Commentationes Mathematicae Universitatis Carolinae

Václav Chvátal
On finite and countable rigid graphs and tournaments

Commentationes Mathematicae Universitatis Carolinae, Vol. 6 (1965), No. 4, 429--438

Persistent URL: http://dml.cz/dmlcz/105034

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Comentationes Mathematicae Univeraitatis Carolinae

$$
6,4(1965)
$$

ON FIMITE AND COUNTABLE RIGID GRAPHS AND TOURNAMENSS
V. CHVÁTAL, Praha

Let V be a non-void set and E a binary relation on V, ECVXV. Let f be a transformation of V. If (x,y)e. F implies $(f(x) ; f(y)) \in E$, then f is called compatible with the relation E.

Let $C(\Sigma)$ denote the set of all transformations compatible with a relation E. Then $C(E)$ with the binary operation

O (O is defined, as usual, by the compositions of transformations) is a semigroup, and its unity element is the identity transformation.

The pair [$\left.V, \mathrm{~F}_{\mathrm{i}}\right]$ will be considered as a graph, where V is the set of vertices, E the set of edges. The transformationsin $C(E)$ will be called endomorphisms of $[V, E]$. If, for every $x, y \in \nabla$, precisely one of the cases $(x, y) \in E$, $(y, x) \in E$ holds, then the graph $[V, E]$ is called a tournament. We emphasize that a tournament contains all loops; thus every constant transformation is an endomorphism.

An $f \in C(E)$ is called an automorphism of the graph [$V, E]$ if f is $1-1$ mapping; an $f \in C(E)$ is calledyspoper endomorphism of the graph [V,r] if f is not l-1.

Let $C(E)$ contain $|V|+1$ elements (here $|V|$ denotes the cardinal of V), namely the identity and all the constant transformations of V. Then the graph [V,E] is called_rigide_x)
x) We remark that the expression "rigid graph" is often used in a different sense.

The purpose of this paper is to prove some theorems concerning rigid graphs, and to show how rigid tournaments can be constructed for $|\nabla|>5$.

Theorem 1. There exists no rigid graph for $|\mathbf{V}|=3$ nor for $|V|=4$; there exists just one rigid graph for $|v|=2$.
Theorem 2. There exiet two ${ }^{x}$) rigid tournaments for $|V|=5$.
Theorem 3. There exist at least three rigid tournaments for $|\nabla| \geqq 6$ 。

Theorem 4. There exiats a countable rigid tournament.
First, we shall prove some lemmas.
Lemma 1. Let $[V, E]$ be a rigid graph, $|V|>1$; then $(x, x) \in E$ for all $x \in V$.
Proof. If $E=0$, then $C(E)$ contains all transformations of V and $[V, E]$ is not a rigid graph. Hence E contains some couple (u, ∇), and all the constants are endomorphisms;
thus $(x, x) \in E$ for all $x \in \nabla$.
In the sequel we shall confine ourselves to graphs with all the loops.

Lemma 2. Let $[V, E]$ bo a rigid graph, $x, y \in V, x \neq y$, $(x, y) \in E$. Then $(y, x) \notin E$.

Proof. Let $(x, y) \in E$ and $(y, x) \in E$. Define a transformation f by $f(x)=y, f(u)=x$ for all $u \neq x$. Then fec(E), and we obtain a contradiction.

Lemma 3. Let $|\nabla| \geq 3,[V, E]$ be a rigid graph.
If we define $G(x)=\{u:(x, u) \in E, u \neq x\}$

$$
G^{-1}(x)=\{u:(u, x) \in E, \quad u \neq x\}
$$

then $|G(x)| \geqq 1,\left|G^{-1}(x)\right| \geqslant 1$ for all $x \in V$.
x) Two rigid toumaments are explicitly given in the proof;
it may be easily shown that there are no other ones.

Proof. Let $|G(x)|=\left|G^{-1}(x)\right|=0$. Define $f(x)=x$) and $f(u)=y, y \neq x$, for all $u \neq x$. Then $f \in C(E)$ and this is a contradiction.

Let $|G(x)|=0,\left|G^{-1}(x)\right|>0$. Define $f(x)=x$ and $f(u)=$ $=y, y \in G(x)$, for all $u \neq x$. Then $f \in C(E)$ and we have a contradiction.

