Commentationes Mathematicae Universitatis Caroline

Jan Kadlec; Alois Kufner
On the solution of the mixed problem (Preliminary communication)

Commentationes Mathematicae Universitatis Carolinae, Vol. 7 (1966), No. 1, 75--84
Persistent URL: http://dml.cz/dmlcz/105041

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematical Universitatis Caroline e

$$
7,1 \text { (1965) }
$$

ON THE SOLUTION OF THE MIXED PROBLEM Jan Kadlec and Alois KUFNER, Prana (Preliminary communication)

1.

Let Ω be a bounded domain in the plane E_{2}, whose. boundary $\partial \Omega$ fulfils locally a Lipschitz condition. Decompose the boundary $\partial \Omega$ into two parts,

$$
\partial \Omega=\Gamma_{1}+\Gamma_{2},
$$

where Γ_{1} has positive measure. Consider a function φ on $\partial \Omega$ such that

$$
\begin{aligned}
& \varphi=0 \text { on } \Gamma_{1}, \\
& \varphi>0 \text { on } \Gamma_{2} .
\end{aligned}
$$

Let
(1.1) $A u=-\sum_{i, j=1}^{2} \frac{\partial}{\partial x_{i}}\left(a_{i j}\left(x_{1}, x_{2}\right) \frac{\partial u}{\partial x_{j}}\right)+c\left(x_{1}, x_{2}\right) \mu$ be an elliptic differential operator of the second order,

$$
n=\left(n_{1}, n_{2}\right) \text { the exterior normal vector to } \partial \Omega
$$

and

$$
\frac{\partial \mu}{\partial \nu}=\sum_{i, j=1}^{2} a_{i j} \frac{\partial \mu}{\partial x_{i}} n_{j}
$$

the exterior co-normal derivative.
In this preliminary communication, we shall state some results concerning the solution of the mixed problem (1.2) $\quad A_{\mu}=f$ in Ω,
(1.3)

$$
u+\varphi \frac{\partial u}{\partial v}=g \text { on } \partial \Omega
$$

It will be pointed out that, under further aseumptions, the solution may be sought in special weight. spaces, with the weight function

$$
\left[\operatorname{dist}\left(x, \Gamma_{1}\right)\right]^{\alpha} ;
$$

these make it possible to give a better characterization of the behavior of solutions in the neighborhood of those points on $\partial \Omega \quad$ which are limit points of both Γ_{1} and Γ_{2}. From this point of view it is possible to solve the mixed problem also for those right-hand sides and boundary conditions for which the variational solution cannot be found without using weight functions (i.e. there exists no solution in the corresponding space with $\alpha=0$). Fura thermore, one can (for various f and g) find better solutions than by the usual variational procedure.

Remark: The fact that only the twondmensional case is considered, is not essential; in r dimensions the difficulties are only in describing the position and shape of the parte Γ_{1} and Γ_{2} of the boundary $\partial \Omega$.

2.

In this section we shall introduce some functional spaces. For simplicity we consider only real functions and functionals; derivatives are understood in the sense of dis-tribution-theory.

The space of all functions μ for which the norm
(2.1) $\|\mu\|_{w_{2}^{(1)}}=\left(\|\mu\|_{L_{2}(\Omega)}^{2}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L_{2}(\Omega)}^{2}+\left\|\frac{\partial u}{\partial x_{2}}\right\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2}$
is Pinite will be denoted by $W_{2}^{(1)}(\Omega)$.

Let $\rho(x)$ be the distance between the point $x=$ $=\left(x_{1}, x_{2}\right)$ and Γ_{1}, and let α be a real number. It will be said that the function μ is in the space $L_{2, \alpha}(\Omega)$ if $\begin{aligned}\|u\|_{L_{2, \infty}(\Omega)} & =\left\|\mu \rho^{\alpha / 2}\right\|_{L_{2}(\Omega)}\end{aligned}=\underset{\Omega}{\left(\int|\mu(x)|^{2} \rho^{\alpha}(x) d x\right)^{1 / 2} .}$ the finite norm

$$
\text { (2.2) }\|u\|_{W_{2, \alpha}^{(1)(\Omega)}}=\left(\|u\|_{L_{2, \alpha}(\Omega)}^{2}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L_{2, \alpha}}^{2}(\Omega)+\left\|\frac{\partial u}{\partial x_{2}}\right\|_{L_{2, \alpha}(\Omega)}^{2}\right)^{1 / 2} .
$$

