Commentationes Mathematicae Universitatis Caroline

Tomáš Sech
 Interdependence of weakened forms of the axiom of choice

Commentationes Mathematicae Universitatis Carolinae, Vol. 7 (1966), No. 3, 359--371
Persistent URL: http://dml.cz/dmlcz/105069

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

INI ERDEPENDENCE OF WEAKENED FORMS OF THE AXIOM OF CHOICE Tomás JECH, Praha

1. Introduction

The aim of the present paper ${ }^{1)}$ is to discuss the interdependence of weakened forms of the general axiom of choice in Gödel-Bernays axiomatic set theory \sum (cf.[2]):
(E) $\quad\left\{\begin{array}{l}\text { There is a choice-function on the universal } \\ \text { class, i.e. there is a function } F \text { such that } \\ F(x) \in X \text { for every non-void set } x \text {. }\end{array}\right.$ It is well known that the following axiom of choice (in classical form) and the well ordering principle are equivalent (a number of setatheoretical statements equivalent to these is stated in [10]):
(AC) $\left\{\begin{array}{l}\text { On every family of non-void sets there is a } \\ \text { choice function. }\end{array}\right.$
(WE) Every set can be well ordered.
Let us consider their weakened forms (these are, if α is a special ordinal number, ${ }^{2)}$, statement of the set theory): $\left(A C H_{\alpha}\right)\left\{\begin{array}{l}\text { On every family of cardinality } H_{\alpha} \text { of non- } \\ \text { void sets there is a choice function. }\end{array}\right.$ (WF \&) $\left\{\begin{array}{l}\text { Every cardinal number is comparable with Hoc } \\ \text { (i.e. equal, less or greater than } H_{\infty} \text {) }\end{array}\right.$ 1) read in Vopénka' Seminar on set theory at the Carolina ..._Uniyersity in $P_{r} a g u e$ in March 1966.
2) i.e. a special class (cfं.[2]) which is an ordinal number.

Furthermore, let us consider the ordering principle, which Is a consequence of the axiom of choice:
(OP) Every set can be ordered. And finally, let us consider the principle of dependent choices (considered by A. Tarski in [12]) and its generalization (A. Lévy [6]):

It is known that $(A C) \equiv(W E) \equiv(\forall \gamma)\left(W E \cdot H_{\gamma}\right) \equiv(\forall \gamma)\left(P D C H_{a c}\right)$.
Moreover, it is apparent that; for $\quad \gamma \in \sigma^{\sim},\left(A C \mu_{a x}\right) \rightarrow$
$\rightarrow\left(A C H_{\gamma}\right),\left(W E H_{\gamma}\right) \rightarrow\left(W E X_{\gamma}\right)$ and $\left(P D C H_{o}\right) \rightarrow\left(P D C K_{\gamma}\right)$.

> All these weakened forms of the axiom of choice are independent on the axioms of the set theory Σ. The independence of ($W \mathrm{~W} \mathrm{H}_{0}$) (and therefore also of the axiom of choice) was shown by Hajek and Vopernke [3], the independence of the other forms by Jech and Soahor [4],[5]. The following form of the axiom of choice is weaker than all the statements statedabove (e.g. $(O P) \rightarrow(e)$ is shown below):
> (e) $\quad\left\{\begin{array}{l}\text { Every denumerable family of pairs contains } \\ \text { a denumerable subfamily, on which there is } \\ \text { a choice-function. }\end{array}\right.$

The statement (e) is also independent on axioms of the set theory \sum. This follows from mentioned papers of Jech and Sochor.

The interdependence of weakened forms of the axiom of choice has been thoroughly investigated in axiom systems where the oxiom of regularity - Fundierungeaxiom is not considered, viz. where the existence of individuals (or urelements or non-founded sets) is permited. Fraenkel showed in [1] the independence of the axiom of choice on the existence of chnise-function on every denumerable family of finite sets. Mostowski [7],[8] showed the independence of the axiom of choice on the ordering principle and on the principle of dependent choices, and the independence of $(\forall \gamma<\alpha)\left(A C \mu_{\gamma}\right) \rightarrow\left(A C H_{\alpha c}\right)$ for rea gular special H_{α} 3). The most thorough investigation was carried out by Lévy in [6].

In present paper, similar results are obtained for the set theory \sum. The following assertion is proved (in section 4), if H_{∞} is any regular special cardinal number:

None of following statements: ordering principle(OP), restricted well-ordering principle (UE \mathcal{K}_{α}), restricted axiom of choice (ACH) and genernlized principle of dependent ohoicen (PDCH) isn be proved from the oxioms of the 3) A apecial aleph H_{α} is called regular if it is regular under validity of the axiom of choice. E.g. H_{1} is regular, although it can be a union of denumerable collection of denumerable sets if the axiom of choice does not hold.
set theory \sum and the assumption that ($A C H_{\gamma}$), ($\mathrm{NE}_{\mathrm{E}} \mathrm{H}_{\gamma}$) and (pDC μ_{γ}) hold for every $\gamma \in \alpha$.