Similarly for $\left|G^{-1}(x)\right|=0,|G(x)|>0$.
Lerria 4. Let $[V, E]$ be a rigid graph. Then the re exists an $x \in V$, for which $|C(x)|=\left|G^{-1}(x)\right|=1$ does not hold.
Proof. Indeed, assume the relation for all $x \in V$. Put $f(x)=C(x)$ for all $x \in V$. Then $f \in C(E)$ and we obtain a contradiction.
lemma 5. Let $[V, E]$ be a tournament, $|V| \geqq 3,(x, z) \in E$, $(z, y) \in E, f \in C(E), f(x)=f(y)$. Then $f(z)=$ $=f(x)=f(y)$.
Proof. $(f(x), f(z)) \in E,(f(z), f(x)) \in E$ and $[V, z]$ is a tournament; hence $f(x)=f(z)$.
Lemma 6. Let $[V, E]$ be a tournament such that $C(E)$ contains a non-identical automorphism. Then there exist at least three different points $x, y, z \in V$, for which $|G(x)|=|G(y)|=|G(z)|$ holds.
Proof. vidently $|G(x)|=|G(f(x))|$ for all $x \in V$, and there exists a $u \in V$ for which $f(u) \neq u$. If $f \circ f(u)=u$, then $(u, f(u)),(f(u), u) \in E$, and this is a contradiction.
One cannot have $f \circ f(u)=f(u)$, because f is a l-1 transformation. Hence $|G(u)|=|G(f(u))|=|G(f \circ f(u))|$.

Now, we shall prove our theorems.
Proof of theorem l. Using lemmas $1,2,3,4$ it is easy to show that no other graphs except $G_{1}, G_{2}, G_{3}, G_{4}$ on fig. 1 are rigid for $V=2,3,4$. We find easily that the graph G_{1}

Fig. 1

Fig. 2

- 432 -
is rigid, and the others have the following endomorphisms:
$G_{2}\binom{x y z u}{z y z u}, \quad G_{3}\binom{x y z u}{y y z u}, \quad G_{4}\binom{x y z u}{u y z u}$.
Proof of theorem 2. Both the tournaments T_{1}, T_{2} on fig. 2 are rigid. We shall denote by p_{n} the number of those $x \in V$ for which $|G(x)|=n \quad(n$ a positive integer). For T_{1} and T_{2} we then obtain
$r_{1}: p_{1}=1, p_{2}=3, p_{3}=1$,
$T_{2}: p_{1}=2, p_{2}=1, p_{3}=2$ 。
By lemma 6 , the tournament T_{2} has no non-identical automorphism.

Let the tournament T_{1} have an automorphism f. It follows that $f(x)=x, f(y)=y$. But $(z, u),(u, v),(z, v) \in E$, and thus f must be the identity.

It remains to investigate the proper endomorphisms.
If $(x, y),(y, z),(z, x) \in \xi$, put $\Delta x y z=\{(x, y),(y, z)$, $(z, x)\}$, and $\Delta x y z \sim \Delta u v w$ if $\Delta x y z \cap \Delta u v w \neq D$. If $\Delta x y z \sim \Delta u v w, f \in C(E)$ and $f(x)=f(y)$, then it follows from lemma 5 that $f(x)=f(y)=f(z)=f(u)=f(v)=f(w)$.

Now, it is easy to show that every proper endomorphism of T_{1}, T_{2} is constant.

For T_{1} there is $\Delta x z y \sim \Delta x u y, \quad \Delta x u y \sim \Delta$ vuy,
Δ vuy $\sim \Delta$ vuz ; and it follows from lemma 5 that $f(x)=$ $=f(\nabla) \Rightarrow f(x)=f(z)$, if $f \in C(E)$.

For T_{2} there is $\Delta x z y \sim \Delta y u z, \Delta$ yuz $\sim \Delta$ vuz ; and it follows from lemma 5 that $f(x)=f(v) \Longrightarrow f(x)=f(z)$, $f(v)=f(y) \Rightarrow f(x)=f(y), f(x)=f(u) \Longrightarrow f(v)=f(u)$, if $f \in C(E)$.

Hence T_{1} and T_{2} have no proper endomorphism except
the constants.
Iroof of theorem 3. We shall construct the rigid tournaments for $|V| \geqq 6$.