Next, $l_{\text {et }} V_{2, \alpha}^{(1)}(\Omega)$ be the space of all functions. such that

$$
u \in L_{2, \alpha-2}(\Omega), \frac{\partial u}{\partial x_{i}} \in L_{2, \alpha}(\Omega) \quad(i=1,2)
$$

with the corresponding norm
(2.3) $\|u\|_{V_{2, \alpha}^{(1)(\Omega)}}=\left(\|u\|_{L_{2, \alpha-2}(\Omega)}^{2}+\left\|\frac{\partial u}{\partial x_{1}}\right\|_{L_{2, \alpha}(\Omega)}^{2}+\left\|\frac{\partial u}{\partial x_{2}}\right\|_{L_{2, \alpha}(\Omega)}^{2}\right)^{1 / 2}$. Obviously $V_{2, \infty}^{(1)}(\Omega) \subset W_{2, \alpha}^{(1)}(\Omega) ; \quad$ from the authors'results, [1], it follows that the function $\mu \in V_{2, \propto}^{(1)}(\Omega)$ has zero trace on Γ_{1}.

It will be said that a function g on $\partial \Omega$ is in the space $W_{2, \alpha}^{(1 / 2)}(\partial \Omega) \quad$ if there exists a function $\tilde{g} \in W_{2, \alpha}^{(1)}(\Omega) \quad$ such that g is the trace of \tilde{g} on $\partial \Omega$. The function \tilde{g} is said to be the prolongation of g in Ω, and we define

$$
\|g\|_{W_{2, \alpha}^{(1 / 2)}(\partial \Omega)}=\inf \|\tilde{g}\|_{W_{2, \alpha}^{(1)}(\Omega)}
$$

where the infimum is taken over all prolongations \tilde{g} of the function g. We shall always consider those e' prolongetions \tilde{g} for which
$\|\tilde{g}\|_{W_{2, \alpha}^{(1)}(\Omega)} \leqq c\|g\|_{W_{2, \alpha}^{(1 / 2)}(\partial \Omega)}$
with C some positive constant.

The space $L_{1, \varphi, \alpha}\left(\Gamma_{2}\right)$ is defined as the set of all functions μ on Γ_{2} with the finite norm (2.4) $\|\mu\|_{L_{2, \varphi, \alpha}\left(\Gamma_{2}\right)}=\left(\int_{\Gamma_{2}} \frac{\mu^{2}}{\varphi} \rho^{\alpha} d \sigma\right)^{1 / 2}$.

The most important apace for our consideration is the apace

$$
S_{2, \alpha}^{(1)}(\Omega)=V_{2, \alpha}^{(1)}(\Omega) \cap L_{2, \varphi, \alpha}\left(\Gamma_{2}\right)
$$

with the norm
$(2.5)\|u\|_{S_{2, \alpha}^{(1)}(\Omega)}=\left(\|u\|_{V_{2, \alpha}^{(1)}(\Omega)}^{2}+\|u\|_{L_{2, \varphi, \alpha}\left(\Gamma_{2}\right)}\right)^{1 / 2}$.
The space $L_{2, \varphi, \alpha}\left(\Gamma_{2}\right)$ characterizes the trace of the function $\mu \in S_{2, \infty}^{(1)}(\Omega)$ on Γ_{2}; the trace of μ on Γ_{1} is obviously zero aince $S_{2, \alpha}^{(1)}(\Omega) \subset V_{2, \alpha}^{(1)}(\Omega)$. Remarc. Let $\alpha=0$ and $\varphi(x) \geqq c \rho(x)$, where c is a positive constant. Then

$$
\int_{\Gamma_{2}} \frac{\mu^{2}}{\varphi} d \sigma \leqslant \frac{1}{c} \int_{\Gamma_{2}} \frac{\mu^{2}}{\rho} d \sigma
$$

It follows from the properties of traces of functions from $W_{2}^{(1)}(\Omega)$ that for every $\mu \in W_{2}^{(1)}(\Omega)$ (and thus also for every $u \in V_{2}^{(1)}(\Omega)$) the latter integral is necessarily finite and can be estimated by the norm $\|\mu\|_{v_{2}^{(1)}}(\Omega)$. Thus in this case $S_{2}^{(1)}(\Omega)=V_{2}^{(1)}(\Omega)$.

