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Commentationes iathematicae Universitstis 7 :rolinae

4, 3 (1963)
AN ANALOGON OF T'HE FIXED-POINT THEOREM AND ICS APPL. :TICHN
FOR GRAPHS

A. PULTR, Praha

§ 1. Introduction

In the § 2 of the present paper the notion of the N =
space ad the N-mep is defined. The reasons for using the
new notation for something, what is, in fact, a finite sym-
metrical graph with the diagonal, are partly technical: In
the last paragraph we deal with nore general gr=phs, vhich
fact would force us all the same to some shortified nota-
tion of the term "finite symmetrical graph with diagonal®
in the medium paragraphs. Another idea leading to .our ap-
proach can be demonstrated in the following way. Let us
say, for example, that two vertices of a simplicial com-
plex are neighbours, if they belong to a common simplex
(consequently, if they are different, they belong to a
common l-simplex). This wey, we get a reflexive symmetri-
cal relation’on the O-skeleton of the complex. Observe
that for many complexes (e.g. for every complex repreSen—
table as the barycentrical subdivision of another one),
the structure of the whole complex is completely dofined
by the structure of its O-skeleton with the relation, and
that the simplicialvmappings of such complexes correspond
with the relation:preéerving meppings of their O-skeletons.
Consequently, the properties of a polyhedron mey be studied
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from the properties of its adequate discrete subset endowed
with an eadequate reflexive symmetrical relation. Another point
of view: A polyhedron may be, for many purposes, represented
by some of its £ -nets provided by the relation, e.g., "to
heve less than 2 € in distance".

The main results of the paper are the theorems 6.3 , 6.4
and 6.5 . The theorem 6.5 1is a generalization of the follow-
ing,evident,fact: A mapping ¢ of the set {0,1, ..., n }
into itself, such that [g (i) = ¢ (i + 1)l &€ 1, need not
have a fixed point, but if it has none, it has a fixed set of
a type {i, i +1}.

§ 2. N-spaces
2.1. Definition. An N-1space (X; R) is & non-void finite
set X endowed with a reflexive symmetricsal relation R . An
N-map f: (X; R) — (¥; S) is a mapping f: X— Y such that
xR x"=p»f(x) S £(x") . A subspace of an N-space (X; R) is
an N-space (Y; S) , where Y is a subset of X, S =Rn
Nn ¥Y>Y , In further, unless otkerwise stated, a subset of an
N-spacé will be regarded always as its subspace.

2.2. Convention. 1) We are going to writé simply X instead
of (X; R), etc., if there is no danger of misunderstending.

2) We shall write R(x) ={ylyRx} .

3) The elements of Ne~space will be frequent-
ly called points. | .
2.3. Remorks. 1) N-spaces with N-maps form a category.

2) A mapping £: X—> Y is an N-msp of (X; R)

into (¢; S), iff, for any xe€ X , £(R(x))c S(£(x)) .
2.4, Theorem., A 1-1 N-map onto need not be an isomorphism
(see 2,3.1 ). However, a 1-1 N-map of an N-space onto itself
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is always an isomorphism.

Proof: Let X be the set {0, 1}, R={(0,0); (1, 1)¢,
S=X>X.Then ¢: (X; R} —» (X; S) , defined by ¢ (0) =0
¢ (1) =1, is a 1-1 N-map onto, but it is not en isomorph-
ism.

Now, let (X; R) be an arbitrary N-space, ¢: X>X a
1-1 N-msp. As ¢ is 1-1 , the mepping ¢*= g= g is 1-1.
From the definition of the N-map we get " (R)c R and the-
refore ¢*(R) = R , because of finiteness of R . Hence
@ (a) R ¢ (b) implies a Rb , q.e.d.

2.5. Definition. An N-space (X; R) , where R = X=X , is
celled simple.

§ 3. Homotopical triviality and retraction
3.1. Definition. The product (X; R) > (Y¥; S) of the N-spa-

ces (X; R), (Y;S), is the N-space (X > Y; T) , where
T={((xy, 3, , 9y xRz, yRrRY}.

3.2. Definition. Let us denote I, the set {0, 1, eee, k¢

with the relstion R defined by: i R(i+1), iR,

(i +1)R1i. N-meps f, g: X-» Y are said to be homotopical,

if there exist a k and an N=-map h: X > Ik—>Y such that

n(x, 0) = £(x), h(x, k) = g(x) for every xe€ X .

