Commentationes Mathematicae Universitatis Caroline

Otomar Hájek
Homological fixed point theorems. II

Commentationes Mathematicae Universitatis Carolinae, Vol. 5 (1964), No. 2, 85--92
Persistent URL: http://dml.cz/dmlcz/104961

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1964

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicas Universitatis Carolinae

$$
5,2 \text { (1964) }
$$

HOMOLOGICAL FIXED POINT THEOREMS, II. Comar HAJEK, Praha

This paper consists of some notes and generalisations of results of the preceding paper [4].

The first of these concerns lemms 2 of [4], stating that the invariant j of endomorphisms f of a group G is independent of the behaviour of f on the periodic part of G . Here we present a considerably stronger result in theo rem 1 .

The second extends a result of [4](for a continuous $P: S^{2 n} \rightarrow s^{2 n}, f^{2}$ has a fixed point) to a more general class of spaces, admitting formation of cartesian products; lemma 1 and theorem 2 .

The rôle which even-dimensionality plays in this result suggests the posaibility of a connection with other familiar theorems having similar restrictions:'Brouwer's theorem on antipodals [1, ch. XVI, § 5], or the "hedgehog theorem" of Poincaré (loc.cit., there is no nonzero tangent vector field on $S^{2 n}$). A closer examination reveals that the resemblance is only superficial: the latter theorems admit a natural generalisation to e.g. odd-dimensional spheres, as will be shown in theorem 3; our result does not.

As in [4], we consider the category G_{J} consisting of abelian groups with an integrity domain J as left operators, and of their operator homomorphisms. The reader is first re-
ferred to [2], exercises D in chap. IV. The re it is shown how one may assign to each group G. in G_{J} a vector space G^{\wedge} over $\hat{\mathcal{J}}$, the quotient field of J; and to each $P: G \rightarrow G^{\prime}$ in \mathcal{g}_{J} a \hat{J}-homomorphism $\mathcal{P}^{\wedge}: G^{\wedge} \rightarrow G^{0 \wedge}$. The resulting object turns out to be an additive exact covariant functor \wedge from G_{J} to $G_{\hat{J}}$. (The definition loc.cit. of the transitive relation \sim should, however, be corrected to: $\left[\theta_{1}, x_{1}\right] \sim\left[\theta_{2}, x_{2}\right]$ iff $\theta_{2} x_{1}=\theta_{1} x_{2}$ for some $\theta \neq 0$ in J.$) The circumflex \wedge$ will henceforth be used in this sense, and not in that of [4].

Exactness of \wedge then implies that, on the category ∂G_{J} of differential groups over J, the homology functor and \wedge commute:

$$
H\left(G^{\wedge}\right)=(H(G))^{\wedge}, \quad\left(f^{\wedge}\right)_{*}=\left(f_{*}\right)^{\wedge} \text {. }
$$

It is noted (loc.cit.) that \wedge preserves ranks. Since $j\left(i d_{G}\right)=(\operatorname{rank} G) /(1-\lambda)[4$, section 1$]$, this is the $P=$ $=$ identity special case of the following

Theorem 1. If $f: G \rightarrow G$ in g_{J}, then $f(f) \neq j\left(f^{\wedge}\right)$.
By [4, definition 3], gli depends on j; thus theorem 1 implies $g l i(f)=g l i\left(f^{\wedge}\right)$ for $f: G \rightarrow G$ in the category of group sequences. In [4, theorem 3] it was shown that $g l i(f)=$ $=g l i\left(P_{*}\right)$ for $f: G \rightarrow G$ in the category of differential group sequences (i.e., complexes); our present result yields, then,

