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Commentatione8 Mathematicae Universitatie Carolinae 

7, 1 (1965) 

ON THE SOLUTION OF THE .MIXED PROBLEM 

Jan KADLEC and Alois KUFNER, Praha 

(Preliminary communication) 

1. 

Let H be a bounded domain in the plane £2>
 w h a*e 

boundary o)il fulfils locally a Lipsohltz condition. 

Decompose the boundary d-Q. into two parts, 

an . n, + p2 , 
where P^ has positive measure* Consider a function y 

on dSl such that 

(f> = 0 on H- , 

y> > 0 on r 2 • 
Let 
(1.1) A^^i^/a^rx^x^^J+ef^,^^ 

be an el l iptic differential operator of the second order, 

TV « C?V.n TVA ) the exterior normal vector to d£L 

and 

the exterior co-normal derivative. 

In this preliminary communication, we shall state so

me results concerning the solution of the mixed problem 
(1.2) Au m 4 in SL , 

(1.3) AJL + y ?~ * £ on a i l . 
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, It will: be point ad out that, under further assumptions, 

the solution may be sought in special weight spaces, with 

the weight function 

[djut rx , n; ) j * ; 
these make It possible to give a better characterization of 

the behavior of solutions in the neighborhood of those points 

on dil which are limit points of both f) and Pz * 

From this point of view it Is possible to solve the 

mixed problem also for those right-hand sides and boundary 

conditions for which the variational solution cannot be 

found without using weight functions (i.e. there exists no 

solution In the corresponding space with at m 0 ). Fur

thermore, one can (for various f and £. ) find better so

lutions than by the usual variational procedure. 

Remark: The fact that only the two-dimensional case is consi

dered, is not essential; in ia dimensions the difficulties 

are only in describing the position and shape of the parts 

H, and P2 of the boundary d ft . 

In thla section we shall Introduce some functional 

spaces. For simplicity we consider only real functions and 

functionala; derivatives are understood in the sense of dis

tribution-theory* 

The space of all functions AJL for which the norm 

(2.D U\f^ ^flu*'$ W 1^.*-" >* 
is finite will be denoted by W"} (SL) . 
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I»et a> f x ) *>e the distance between the point X *r 

ss(x &) and *"* ' and let ^ be a real number. It will 

be said that the function u, is in the space i~z ^(XL) if 

Denote by W/^ Cil ) the set of all functions with 

the finite norm 

Next, let V}*\ (XL) be the space of all functions* 

such that 

with the corresponding norm 

(2.3) ^ l ^ - ^ ^ . ^ * i ^ l L ^ , + lfejutt^)'
4 • 

Obviously \£'J.Ol)c V ^ (Til) ; from the authors'results, 

[1], it follows that the function AJU e V™ fjfl ) has 

zero trace on P-j • 

It will be said that a function £ on dXL is in 

the space Witf£ (3-0. ) if there exists a function 

9- 6 ^ ' J c ̂ ^ ̂  such that 9" is the trace of 9- on 
3-0- . The function j^ is said to be the prolongation of 

9- in XI , and we define 

1 9 - V'<*>r<9ii> = w ' % V i "-> ' 
where the infimum i s taken over a l l prolongations ty of 

the function $. . Wa shal l always consider those prolongar 

tions ^ for which 
l$lwf%CA) * O tq,lwM)(aji) 

with c some posit ive constant, ' 
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The apace L% ^ ^ (V* ) ia defined as the aet 

of a l l functions AJU oa Vt With the finite norm 

(2.4) *">hit^cq) - f / f V - * ^ * • 

The moat important apace for our consideration ia 

the apaoa 
S&(SL) ~ \ £ (JU nLlt9t«(rg) 

with the norm 
4/ 

(2.5) B^»s«, f A ) - C*<*ljw w + i ^ L ^ c v ) * • 
!,<*, lf**> z-ty i** 

The apaee L± ^ ( p^ ) eharaeterltee the trace of the 

function AJL 6 S/'i. (JL ) oa fl j the trace of *L 

oa Tt ia obfloualy aero aiaoe S£(fl) c V£*i Ol) . 