In [6] it is proved that (PDC H_{α}) implies both ($A C \mathcal{K}_{\alpha}$) and (WEH2), and that, for singular $H_{\alpha},(\forall \gamma \in \propto)\left(A C H_{\gamma}\right)$ impliea ($A C H_{\alpha}$), and ($\forall \gamma \in \alpha$) (PDC μ_{γ}) implies (PDC $H_{\alpha c}$). The ordering principle impliea that on every family of finite sets there is a choice function (indeed, if a is a family of finite sets and Ua is ordered, then every $x \in a$ has the least element which can be chasen).

The following questions remain open:

1. Does ($\forall \gamma \in \alpha)\left(W E H_{\gamma}\right)$ imply ($W E H_{\alpha}$) for singular H_{α} ?
2. What relation is there between ($A C \mu_{\infty}$) and (WE H_{c})?
3. Is the axiom of choice independent of the ordering principle?
4. Is the axiom of choice independent of $\left(\forall_{\gamma}\right)\left(A C H_{\gamma}\right)$?
5. Is the general axiom of choice independent of the "weak" axiom of choice ($A C$)?

If the validity of the axiom of regularity is not required, the answer to questions 3,4 and 5 is affirmative. The problem is whether the same holds for theory Σ.

The results of present paper are obtained by construction of a θ-model $\boldsymbol{\alpha}$ set theory. The reader is assumed to be familiar with the papers [2],[14],[16] and[4]; the notation used in these papers is preserved here.

2. The model' ∇ and the characteriatis $\sigma(c t)$ of the topological engce

The model ∇ (with parameters ind, $\langle c, t\rangle, G, r, j$) introduced by Vopernka in [13] and [14] is the syntactic model of the theory Σ^{*} (Gödel's axioms A, B, C, D, E) in the theory $\sum_{\text {ind }}(A, B, C, E$ with individuals).4) In [15], the dependence of properties of the ∇-model upon the characteristics $\mu(c t)$ and $\nu(c t)$ of the topological apace $\langle c t$ 〉 is investigated. For the purpose of present paper it is useful to consider a further characteristic of the space $\langle c t\rangle$:

Definition. $\sigma(c t)$ is the least cardinal number H_{σ} such that there is no basis t_{0} of the topology t with
 monotone (i.e. $v_{\xi} \sum v_{\eta}$ for $\xi \in \eta$), collection of elements of t_{0} contains an open non-void subset. ${ }^{5)}$

Lemmg 1. Let $x \in$ Pol, $b \subseteq$ Pol, $\mu_{\eta}<\sigma(c t)$, let $\mu \neq 0$ be an open set and let $\mu \equiv F^{r} x \equiv b \&$ card $x=\mu_{\eta}{ }_{\eta}$. Then there exist $\approx \subseteq b$ and open $v \neq 0$ such that cand $x=H_{\eta}, v=\mu \cap F^{\prime} x=x^{7}$.
proof. Let t_{0} be a basis of the topology t such that $\bigcap_{r \in \omega_{\eta}}^{v_{\gamma}}$ contains an open non-void subset for every monotone 4)-In the present paper, -the operations, notions etc. in the ∇-model are provided with an asterisk.
5) For every apace, $\sigma(c t) \leqslant \nu(c t)(\nu(c t)$ is the least cardinal number ${ }_{3}$, such that there is no-open-non-void set which can be covered by H_{y}, closed nowhere dense sets). The present $\sigma(c t)$ is a minor modification of the characteristies considered in [13] (unpublished) and in [9].
collection $\left\{v_{\gamma}\right\}_{\gamma} \in \omega_{\eta}$ of elements of t_{0}. There is a polynomial g and $\bar{u} \in t_{0}$ such that $\bar{u} \leqslant \mu \cap F^{\prime} g \mathcal{F}_{n} \omega_{z} Q W(g)=x{ }^{\top}$.