Let $\left[V_{0}, E_{0}\right]$ be a rigid tournament, $\left|V_{0}\right|=n, n \geqslant 5$, $p_{n-2} \in\langle 1,2\rangle$. Denote by x_{0}, y_{0} the points for which $\left|G\left(x_{0}\right)\right|=n-2, \quad\left(y_{0}, x_{0}\right) \in E$, and if $p_{n-2}=2$ then $\left|G\left(y_{0}\right)\right| x n-2$. Now set $V=V U\{x\}, E=E_{0} U E_{x}$, $E_{x}=\left\{(x, u): u \in V_{0}, u \neq x_{0}\right\} \cup\left\{\left(x_{0}, x\right),(x, x)\right\}$. Then the tournament $[V, E]$ is rigid.

Indeed, assume that [V,E] has a non-identical automorphism f. If $f(x)=x$, then $\left[V_{0}, E_{0}\right]$ has the non-identical automorphism f_{0}, defined by $f_{0}(u)=f(u)$ for all $u \in V_{0}$; but this is a contradiction.

If $f(x) \neq x$, then there must be $f\left(x_{0}\right)=x, f(x)=x_{0}$, because $|G(x)|=\left|G\left(x_{0}\right)\right|=n-1$ and $u \neq x, u \neq x_{0} \Rightarrow$ $\Rightarrow|G(u)|<n-1$.

Hence $\left(x, x_{0}\right) \in E$, and this is a contradiction.
Now assume that $[V, E]$ has a proper non-constant endomorphism f, and write $f^{-1}(u)=\{v: f(v)=u\}$. If $f^{-1}(u) \cap$ $\cap \nabla_{0} \neq \varnothing$, we may choose an element of $f^{-1}(u) \cap \nabla_{0}$ and denote it $g(u)$. Then $g \circ f$ is a transformation of V_{0}.

Let $(u, v) \in E_{0}$. If $g \circ f(u)=g \circ f(v)$, then evidently $(g \circ f(u), g \circ f(v)) \in E_{0}$. If $g \circ f(u) \neq g \circ f(v)$, then $(f(u), f(v)) \in E$ implies ($g \circ f(u), g \circ f(v)) \in E_{0}$. Hence gofec(E) -

Assume that $g \circ f$ is the identity. Then $u, v \in \boldsymbol{V}_{0}$, $u \neq v$ imply $f(u) \neq f(v)$. One must have $f(x)=f(u)$ for some $u \in V_{0}$, because f is not $1-1$. But there exists a
$\nabla \in V_{0}$ for which $(v, u) \in E, \quad \nabla \neq x_{0}$ and $(f(u), f(v))$, $(f(v), f(u)) \in E$; this is a contradiction.

Assume that $g \circ f$ is a constant. Then $f(u)=\nabla$ for all $u \in V_{0}$ and $(f(x), v),(v, f(x)) \in E$. It follows that $f(x)=f(v)$, so that f is a constant transformation; but this contradicts our assumption.

It results that $\left[V_{0}, E_{0}\right]$ is not rigid, and this is a contradiction. Thus we have proved that [V,E] is rigid.

Setting $|V|=n$, one has $p_{n-2}=2$. It follows that one can construct two sequences of rigid tournaments. Then

$$
p_{1}=2, p_{2}=p_{3}=\cdots p_{n-3}=1, p_{n-2}=2
$$

for the sequence derived from T_{2}, and
$p_{1}=1, p_{2}=3, p_{3}=0, p_{4}=p_{5}=\ldots p_{n-3}=1$,
$p_{n-2}=2$
for the sequence derived from T_{1} -
If we take complements of graphs from the second sequence preserving loops, we obtain a sequence of rigid tournaments distinct from both;for this sequence there is
$p_{1}=2, p_{2}=p_{3} \cdots p_{n-5}=1, p_{n-4}=0, p_{n-3}=3$,
$p_{n-2}=1$.
Proof of theorem 4.
In this part we shall denote vertices by positive integers.
If we construct the second sequence of rigid tournaments and proceed to infinity, we obtain a countable tournament [$N, E]$, where N is the set of all positive integers and $E=B U S$,
$B=\{(1,2),(3,1),(4,1),(5,1),(2,3),(2,4),(5,2),(3,4),(5,3)$,

$$
(4,5),(1,1),(2,2),(3,3),(4,4),(5,5)\}
$$

$S=\{(x, y): x, y \in N, x>5, y<x-1$ VEL $y=x+1$ VEL $y=$
$=x\} \cup\{(5,6)\}$
There is $\quad \Delta 123 \sim \Delta 124 \sim \Delta 245 \sim \Delta 345 \sim \Delta 456 \sim \Delta 567 \ldots$ $\ldots \sim \Delta n n+1 n+2 \sim \Delta n n+1 n+2 n+$ +3~...
and for no other set Δ except these. Moreover, using lemma 5, there is for $P \in C(E)$
$f(1)=f(5) \Rightarrow f(1)=f(3)$,
$f(u)=f(v) \Rightarrow f(u)=f(u+1)$ if $u>5, u>v+1$,
It follows that if f is an endomorphism of $[\mathrm{N}, \mathrm{E}]$ and there exist $x, y \in N, x \neq y, f(x)=f(y)$, then f is a constant.