3.3« Definition. An ©N-space X is seid to be homotopically

trivial (h.t.), if its identical map is homotopical with a con-

stant map.

3.4. Definition. An N-space Y is said to be a retract of

an N-space X 1if there exist N-maps j: ¥—=»X , r: X—>Y

such that r o jJ is the ide'ntity mgp of Y . The N-mep T

is called a retraction.

3.5. Theorem. Every retract of a h.t. N-spsce is h.t.
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Proof: Let Y be a retract of X, j, » the correspond-
ing maps. Let h: X = Ik—>X be a homotopy between the identi-
cal map and a constant one. Let us denote i the identical map
of I, eond define h” =r e hoe (j»i) . We have h': Y I >
— Y and h'(x, 0) =roh o (jmi) (x, 0) = 1o h{jx), 0) =

=ro j(x) =x, hi(x, k)

r o h(j(x), ¥) = r(c) = const.

& 4. Contractibility ‘
4.1, Definition. Let X be an N-space, X, y € X . We say
that x is contrzctible to y if R(x) ¢ R(y) , which fact
will be denoted by x > y . Elements x and y will be call=-
ed equivalent (notation x E y ), if R(x) = R(y) (which is
the some as x>y and y > x ). Obviously > 1is a reflexi~-
ve and transitive relation, E reflexive, transitive and sym—-
metrical one. A point x € X , such that there exists a point
yeX with y+4x, x>y, is called contractible.
4.2, Theorem. Let ¢ : (X; R) —» (Y¥; S) be an isomorphism.
Then x >y implies ¥(x) > ¥ (y) , xEy implies
¢ (x) E @ (y ) and the imege of a contractible point is con-
tractible.

Proof: Let R(x)c R(y) , ze S(g(x)) . Hence z S @ (x)
and therefore ¢~ (z) Rx . Hence @ 1(z) Ry =and we get
z € Slg(y) .

4.3+ Theorem. A h.,t. N-space X , consisting of more than one

point, contains a contractible point.

Proof: Let h: Xx Ik—-> X be a homotopy between the i-
dentity map and a constant one. Without loss of generality we
mgy essume that there exists a point x& X such that y =
= hi(x, 1)# x . We are going to show that R(x)c R(y) o Let
us denote T the relstion in X = I]; . Let ze R(x) .
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Because of (z, O) T (x, 1) , we have 2z = h(z, 0) R h(x, 1) =
=y ‘and hence ze R(y) .

'Evidently holds:
4040 Lemma., Let Ac X, x,y€ A, x>y in X . Then

x>y in A .

§ 5. Strongly contractible points
5.1 Definition. A point xe€ X is said to be strongly con-
tractible, if:

1) There exists a point y e X such that x > y and it
isnot y=>x. ‘

2) z>x implies x>z . -

5.2. Theorem. Let ¢ :(X; R) => (¥; S) be an isomorphism. Let
x € X be a strongly contractible point. Then @ (x) is
strongly contractible. ‘

Proof: There exists apoint ye X, x>y, y3 x .X)
Hence, according to 4.2 , & (x) > % (y) and it is not
gy > .

Let z > ¢ (x) . Hence ¢ ~1(z) >x and therefore x >
>¢ "1(z) . Hence finally ¢ (x) >z.

5.3+ Lemma. Let X be an N=-space. Lef A be a subset of X
such thet a, be A implies a > b . Then the following sta—

tements hold:

1) If we choose an a€ A and define r(i) = a for
xe€A, r(x) =x for x ¢ A, the mapping r 1is & retrac-
tion.

2) If there is x>y in Y = (XN Aa)u (a) = r(X) , it
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is x>y in X\.

Proof: 1) It suffices to prove r to be en N~map; as

the N-map Jj from the definition of retraction will be used
the embedding of Y = r(X) into X . Let x, y € X , XRy.
If it is x, ye XNY , or x, y € Y, we have obvi‘ously
r(x) Rr(y) . Now, let xe ¥, ye€ X~NY . As R(y) = R(a) ,
we have r(x) =x R a=r71(y) . _
2) Let x>y in Y , i.e. R(x) N (AN(a))
c R(y) N (A~ (a)) . Let x ¢ R(a) . The existence of z € A ,
z € R(x) , implies x € R(z) = R(a) . Therefore R(x) = R(x)\
N (AN (@) e R(y) S (AN (a))e R(y) « Let xe R(a) .
Hence, a € R(x) N\ (AN (a)) e R(y) end consequently y e
€ R(a) ., Hence, y € R(z) for every 2z € A ed therefore
A € R(y) . Finally, R(x)ec R(y) . '
5.4, Lemma. Let X be an N=-space, Let E,, E2, esey Em be
all equivalence classes of the equivalence E and let us
choose a point ey in each Ei « Define a mapping e by :
e(x) =e; iff x€E; . Then e is a retraction and the
following holds:
x,yeelX), x>y, y >x=>x=3.