Remark. Let ac » 0 and y 6 0 2 c p f x ) ? where c ia 

a positive constant. Than 

It followa from the properties of tracea of functions from 

WM Cil.) that for efary M, e W9
ci> (IL) (and thua 

X M 

also for e*ery >o^c l£l /(SL) ) the latter integral ia 

neceaaarily finite and can be estimated by the norm 

lAA,tv(4>(su . Thua in this case S™CJl)>- Vj^C-fL) • 

fa shall ao assume that g>(x)£c:p(x) . 

Lat SUCSt) be the aet of al l infinitely diffea?ea-

tiafcle functions with compact support in i l .Let (X be 

a normal spmQ%t i . e . Q * 2J Til /* ia the norm of the 

apaoa (X » and let (X o S/*^ (ft ) algebraically and 

topologieally (for example (X » L% (ft ) ) . Let 
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Q' %be the space of al l continuous linear functionals on 

Q ( i . e . Qf i s the space dual to Q )• 

The space dual to $c
2 ^ (& ) i s denoted by 

%,--<. "̂̂ " ^ ; t n e si?*0© &u&l *° L^ ^ ^ C Pt ) may be 

identified with the space L2 _ ^ f Q ) in the usual 

manner. Finally, VV6" * OH) denotes the space dual 
Z j — oC 

to w/1*} Cdfl) . 

3. 

Consider the operator A in the form (l»l) and the 

boundary value problem (1*2) and (1.3)» Assume that 

1) the functions o^ • Cxi 9 xz ) are measurable 

bounded in H , and the quadratic form.X <*zjCx„x%)*ii w 

i s positive definite uniformly with respect to Xm(xirxt)eH; 

2) the function cCx11xt) i s positive measurable; 

3) the function <f 6c15 x2 ) (see boundary condition 

(1*2)) ful f i l s a Lips chit z condition; so we obviously have 

<fCx1fxz) & c pCx17xt ) for Cxifxz ) e d-& • 

To the operator *A there corresponds the bilinear 

form 

(3-D CU(A^,V-)~ fcu^Cx)§& §* dx+fc.yu.vdx ; 

from the e l l ipt ie i ty of A i t follows that 
\0,(AA,AA,)\ £ C t#>l$,w (XL} . 

To the mixed problem (1*2) and (1.3) there corresponds 

the bilinear form 

(3*2) B (AJL, V) - «, Ot, *r ) 4- y -*£2T d& 
q 
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defined on the carteaian product S2gC (St) x S2 ^ (SI) : 

i t can be eaaily shown that 

( 3 . 3 ) \B(ufv)\ £ c, \\AC\\SCI) (Il) Wirllsci) (XL) > 

(3.4) \B(M.,«.n £ Cjlu.^„)(si) d.e. oc-0). 

Definition, The bilinear form E>(<ir, AA.) ±Q said to be \oc\-

e l l i P t i c . i f there are positive constants c3 and c^ such 

that .. 
^ujtv \&(AA,,<IT)\ £ C3 IACI ci) , 

AUjy \b(M.,nr)\ £ C^lvt ci) -

3.,< 

Now, we have 

Theorem 1# Under the corresponding hypothese3 to the form 

& (AJU 7 <tr ) 7 there exists an interval J = (~ 3i i Tz ^ 

(ft > 0 ) such t h a t fo* oc e 3 the form 6 (<u*, or ) ia 

\dC I - e l l i p t i c . 

gfil§£i. If B (AMjtr) » B(ir-7 ^ ; ; then ^ = 3* ' 

Next we have, by the generalized Lax-Milgram theorem, 

t 2 j , the following 

Theorem^ 2 . Let aC e 7 P l e t F be a functional on the 

space Sf ^ (SI ) ( i . e . F e S / " ^ (SI ) ) . Then the-

re exiats preci3ely one element ^ £ %7dC "̂̂ * ' euch 

ft(V-7 IA-; « F (v) 

Ci) tor every -v e £/_<*. (SL ) } and that 

, t < r , s /^r i i> * c* | F I I 5 / ^ w ' 
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4. 

From Theorem 2 we obtain the existence and uniqueness 

of the weak solution of the mixed problem (1.2) and (1.3); 

the exact formulation of this problem will be given in sec

tion 5. 