There exists a monotone collection $\left\{v_{\gamma}\right\}_{\gamma \in a_{n}}, v_{\gamma} \in t_{0}$ and a l-1 sequence $\left\{y_{\gamma}\right\}_{\gamma \in} \omega_{\eta}$ of elements of b such that $v_{\gamma} \in \bar{u} \cap F^{r}\left\langle y_{\gamma} \gamma>\in g^{7}\right.$. Let $x=\left\{y_{\gamma} ; \gamma \in \omega_{\eta}\right\}$, let $0 \neq v \leq{ }_{\gamma \in \omega_{\eta}} v_{\gamma}$. Let us prove $v \in F^{\top} x=z^{7}$. If there were $w \in t_{0}$ and $y \in P o l$ such that $w \subseteq v \cap F^{r} y \in x \&$
\& $y \notin x^{7}$, then there would exist $\gamma \in \omega_{\eta}$ and $\bar{w} \in t_{0}$ with $\bar{w} \subseteq w \cap F^{r}\langle y \gamma\rangle \epsilon g \& y \neq y_{\gamma}^{\gamma}$, contradicting $\bar{w} \subseteq F^{r}\left\langle y_{r} r\right\rangle \in g \&$ Fine $(g)^{7}$.

Lemme 2. Let $b \subseteq$ Pol. Let $f \Phi^{*} k_{k}$, card* $f<{ }^{*} k_{1_{q}}$, $K_{\eta} \leqslant \sigma(c t)$. Then there exists $g \in \widetilde{\not O l}$ such that $g=* f$ and $(\forall x \in D(g))\left[g(x) \leq b \&\right.$ card $\left.g(x)<\mu_{\eta}\right]$.

Proof. We can assume that $D(f)=\left\{x ; x \in F^{\Gamma} f(x)=\right.$ $\leq b \&$ card $\left.f(x)<H_{\eta}{ }_{\eta}\right\}$. Evidently, $\mathscr{D}(f)$ is the union of pairwise disjoint open sets $f^{-1}(y)$ (for $y \in W(f)$). Let $\mu=f^{-1}(x)$ be one of these, i.e. $\mu \leq F^{\top} x \subseteq b \&$ card $x<H_{\eta}^{\top}$. According to the preceding lemma there exist v(μ) and(μ) such that card $x(u)<H_{\eta}, x(u) \in b$ and $v(u) \subseteq F^{r} x=x(u)^{7}$. Let us denote μ by μ_{0}. Let $\mu_{\gamma}=\operatorname{Int}\left(\mu-\mathcal{S}_{\mathcal{L}} \cup v\left(\mu_{\xi}\right)\right)$. Let γ_{0} be the first ordinal such that $\mu_{\gamma_{0}}=0$. Let $\mu^{\prime}=\bigcup_{\gamma \in \gamma_{0}} v\left(\mu_{\gamma}\right)$. Obviously, μ^{\prime} is dense in μ. Let us define the function g on $\mu^{\prime} \leqslant \mu$ as follows: $g(y)=x\left(\mu_{\gamma}\right)$ for $y \in v\left(\mu_{\gamma}\right)$. Similarly on other $\mu=f^{-1}(x), x \in \mathcal{U}(f)$. Evidently $D(g)$ is dense in $D(f)$ and thus $D(g) \in j$.
Then obviously $f=* g$.
Theorem i. Let $X \subseteq P B l$. Let $f s^{*} \tilde{X}$, card ${ }^{*} f \leqslant^{*} H_{H_{\eta}}, H_{\eta} \leqslant \sigma$ (ct t. Then there exists a g such that $g=*_{f}$ and
$(\forall x \in D(g))\left[g(x) \equiv X \&\right.$ card $\left.g(x)<H_{\eta}\right]$.
Proof. Let $f ⿷^{*} \dot{X}$. There is a subset \boldsymbol{z} of the class \tilde{X} such that $\left(\forall h \epsilon^{*} f\right)\left(\exists h_{1} \in x\right)\left[h={ }^{*} h_{1} \& W\left(h_{1}\right) \leq X\right]$. Let $b=\bigcup_{h e x} W(h)$. Then $f \leq *_{k}$ and the assertion follows from lemma 2.

3. Permutation submodels of the model ∇

The reader is assumed to be familiar with both permutation models and permutation submodels of the ∇-model, and with the notation used in [16] and [4]. G is a group of permatations of the set a, F a filter on $G, Q=$ $=Q(a, G, F)$ subclase of $\Pi(a)$ determining a permuta $=$ tion model (model of the set theory without the axiom of regularity). 6) g is a group of permutations of the set ind, F a filter on $g, P=P(g, F)$ a subclass of Pol . The class \tilde{P}. determines an inner complete submodel (denoted as ∇_{p}) of the model ∇. This model is called a permutation submodel of the model ∇ and axioms of the theory Σ hold in it (Vopěnka and Hajek [16]). For $x \in \Pi(a), H(x)$ is the group of all $q \in G$ such that $q x=x$, and $K(x)$ is the group of all $q \in G$ such that q if identical on x. The subgroups $\mathscr{H}(x)$ and $\mathscr{K}(x)$ of g for $x \in$ Pol have a similar meaning. Definition: Let G be a group of permutations of a, let F be afilter on G, γ an ordinal. F is called ω_{γ}-multiplicative if the intersection $\bigcap_{\mathcal{E} \widehat{C O}_{\gamma}} H_{\xi}$ of 6) This is a useful generalization (due to Specker, of. [1i]) of Fraenkel's and Mostowski's methods.
any collection $\left\{\mathrm{H}_{\xi}\right\}_{\text {ge }} \omega_{\eta}$ of elements of F belongs to F^{\prime}.