Let us assume that [N, E] has a non-constant endomorph1sm P; then $x \neq y \Rightarrow f(x) \neq f(y)$.

The edge $(4,5)$ is an element of three distinct sets $\Delta 245, \Delta 345$, $\Delta 456$, and no other edge is an element of three or more sets Δ. It follows that $f(4)=4, f(5)=$ $=5$, because the edge $(f(4), f(5))$ is an element of three sets Δ. The edge $(f(5), f(6))$ is an element of two sets Δ, hence $f(6)=6$. Similarly, $f(u)=u$ for all $u>6$.

If $f(u) \neq u$ for some $u \in\{1,2,3\}$, then T_{1} has the automorphism f_{0}, defined by $f_{0}(u)=f(u)$, which is not the identity transformation; this is a contradiction.

Thus f is the identity, and we have proved that [N, E] is rigid.
Remark to theorem 4. If we derive a countable tournament from T_{2}, we obtain the tournament [$\left.N, E^{\prime}\right]$, where

$$
E^{\prime}=\{(x, y):(x, y) \in E \quad E T(x, y) \neq(2,4)\} \cup\{(4,2)\} ;
$$

however this tournament is not rigid since it has the endom morphism f, defined by $f(n)=n+h$, where h is an arm bitrary positive integer.

Applications of the results.

1. Algebra. A set M with a binary operation 0 , which assigns to any ordered pair of elements M some element of M, is called a grupoid. If $u \circ v=\nabla \circ u$ for all $u, v \in M$, then M is called a commutative grupoid. The elements $u \in M$ with $u \circ u=u$ are called idempotents. If f is a transformation of M and for every $u, v \in M$ there is $f(u) \circ f(v)=$ $=f(u \circ \nabla)$, then f is called a homomorphism of the grupoid.

Let $[V, E]$ be a rigid tournament. We may define a binar ry operation O on V by $u \circ \nabla=u$ for ($v, u) \in E$ $u O V=\nabla$ for (u,v) EE.

Evidently, the set V with the binary operation 0 is a commatative grupoid such that all elements are idempotents and that each homomorphism is either constant or the identity transformation. Thus

There exists a commutative grupoid G such that all elements are idempotents and that each homomorphism is either constant or the identity transformation for $5 \leq 1 G \mid \leq N_{0}$ 2. Rigid closure spaces. If P is a set with a rule which assigns to any set $M \subset P$ its closure \bar{M} in such a manner that the axioms

$$
\begin{align*}
& \varnothing=\bar{\emptyset} \tag{I}\\
& \mathrm{m} \subset \overline{\mathrm{M}}
\end{align*}
$$

$$
\overline{M_{1} \cup M_{2}}=\bar{M}_{1} \cup \bar{M}_{2} \quad \text { (III) } \quad \text { (see [l]) }
$$

are fulfilled, then P is called a closure space. A transfor-
formation P of P is called continuous if $f(\bar{M}) \subset \overline{P(M)}$, where $f(M)=\{x: x=f(u), u \in M\}$.

Let [V,E] be a rigid tournament, and set
$\overline{\mathbf{Y}}=\{\mathrm{x}:(\mathrm{u}, \mathrm{x}) \in \mathrm{E}, \mathrm{u} \in \boldsymbol{Y}\}$ for any set $\mathbf{Y} \subset \mathrm{P}$. The set V with the so defined closure is a closure space, all continuous transformations of which are either constant or identical. Thus:

There exists a closure space P such that all continuous transformations of P are either constant or the identity transformations providod that $5 \leq|P| \leq H_{0} \cdot$

I thank Z. Hedrlin for much valuable advice.
References:
[1] M. KATEiTOV, On continuity structures and spaces of mappings, Comm.Math.Univ.Carol.6,2(1965), 257-278.
(Received September 8, 1965)