In all further considerations we assume oc e J , whe

re y is an interval as described by Theorem 1. 

Let f € Q,' and let r£. be a functional on the 

space of traces of functions from £ ^ - o t (SL ) \ we assu-4 

me that £- can be decomposed thus: 

(4.1) 9- - £-, + &z + 9>9"s > 
ff/ ) 

where g^ e W2 ^ (d ft- ) (with the corresponding pro*-

longation ^ e W_«_\ CH) ) , +_ e L ^ ^ C r_ ) 

and we put q._ = 0 for X e H, , and g. e WJ'^Cdn.) • 

for y & S^_ CSL) , ^^(yr) means the sam? as 

Let Y e Sf°_^ i-fl-) j setting 

(4.2) F(yJ - f Vif) - -ti'9,> ¥"} + f%^ + 9^ <>O > 
1 

we have the 

Theorem 3 . The funct ional F from (4.2) i s in the space 

I t follows from Theorem 2 that there i s p rec i se ly one 

element ur e S / ^ (Jl) such tha t B(ur,yr) = F(y ) fcr 

rvery -y e S^l ^ (St ) . Set AJL -» <w +- fyn f and l e t 

9"1 ; 9 i ? ^3 ^ e funct ionals which form another decom

pos i t ion of the funct ional g. from ( 4 . 1 ) . i . e . 
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list " b e the functional corresponding to f , <fa t 9j x 
* and ^ i n a manner similar to (4 .2 ) , and l e t M> m <ur + 

+ fa 1 where itf"* i s the solution of the equation 

B(W-* *y)m F*(ip) . Then we have 

Thaoggmi 4» Under the above hypotheses, AC* « 4*. • 

5* 

.Definition, Iiet f be a functional.on S^;_^ fJl) ; let 9. 

be a functional on the space of traces of functions from 

$z -<*, (& ) with corresponding decomposition of the 

form (4.1)* Let F be defined by (4.2)# 

The function AA, € W/'* (XI ) is aaid to be a 
2, «c 

weak solution of the mixed problem (1.2) and (ltlK if 
1) .-U-& e S,% (XL) , 

2) ft (M, - $< , r ) - F (r) for every f eS^ (H). 

Theorem 5. Let at e J . Then there exists, precisely one 

weak solution AM e W/4* (XI ) of the mixed problem 

(1*2) and (1.3), and the estimates # 

1 At -<& asW & c IF 1 ^ , r j x ; 

and 

hold (the norms are considered in the corresponding spaces). 

Theorem 6« If Jscf i s suf f i c ient ly small and AM € Vz<c (XI) 

i s sueh that B (w , f ) * 0 for every V <s S/'L^ # * • ) , 

then .44, s& 0 . 

This theorem extends the assertion on uniqueness of 

solution, proved in theorem 5 for the apace Sf^ (X)- )f 

to the larger spaoe V/4[ (SI ) 
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6. 

In this section it is established that the weak solution, 

defined la section 5, solves the problem (1»2) and (1.3) in 

the classical sense, if every element is a sufficiently 

smooth function* 

1. The condition *L - fy € S>z
(1)^ (SL } yields AJU «-

2. We shall consider functions Y w h ich are zero la the 

neighbourhood of J"} ; the equality B Co, ~$j , if) =* Fty) % 

can then be rewritten as 

&Oc,y) » B C | ; , r ^ F(r)**a>(%<nr
)+f^d6 + 

4- fry) -a-(&,r)+J,±^Ed6i- f%rd(> = 

='i(r)+f2§-de , 
i.e. 1 

cC^^ + f^de^ffrdx + fM-de . 

By Green'a theorem, 

O,(<C,Y) =/AAI.Y dx+/§£ Yder > 

' SA*.Гd*+f&Гd*-S**d*+f*=¥!Ldă 
i .e 

For y e 2)(J1) we have fAu, ,yc6c-=r/f y tff-X and thus 
,. . -^ ̂  ^ 

AM*. ** T in TL • 
But in this ease we have for r̂ # 5 oa Q 

f3fcvde-f *g* r de 
and thue -§-£-.« -SL^i. oa Q ; therefore 
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establishing that our formulation i s meaningful. 
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