We shall so assume that $\varphi(x) \leqslant c p(x)$.
Let $\mathscr{D}(\Omega)$ be the set of all infinitely differentieble functions with compact support in Ω. Let Q be a normal apace, i.e. $Q=\overline{D(\Omega)} \quad$ in the narm of the space Q, and let $Q \supset S_{2, \propto}^{(1)}(\Omega)$ algebraically and topologically (for example $Q=L_{2}(\Omega)$). Let
Q^{\prime} tbe the space of all continuous linear functionals on Q (i.e. Q^{\prime} is the space dual to Q). The space dual to $S_{2, \propto}^{(1)}(\Omega)$ is denoted by $S_{2,-\alpha}^{(-1)}(\Omega)$; the space dual to $L_{2, \varphi, x}\left(\Gamma_{2}\right)$ mas be identified with the space $L_{2, \varphi,-\alpha}\left(\Gamma_{2}\right)$ in the usual manner. Finally, $W_{2,-\alpha}^{(-1 / 2)}(\partial \Omega)$ denotes the space dual to $W_{2, \alpha}^{(1 / 2)}(\partial \Omega)$.

3.

Consider the operator A in the form (1.1) and the boundary value problem (1.2) and (1.3). Assume that

1) the functions $a_{i j}\left(x_{1}, x_{2}\right)$ are measurable bounded in Ω, and the quadratic form $\sum_{i, j=1}^{2} a_{i j}\left(x_{1}, x_{2}\right) \xi_{i} \xi_{j}$ is positive definite uniformly with respect to $x=\left(x_{1}, x_{2}\right) \in \Omega$;
2) the function $c\left(x_{1}, x_{2}\right)$ is positive measurable;
3) the function $\varphi\left(x_{1}, x_{2}\right)$ (see boundary condition (1.2)) fulfils a Lipschitz condition; so we obviously have $\varphi\left(x_{1}, x_{2}\right) \leqq c \rho\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in \partial \Omega$. To the operator A there corresponds the bilinear form

$$
\begin{equation*}
a(u, v)=\int_{\Omega} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d x+\int_{\Omega} c \cdot u \cdot v d x ; \tag{3.1}
\end{equation*}
$$

from the ellipticity of A it follows that

$$
|a(\mu, \mu)| \geqq c\|\mu\|_{w_{2}(1)}^{2}(\Omega) \text {. }
$$

To the mixed problem (1.2) and (1.3) there correaponds the bilinear form

$$
\begin{equation*}
B(u, v)=a(u, v)+\int_{V_{2}} \frac{u v}{\varphi} d \sigma \tag{3.2}
\end{equation*}
$$

defined on the cartesian product $S_{2, \infty}^{(1)}(\Omega) \times S_{2,-\infty}^{(1)}(\Omega)$; it can be easily shown that
(3.3) $|B(\mu, v)| \leqq c_{1}\|u\|_{S_{2, \alpha}^{(1)}(\Omega)}\|v\|_{S_{2,-\alpha}^{(1)}}(\Omega)$,
(3.4) $\quad|B(\mu, u)| \geqq c_{2}\|u\|_{S_{2}^{(1)}(\Omega)}^{2} \quad$ (i.e. $\left.\alpha=0\right)$.

Definition. The bilinear form $B(v, \mu)$ is said to be $|\alpha|-$ elliptic, if there are positive constants c_{3} and c_{4} such that

$$
\begin{aligned}
& \|v\|_{S_{2,-\alpha}^{(1)}(\Omega)}=1|B(\mu, v)| \geqq c_{3}\|\mu\|_{S_{2, \alpha}(1)}(\Omega) \\
& \sup _{\|\mu\|_{S_{2, \alpha}(1)}(\Omega)} \mid B 1
\end{aligned}|B(\mu, v)| \geqq c_{4}\|v\|_{S_{2,-\alpha}(1)}(\Omega) \quad .
$$

Now, we have
Theorem 1. Under the corresponding hypotheses to the form $B(\mu, v)$, there exists an interval $y=\left(-\gamma_{1}, \gamma_{2}\right)$ $\left(\gamma_{i}>0\right)$ such that for $\alpha \in \mathcal{I}$ the form $B(\mu, v)$ is $|\alpha|$-elliptic.