Proof: Le us denote E{ = E; ™ (e;) . Let us form a re-

traction r;: X=X = XN\ El by the lemma 5.3 « In the X,

. (For if

we get the equivalence classes (el), E2, ooy Em

ey >x, x>e; in X , the same holds in X and hence
X € El Nnx = (el) ; as for other equivelence classes, tﬁe
statement is obvious according to 5.3 .)

If ve have X; with equivalence ciasses (el), cesy (&5)

Ejp1s ey Ep » let us form the retraction ry., : X —

~> X347 =X\ Ef,; by 5.3 . Obviousy, rper ;0...0r(x) =

m-1

= e(x)
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and therefore e is a retraction. The rest is evident, for all
equivelence clesses consist of one point.

5.5. Lemma., Let there exists a contractible point in e(X) .

Then X contains a strongly contractible point.
Proof: First, we are going to prove the existence of a

strongly contractible point in e{X) . There exist

X, , ye€el® , x>y, x,% y. The point x

strongly contractible or there exists a point X, € e(Xx) ,

is either

xl+ X,y %3 >x,.If x; is not strongly contractidble, the~
re is 5 point x, € e (%), X, F Xy, %X, > X% , ete, After a
fir}ite number of steps we get X, strongly contractible ( X5
never repeats). Ve are going to show that < is strongly con=-
tractible in X . Let z€ X, z>x . Hence e(z) > x and
consequently e(z) = x and hence finslly X > z .

5.6+ Theorem. A h.t. N=-space contains a strongly contractib=—
le point, unless it is simple.'

Proof: Let X be & h.t. N-space, vwhich is not simple.
Hence, there exist x, y € X such that it is not x R y . Con-
lequently, it is not x E y end hence e(X) has more than one
oint, Hence, by 5.5 , X contains a strongly contrzctible
oint.

57« Theorem. The set ¥ of sll points of an N-spece X ,
which are not strongly contractible, is a retract of the N=-
spsce X o

. DProof: Pirst, letus remark that the set Y is always
non-void, because the existence of a strongly contractible
point impl_{es the existence of a point, which is not strongly
contractitle (the point y from the definition). Let us find,
for every x strongly contractible, a point r(x) such that

»

x > r(x), r(x) * x . Obviously, r(x) € Y . We define
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r(x) =x for x€ Y. We want to prove the implication
x R y=> r(x) R #(y) , which is obvious for x, ye€ Y » Let
xX€Y, ye€XNY. Then r(x) = xe€ R(y) ¢ R(r(y)) and hen-
ce, r({x) Rr(y) . Now, let x, ye XN Y . We have x e R(y)c
c R(r(y)) and hence, r(y)e€ R(x) € R(r(x)) , and we get fi-
nally r(x) R r(y) .

§ 6. An anslogon of the fixed-point theorem
6.1, Theorem. Let X Dbe a finite set, @ a trensformation
of X . Then there exists a non-void set Me X such that
g =u. )

Proof: Let us denote X; = @ (X), X; = @(X; ) .
Obviously,

X> X1:> X2 D see D Xi Doeeo

Because of finiteness of X we have X, = X,y for suffi-
ciently iarge k . Therefore ¢ (Xk) = X, and we may take
M= Xk .
6.2. Lemma. Let in 6.1 X be an N-space, ¢ an N=-map.

Let M Ybe the Xk in the proof of 6.1 . Then M is a re=-
tract of X .

