K(X» = K(X) . 

2) The cent re of a h . t . N-space i s s imple . 

Proof: By 5*2 we have Cp (X i) = X± f o r every i . The 

second statement i s a consequence of 5.6 , 5»7 &nd 3.5 • 

*?»4* Theorem. For every N~map cp of a h . t . N-space X i n ­

t o i t s e l f t he r e e x i s t s a simple A c X such t h a t 5?(A) - A . 

Proof: According t o 6 . 1 , 6.2 , 6 . 3 » 2 .4 and 3-5 9 the 

s e t A = K(<jpn (X» f o r s u f f i c i e n t l y l a rge n i s simple and 

inva r i an t under cp . 

6»5» Theorem. Let X be an a r b i t r a r y N-space. Let cp be an 

N-map of X i n t o X , homotopical with a constant one. Then 

the re e x i s t s a simple A c X , such t h a t y (A) = A , and we 

may take A « z(cpn (X)) f o r s u f f i c i e n t l y l a rge n • 

Proof: Let n be such an i n t e g e r t h a t <p (cpn (X)) » 

* Op n (X) • Let h : X x I-^-^X be the homotopy between the 

N-map Cp and a constant one. Let us denote % the N-map 

of X onto Cfn (X) defined by K (x) = <f n ( x ) , and y 

t he isomorphism of cpn (x) onto i t s e l f , defined by 

Y (x) * Cf (x) . Let us def ine h ' : 9> n (X) x I k - V c p n (X) 

by h ' = y " 1 1 " 1 © K o (hi ( y 1 1 ( X ) x I k ) ) . Evidently the 

N-map h ' i s a homotopy between the i d e n t i t y map*and a con­

s t a n t one. The r e s t of the proof i s obvious. 

§ 7. An a p p l i c a t i o n f o r graphs 

7«-U Convention. By a graph i s meant a f i n i t e graph, i . e . 

some (X; R) , t he re X i s a f i n i t e s e t , R some r e l a t i o n 

on X . By the mapping i s always meant a r e l a t i o n - p r e s e r v i n g 

mapping of one graph i n t o another one. The arrow beginning 

in a and f i n i s h i n g i n b i s the couple (a , b) such 

t h a t a R b . 
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? •? • Definition., An ^ m o d i f i c a t i o n of a graph (X; R) i s the 

II-space (X; S) , where R i s def ined by: x R y <-=*> x = y 

or x R y or y R x . 

7«3* Lemma, l ) A 1-1- mapping of a graph onto i t s e l f i s an 

isomorphism, i . e . i t s inverse i s a mapping* 

2) Let (X; R) , (Y; S) be g raphs , cf be a map­

ping of (X; R) i n t o (X; S) . Then cf i s an K-map of 

(X; R) i n t o (Y, S) . 

Proof: The proof of the f i r s t s ta tement was done, i n 

the f a c t , i n the proof of 2 .4 , where we used n e i t h e r symmetry 

nor r e f l e x i v i t y . The proof of the remaining one i s t r i v i a l 

7*4. Theorem. Let (X; R) be a graph such t h a t i t s H-modif i -

c^ t ion i s r u t . Let <f be a mapping of (X; R) i n t o i t s e l f . 

Then the re e x i s t s a non-void s e t A c X such t h a t Cf (A) = 

= A and 

1) x, y c A , x + y -=£• x R y or y R x . 

2) If x e A , the number of the arrows beginning in x 

and finishing in the other elements of A is equal to the 

number of arrows beginning in the other elements of A and 

finishing in x . 

Proof: The existence of a set A such that <f(k) - A 

aad x, y € A , x + y **^ x R y or y R x is an immediate 

corollary of 6*4 and 7*3 . Because of finiteness we can 

find the A such that it is minimal (i.e. for no proper sub­

set B of A holds Cf (B) = B ). Let us denote n(x) the 

number of the arrows beginning in * x and finishing in the 

other elements of A minus the number of arrows beginning 

in the other elements of A and finishing in x . Obviously 

(see 7.3. «1) n(y{x)) = n(x) and hence, according to the 
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minimality, a l l n(x) are equal to the same number* On the 

other hand, obviously *E ^ n(x) = 0 and therefore 

n(x) = 0 for every x . 

7»5* Remark* There arises a question of characterizing graphs 

with the h*t. N-modification without using of the notion of 

homotopy. Let us return for a moment to the li-spaces* Let us 

take some N-spsce X and do the following construction* If 

an XJ is constructed and if i t has no contractible points, 

we stop the construction* If i t has contractible points, le t 

us throw away one of titem and denote X.+-, the remaining 

N-space. I t i s not diff icul t t o see that XQ i s h . t . i ff the 

described construction stops with an X^ consisting of a 

single point. Therefore, a graph (X; R) hns h*t. H-modifi-

cation iff we can get a sub-graph of X consisting of a sing­

le point by the following construction: Throw away an element 

x such that R(x) c R(y), x +- y ; with the remaining graph 

t ry to do the same etc* We can define the R(z) , without us­

ing of the modification, as the set consisting of the element 

z and a l l the elements which are contained together with the 

2 in an arrow. 
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