$$
g l i(f)=g l i\left(f_{*}^{\hat{*}}\right)
$$

Proof of theorem 1. There is a canonic mapping $c: G \rightarrow \hat{G}$ defined by $c x=(1, x)$; we have $c \in \operatorname{Hom}_{J}\left(G, G^{\wedge}\right)$ and $c f$ $=f^{\wedge}$ e for $f \in \operatorname{Hom}_{J}(G, G)$. It is easily shown that, if B is a w-base in $G[4$, section 1], then $c(B)$ is linearly
independent and generates \hat{G}; thus $c(B)$ is a base in \hat{G}. The relations

$$
\theta_{i} f x_{j}=\Sigma_{j} \alpha_{i j} x_{j}
$$

used to define matrices D, A and then $p, j[4$, def.l. and 2] carry over to

$$
\theta_{i} f^{\wedge} c x_{i}=\Sigma_{j} \alpha_{i j} c x_{j} ;
$$

thus they define the same matrices D, A and hence also p, j. This completes the proof.

Definition. A triangulable_space_will be_called non-2dd if_all_its_odd=dimensional_homology groups (over integer coefficients) are periodic.

This definition is a modification of an earlier inadequate version; the present formulation and also the proof of the lemma to follow were suggested to the author by Mr. A. Pultr, the referge.

Cells and even-dimensional spheres are non-odd, since their odd-dimensional homology groups are trivial. Even-dimensional projective spaces are non-odd, as may be shown directly. We note that the Euler characteristic of a non-odd space reduces to the sum of ranks of the even-dimensional homology groups; hence it is positive unless the spaces is empty.

Lemma 1. The cartesian product of_two_non=odd_spaces is non-odd.

Proof. Let X, Y be non-odd; the Künneth formula (e.g. [3, chap.I, th. 5.5.2]) is
$H_{n}(X \times Y)=\sum_{p+q=n} H_{p}(X) \otimes H_{q}(Y)+\sum_{p+q=n-1} \operatorname{Tor}\left(H_{p}(X), H_{q}(Y)\right.$. The second sum is always a periodic group; consider any summand in the first sum. For odd $n=p+q$, one of p, q is also odd, so that by assumption one factor is periodic; hence $H_{p}(X)$ (8) $H_{q}(Y)$ is periodic. This completes the proof.

It may be remarked that if the condition in the definition is atrengthened to "all odd-dimensional homology groups are trivial", then the corresponding lema no longer holds.

Theorem 2. Let $\mathbf{P}: X \rightarrow X$ be a continuous mapping of a non-odd space $X \neq \varnothing$. Then one of

$$
f, f^{2}, f^{3}, \ldots, f^{x(x)}
$$

has a fixed point.
As a trivial but weird example, for every map f of a finite set of n points into itself, at least one of f, \ldots, f^{n} has a fixed point; this is easily checked directiy, and in goneral, f^{n} cannot be replaced by a preceding iterate.

Corollary. $f^{x(X)!}$ has a fixed point.
This includes our corollary to theorem 5 in [4], and also the Brouwer fixed - point theorem; $x^{\left(s^{2 n}\right)}=2, \quad x\left(E^{n}\right)=1$ respectively. As concerns the conjecture in [4, section 3], we now have the following result. A space X consisting of the product of n cells and m even-dimensional spheres has as Euler characteristic $X(X)$.the product of characteristics of its factors, namely 2^{m}. Thus one of

$$
f, f^{2}, f^{3}, \ldots, f^{2^{m}}
$$

does have a fixed point, but here one may not omit the f^{i} with $1 \neq 2^{j}$ (e.g. for $X=S^{0} \times S^{0}$).