Proof: Let us define ¥ : X—> M by vy (x) = 9k(x) .
Then (2.4 ) ¥'= 1| M is en isomorphism. Let us denote J~
‘the N-map of embedding .M into X, = j'e ¥ 1. Evi-
. dently, ¥ o j 1is the identiceal map of M .
6.3+ Theorem. Let - X be an N-space. Let us denote X, =X,
X; ={x € X;_ ;| x is not strongly contractible in X;_, .
For a sufficiently large integer k, X ¥ Xpyy let us call
the N-space Xk the centre of the N=-space X . and let us
denote it by K(X) . Then the following statements hold:

1) For an arbitrary isomorphism ‘¢¢: X —> X , holds
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g (®(x)) = xX) .
2) The centre of a h.t. N-space is simple.
Broof: By 5.2 we have ¢ (X;) = X; for every 1. The
second statement is a consequence of 5.6 4, 5.7 and 3.5
6+4. Theorem. For every N~-map ¢ of a h.t. N-space X in-
to itself there exists a simple A< X such that @ (4) =4,
Proof: According to 6.1 , 6.2 , 6.3 4, 2.4 and 3.5 , the

set A = K(yn (X)) for sufficiently large n is simple and
invariant under @ .

6.5. Theorem. Let X ©be an arbitrary N-space. Let ¢ be an
N-mgp of X into X , homotopical with a constant one. Then
there exists a simpie Aec X, such that ¢ (A) = A, and we
may take A = K(¢ " (X)) for sufficiently large n .

Proof: Let n be such an integer that ¢ (g™ (X)) =
=g % (X) . Let h: X> I, —»X be the homotopy between the
N-map ¢ and a constant one. Let us denote X  the N-mapl
of X onto @ (X) defined by X (x) = ¢™x), mdy
the isomorphism of 9111 (X) onto itself, defined by
¥ (x) = @ (x) . Let us define h” : ¢ (X) = I, g™ )
by =% ""lo X o (n] (9;"‘ (X) = 1,)) . Evidently the
N-map h° is a homotopy between the identity map and a con-
stant ‘one. The rest of the proof is obvious.

§ 7. An application for graphs
Tele Convention.' By a graph is meant a finite graph, i.e.
some (X; R) , where X 1is a finite set, R some relation
on X . By the mapping is always meant a relation-preserving
mapping of one graph into another one. The arrow beginning
in & and finishing in b is the couple (a, b) such
that a Rb.




7.7. Definition. An N-modification of a graph (X; R) is the
t-space (X; R) , where R is defined by: X Ry <= x =7y
or xRy or yRx.

Te3e lLemma

« 1) A 1-1- mapping of a graph onto itself is en

isomorphism, i.e. its inverse is a napping.
2) Let (¥; R), (¢; S) be graphs, ¢ be a map-
ping of (¥; R) into (¥; S) . Then ¢ is an H-map of
(X; R) into (Y, S) .
Proof: The proof of the first statement was done, in
the fact, in the proof of 2.4 , where we used neither symmetry
nor reflexivity. The proof of the_remainihg one is trividl

T+4. Theorem. Let (X; R) be a graph such that its N-modifi=-

cation is h.t. Let ¢ be a mepping of (X; R) into itself.

Then there exists a non-void set A < X such that ¢ (&) =
= A and

1) x, yedA, x%y = xRy or yRx.
2) If x e A , the number of the arrowsbeginning in x
and finishing in the other elem=nts of A is equal to the

number of arrows beginning in the other elements of A and

finighing in x .

Proof: The existence of o set A such that ¢ (A) =4

md x, y€ b, Xy => xRy or yRx is an immediate

corollary of 6.4 and 7.3 . Because of finiteness we can

find the A such that it is minimal (i.e. for no proper sub-

set B of A holds ¢ (B) =B ). Let us denote n(x) the
number of the arrows beginning in. x and finishing in the

other elements of A minus the number of arrows beginning

in the other elerients of A and finishing in x . Obviously

(cee 7.3.71) n(g(x)) = n(») and hence, according to the
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minimality, all n(x) are equal to the same number. On the
other hand, obviously <& xeA n(x) = 0 and therefore
n(x) = 0 for every x .

7.5, Remark. There arises a question of characterizing graphs

with the h.t. N-modification without using of the nption of
homotopy. Let us return for a moment to the d=-spaces. Let us
take some I-space Xo and do the following construction., If
an Xy is constructed 2nd if it has no contractible points,
we stop @he construction. If it has contractible points, let
us throw away one of them and denote Xi+1 the remaining
N~space. It is not difficult to see that Xo is h.t. iff the
described construction stops with an Xk consisting of a
single point, Therefore, a graph (X; R) hos h.t. N-modifi=-
cation iff we can get a sub=graph of X consisting of & sing-
le point by the following construction: Throw away an elerent
x such that R(x) € R(y), x #y ; with the remaining graph
try to do the same etc. We can define the R(z) , without us-
ing of the modification, as the set consisting of the element
2 and all the elements which are contained together with the

2z in an arrow,.
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