Remark. If $B(u, v)=B(v, u)$, then $\gamma_{1}=\gamma_{2}$.
Next we have, by the generalized Lax-Milgram theorem,
[2], the following
Theorem 2. Let $\alpha \in I$, let F be a functional on the space $S_{2,-\infty}^{(1)}(\Omega)$ (i.e. $F \in S_{2, \propto}^{(-1)}(\Omega)$). Then there exists precisely one element $w \in S_{2, \alpha}^{(1)}(\Omega)$ such that

$$
B(w, v)=F(v)
$$

for every $v \in S_{2,-\alpha}^{(1)}(\Omega)$, and that

$$
\|w\|_{S_{2, \alpha}^{(1)}(\Omega)} \leqq c_{s}\|F\|_{S_{2, \alpha}^{(-1)}(\Omega)}
$$

4.

From Theorem 2 we obtain the existence and uniqueness of the weak solution of the mixed problem (1.2) and (1.3); the exact formulation of this problem will be given in seclion 5.

In all further considerations we assume $\propto \in \mathcal{I}$, whenre \mathcal{I} is an interval as described by Theorem 1.

Let $f \in Q^{\prime}$ and let g be a functional on the space of traces of functions from $S_{2,-\alpha}^{(1)}(\Omega)$; we assur me that g can be decomposed thus:

$$
\begin{equation*}
g=g_{1}+g_{2}+\varphi g_{3}, \tag{4.1}
\end{equation*}
$$

where $g_{1} \in W_{2, \alpha}^{(1 / 2)}(\partial \Omega) \quad$ (with the corresponding prolongation $\left.\quad \tilde{g}_{1} \in W_{2, \alpha}^{(1)}(\Omega) \quad\right), \mathcal{f}_{2} \in L_{2, \varphi, \propto}\left(\Gamma_{2}\right)$ and we put $g_{2}=0$ for $x \in \Gamma_{1}$, and $g_{3} \in W_{2, \infty}^{(-1 / 2)}(\partial \Omega)$; for $\psi \in S_{2,-\alpha}^{(1)}(\Omega), \varphi g_{3}(\psi)$ means the same as $g_{3}(\varphi \psi)$.

$$
\text { Let } \psi \in S_{2,-a}^{(1)}(\Omega) ; \text { setting }
$$

(4.2) $F(\psi)=f(\psi)-a\left(\tilde{g}_{1}, \psi\right)+\int_{\Gamma_{2}} \frac{g_{2} \psi}{\varphi}+g_{3}(\psi)$, we have the

Theorem 3. The functional F from (4.2) is in the space $S_{2, \infty}^{(-1)}(\Omega)$.

It follows from Theorem 2 that there is precisely one element $w \in S_{2, \alpha}^{(1)}(\Omega)$ such that $B(w, \psi)=F(\psi)$ far every $\psi \in S_{2,-\alpha}^{(1)}(\Omega)$. Set $\mu=w+g_{1}$, and let $g_{1}^{*}, g_{2}^{*}, g_{3}^{*}$ be functional which form another decomposition of the functional g from (4.1). i.e.

$$
\begin{gathered}
g=g_{1}+g_{2}+\varphi g_{3}=g_{1}^{*}+g_{2}^{*}+\varphi g_{3}^{*} . \\
-81-
\end{gathered}
$$

Let F^{*} be the functional corresponding to f, g_{1}^{*}, g_{2}^{*} and g_{3}^{*} in a manner similar to (4.2), and let $u^{*}=w^{*}+$ $+g_{1}^{*}$, where w^{*} is the solution of the equation $B\left(\omega^{*}, \psi\right)=F^{*}(\psi)$. Then we have
Theorem 4. Under the above hypotheses, $\mu^{*}=\mu$.

5.

Definition. Let f be a functional.on $S_{2,-\alpha}^{(1)}(\Omega)$; let g be a functional on the space of traces of functions from $S_{2,-\alpha}^{(1)}(\Omega)$ with corresponding decomposition of the form (4.1). Let F be defined by (4.2).

The function $\mu \in W_{2, \alpha}^{(1)}(\Omega) \quad$ is said to be a vas solution of the mixed problem (1,2) and (1,3), if
1). $u-\tilde{g}_{1} \in S_{2, \alpha}^{(1)}(\Omega)$,
2) $B\left(u-\tilde{g}_{1}, \psi\right)=F(\psi)$ for every $\psi \in S_{2,-\alpha}^{(1)}(\Omega)$.