Proof of the theorem 2. Let f_{*} be the homomorphiem of the homology sequence of X, induced by f. From theorem 1 ,

$$
g l i(f)=g l i(f \hat{*})
$$

From [4], section 3, lemma 4 and definition 3, we then have for the Lefschetz number J

$$
\begin{equation*}
J\left(f^{\mathbf{r}}\right)=J\left(f_{*}^{\wedge}\right)=\Sigma_{q} \operatorname{tr}\left(f_{* 2 q_{1}}^{\wedge}\right) \tag{2}
\end{equation*}
$$

since by our nssumption on $X, H_{q}(X)^{\wedge}=0$ for odd dimensions
q. Finally, from the proof of theorem 2 in [4],

$$
\begin{equation*}
\operatorname{tr}\left(\mathcal{f}_{* 2}^{\wedge} \hat{q}\right)=\sum_{j=1}^{x_{q}} \lambda \underset{j, q}{r} \tag{3}
\end{equation*}
$$

where $r_{q}=$ rank $H_{r}(X)^{\wedge}=$ rank $H_{q}(X)$, and $\lambda_{j, q}$ are certain complex numbers (characteristic roots of certain matrices
$\left.D_{2 q}^{-1} A_{2 q}\right)$. It is known that $\operatorname{tr}\left(f_{* 0}^{\wedge r}\right)=1$ if X is connected (e.g.[1], chap. XVII, § 1); in our case we have at least that $\operatorname{tr}\left(f_{* 0}^{\hat{F})}=m\right.$, a positive integer since X is nonempty.

Substitute (3) into (2), omit all $\lambda=0$, assemble all
$\lambda=1$, and finally all equal λ^{\prime} 's. Thus we may write

$$
J\left(f^{r}\right)=m_{0}+\sum_{j=1}^{x(x)-1} m_{j} \lambda_{j}^{r}
$$

with $m_{j} \geqslant 0$ integers, $m_{0}>0, \lambda_{j}$ s distinct with $0 \neq$ $\neq \lambda_{j} \neq 1$. (By non-oddness, $\quad x(x)=\sum$ rank $H_{2 q}=\Sigma r_{2 q}$; thus there are at most $X(X)$ distinct λ_{j}, of which at least one is included in the m_{0} term.

With notation thus established, assume that the assertion of the theorem does not hold. Thus the iterate f^{r} with $1 \leqslant$ $\leqslant r \leq \chi(X)$ has no fixed points, and from the Hopf-Lefschetz theorem we obtain $\quad \chi(T)$ equations $J\left(f^{T}\right)=0$. Substracting the roth from the following there results

$$
\sum_{j=1}^{(x)-1} m_{j} \lambda_{j}^{r}\left(\lambda_{j}-1\right)=0 \quad(1 \leqslant r \leqslant \chi(x)-1)
$$

Consider these as a system of equations in unknowns m_{j}. Obviously the determinant of the system is

$$
\Delta=\pi_{j} \lambda_{j} \times \pi_{j}\left(\lambda_{j}-1\right) \times v\left(\ldots \lambda_{j} \ldots\right)
$$

with V the Vandermonde determinant. Since by construction the λ_{j} are all distinct and $0 \neq \lambda_{j} \neq 1$, we conclude $m_{j}=0$ for all j. Thus our relations $J\left(f^{T}\right)=0$ reduce to $m_{0}=0$; this contradiction with $m_{0}>0$ proves our theorem.

To unburden the formulation of the theorem to follow, we first introduce, provisionally, two new terms.

A topological space T may be called_sphere-like_if it is triangulable connected, with positive dimension n, and
$H_{Q}(T)=0$ for $0<q<n, \quad$ rank $H_{n}(T)=1$. Obviously, spheres are sphere-like; however S^{0} and e.g. $S^{n} \times S^{m}$ or E^{n} are not ($n>0$).