Theorem 5. Let $\alpha \in \mathcal{Y}$. Then there exiets.precisely one weak solution $u \in W_{2, \alpha}^{(1)}(\Omega)$ of the mixed problem (1.2) and (1.3), and the estimates

$$
\left\|\mu-g_{1}\right\|_{S_{2, \alpha}(1)}(\Omega) \leqslant c\|F\|_{S_{2, \alpha}^{(1)}}(\Omega)
$$

and

$$
\|u\|_{W_{2, \alpha}(\Omega)}(\Omega) \leqq c\left(\|f\|+\left\|g_{1}\right\|+\left\|g_{2}\right\|+\left\|g_{3}\right\|\right)
$$

hold (the norms are considered in the corresponding spaces). Theorem .6. If $|\alpha|$ is oufficientiy mall and $\mu \epsilon V_{2, \alpha}^{(1)}(\Omega)$ is such that $B(\mu, \psi)=0 \quad$ for every $\psi \in S_{2,-\alpha}^{(1)}(\Omega)$, then $\mu=0$.

This theorem extends the assertion on uniqueness of solution, proved in Theorem 5 for the apace $S_{2, \alpha}^{(1)}(\Omega)$, to the larger apace $V_{2, \alpha}^{(1)}(\Omega)$
6.

In this section it is established that the weak solution, defined in section 5, solves the problem (1.2) and (1.3) in the classical sense, if every element is a sufficiently smooth function.

1. The condition $u-g_{1} \in S_{2, \alpha}^{(1)}(\Omega)$ yields $u=$ $=g_{1}=g$ on Γ_{1}.
2. We shall consider functions ψ which are zero in the neighbourhood of Γ_{1}; the equality $B\left(\mu-\tilde{g}_{1}, \psi\right)=F(\psi)$. can then be rewritten as
ie.

$$
\begin{aligned}
B(\mu, \psi) & =B\left(\tilde{g}_{1}, \psi\right)+F(\psi)=a\left(\tilde{g}_{1}, \psi\right)+\int_{\Gamma_{2}} \frac{g_{1} \psi}{\varphi} d \sigma+ \\
& +f(\psi)-a\left(\tilde{g}_{1}, \psi\right)+\int_{\Gamma_{2}} \frac{g_{2} \psi}{\varphi} d \sigma+\int_{\Gamma_{3}} g_{3} \psi d \sigma= \\
& =f(\psi)+\int_{\Gamma_{2}} \frac{g \psi}{\varphi} d \sigma
\end{aligned}
$$

$a(\mu, \psi)+\int_{\Gamma_{2}} \frac{\mu \psi}{\varphi} d \sigma=\int_{\Omega} f \psi d x+\int_{\Gamma_{2}} \frac{g \psi}{\varphi} d \sigma$.
By Green's theorem,

$$
a(\mu, \psi)=\int_{\Omega} A \mu \cdot \psi d x+\int_{\partial \Omega} \frac{\partial \mu}{\partial \nu} \psi d \sigma
$$

i.e.

$$
\int_{\Omega} A \mu \cdot \psi d x+\int_{\partial \Omega} \frac{\partial \mu}{\partial \nu} \psi d \sigma=\int_{\Omega} f \psi d x+\int_{r_{2}} \frac{(g-\mu) w}{\varphi} d \sigma
$$

For $\psi \in D(\Omega)$ we have $\int_{\Omega} A \mu \cdot \psi d x=\int_{\Omega} f \psi d x$ and thus

$$
A \mu=f i^{\Omega} \Omega
$$

But in this case we have for $\psi \neq 0$ on Γ_{2}

$$
\int_{\Gamma_{2}} \frac{\partial \mu}{\partial \nu} \psi d \sigma=\int_{\Gamma_{2}} \frac{g-\mu}{g} \psi d \sigma
$$

and thus

$$
\begin{gathered}
\frac{\partial u}{\partial \nu}=\frac{g-\mu}{\rho} \text { on } \Gamma_{2} \text {; therefore } \\
\mu+\varphi \frac{\partial \mu}{\partial \nu}=g \text { on } \Gamma_{2},
\end{gathered}
$$

establishing that our formulation is meaningful. References:
[1] A. KUFNER, J. KADLEC: Characterization of functions with zero traces by integrals with weight functions, to appear in Casopis pro pěstová ni matematiky, 1966.
[2] J. NECAS: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationelle, Ann.Scuola Nor. Sup.Pisa, ser. 3,16,4(1962),305-326.
(Received December 13,1965)