A homeomorphism $h: T \rightarrow T$ of a sphere-like space will be called positive or negative in accordance with the sign of its degree. This latter term may be introduced for continuous maps $\mathbf{I}: T \rightarrow T$ (aphere-like) as follows. Take any element $x \in H_{n}(T)$ of infinite order; since $H_{n}(T)$ has rank 2 , there exists integers $\theta \neq 0$ and - such that

$$
\theta \mathbf{f}_{* n} x=\alpha x ;
$$

then set

$$
\text { degree }(f)=\frac{\alpha}{\theta}
$$

This is easily shown to be independent of the choice of x, θ, α. (In the notation of [4], degree $(f)=\operatorname{tr}\left(f_{* n}\right)=$ $\left.=\frac{d}{d \lambda} j_{n}(f ; \lambda) l_{\lambda=0}.\right)$ If $T=S^{n}, H_{n}\left(S^{n}\right)$ is infinite cyclic and degree (f) is an integer, and coincides with the customary concept. If I is a homeomorphism, degree $(f)= \pm 1$; for T a simply connected region in S^{2} this coincides with the sign of f as defined in $[4, p$. 433]. The identity map is a positive homeonorphism; if $T=S^{n}$, then change of sign of k of the $n+1$ coordinates is positive or negative according as k is even or odd.

Theorem 3. Let $\mathrm{I}: T \rightarrow T$ be a continuous map of aphe-re-like apace T. Then

$$
\begin{aligned}
f x= & h x \\
& -90
\end{aligned}
$$

is solvable in T, either for all positive or for all negative homeomorphisms $h: T \rightarrow T$. If f itself is a homeomorphism, then precisely one of these alternatives holds.

Proof. With the Hopf-Lefschetz theorem, the proof is al- . most trivial: it sufficed to consider existence of fixed points of $h^{-1} f$, and

$$
\begin{aligned}
J\left(h^{-1} f\right) & =1+(-1)^{n} \text { degree }\left(h^{-1} f\right)= \\
& =1+(-1)^{n} \text { degree }(h) \text { degree }(f) \neq 0
\end{aligned}
$$

for at least one of degree $(h)= \pm 1$. If also degree $(f)= \pm 1$, then there is precisely one possibility.

As an example, take $T=S^{2 n}$. Then either $f x=x$ is solvable ($h=$ identity, degree $(h)=1$) or $f x=-x$ is solvable ($h x=-x$, degree $(h)=(-1)^{2 n+1}=-1$). This is Brouwer's theorem on antipodals.

Theorem 3 suggests that it may be interesting to obtain further results on solvability of

$$
f x=g x
$$

for given continuous $\mathrm{P}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$ 。
A problem was formulated in [4], to prove

$$
\begin{equation*}
J(f)=x(A) \tag{4}
\end{equation*}
$$

for all maps $f: X \rightarrow X$ of a triangulable space X and with A the set of fixed points of f. A class of maps was exhibited for which the stronger relation

$$
g l i(\rho)=\frac{x(A)}{1-\lambda}
$$

holds [3, theorem 6]. The desirability of formula (4) follons from the information concerning A which could be obtained from rathor superficial information about f;e.g., the Hopfo Lefschetz fixed point theorem would follow.

However, the conjecture is not valid, and the heuristica Which led to it were rot sufficiently careful: thore is a
aimple counter-example. Take $X=S^{1}$, treated as the unit circle in the complex plane. Let f be defined by $f=x^{d}$, d integer. Then f has degree $d[2, c h . X I$, theorem 4.5], and thus

$$
J(f)=1-d
$$

For $d \neq 1, f$ has precisely $|d-1|$ fixed points, and in any case

$$
x(\mathrm{~A})=|\mathrm{d}-1|
$$

for the set A of fixed points of f. Thus $J(f) \neq x(A)$ for $d>1$

> References:
[1] P.S. ALEXANDROV, Combinatorial Topology (in Russian), Gostechizdat., Mos cow-Leningrad,1947.
[2] S. EILENBERG - N. STEENROD, Foundations of Algebraic Topology, Princeton University Press, Princeton, 1952.
[3] R. GODENENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
[4] O. HAJEK, Homological fixed point theorems, this journal, CMUC,5,1(1964).
[5] K. KURATOWSKI, Topologie II, Monografie Matematyczne no. XXI, Warsaw-Wrociaw, 1950.