Lemma 3. Let H_{η} be a cardinal number. Let the fillter \mathcal{F} be ω_{γ}-multiplicative for all $\gamma \in \eta$. Let $P=$ $=P\left(g, \mathcal{F}^{\prime}\right)$. Then, if $x \in P$ and card $x<H_{\eta}$, then $x \in P$.

Proof. Since $\mathscr{H}(x) \equiv \mathscr{K}(x)=\bigcap_{y \in x} \mathscr{H}(y)$, the asserlion is obvious.

Theorem 2. Let ${\underset{\eta}{\eta}}$ be a cardinal number, let $\mathrm{H}_{\eta} \leqslant$ $\leqslant \sigma(c t)$. Let the filter \mathcal{F} be ω_{γ}-multiplicative for all $\gamma \in \eta$. Let $P=P(g, \mathcal{F})$. Then, if $f \varsigma^{*} \tilde{P}$ and $\operatorname{card}^{*} f<{ }^{*} k_{H_{H}}$, then $f \in \widetilde{P}$.
proof. According to theorem 1 there is $g={ }^{*} f$. such that $(\forall x \in D(q))\left[g(x) \subseteq P \&\right.$ card $\left.g(x)<H_{\eta}\right]$. By the premceding lemma, $g(x)$ belongs to P and thus $f \in \tilde{P}$.

Theorem 3. Let the axiom of choice be true. Let M be perfect class determining an inner complete model OH_{K}. Let $H_{\alpha_{\alpha}}$ be a cardinal number. Let $(x)\left[x \in M \&\right.$ and $x \leqslant H_{c} \rightarrow$ $\rightarrow X \in M]$. Then ($\mathrm{PDC}_{H_{\alpha}}$) holds in 20%.

Proof: Let R be a relation in the model 8%, a $\in M$, and for every $\gamma \in \omega_{\infty}$ and $g \in\left(a^{\gamma}\right)_{m t}=a^{r} \cap M$ let there exist an $x \in a$ such that $\langle g x\rangle \in R$. It follows from the assumption that $a^{\gamma} \cap M=a^{\gamma}$ (because $g \in M$ and card $g \leqslant H_{\alpha}$ if $g \in a^{\gamma}$). Thus the assumptions of (PDCH are satisfied by R, a and (since the axiom of choice holds) there is an $f \in \underline{a}^{\omega_{\alpha}}$ such that $\left\langle f^{\wedge} \gamma, f(\gamma)\right\rangle \in R$ for every $\gamma \in \omega_{\alpha}$. Since card $f \leqslant \mu_{\alpha}, f$ belongs to M.

Comolisery. if $H_{\eta} \leqslant \sigma(c t)$ is a cardinal number and
\mathcal{F} is $\omega_{\gamma-m u l t i p l i c a t i v e ~ f o r ~ a l l ~} \gamma \in \eta$, then (PDC H_{γ}), ($A C H_{\gamma}$) and (WE H_{γ}) hold in ∇_{p} for all cardinals (of the model ∇_{p}) less than $f_{H_{\eta}}$.
4. The model θ.

The model θ (with parameters $\beta, \sigma, a, g, \mathcal{F}$) is a permutation submodel of the model ∇ (cf.[4],[5]).

Lemme_4. If the model θ has parameters $\beta, \delta, a, \mathcal{G}, \mathcal{F}$ then $\sigma(c t) \geqslant H_{\beta}$. (<ct) is the space from the definition of the model θ.)

In this section the following theorem is proved for any regular special cardinal number H_{α} :

Theorem 4. The parameters $\beta, \sigma, a, g, \mathcal{F}$ can be chosen such that the statement $(\forall \gamma \in \propto)\left[\left(A C H_{\gamma}\right) \&\left(W E H_{\gamma}\right) \&\right.$ $\left.\&\left(P D C H_{\gamma}\right)\right] \& \neg\left(A C H_{\alpha}\right) \& 7\left(W E H_{\alpha}\right) \& 7\left(P D C H_{\alpha}\right) \& 7(O P)$ holds in the model θ.

In the proof the method described in [4] and [5] will be used. There the following assertion was proved:

Let. η be a special ordinal, let φ be a η-boundable ${ }^{7 \text {) }}$ formula. If there exist ' $a, G_{2} F$ such that \mathscr{P} holds in the permutation model determined by $Q(a, G, F)$, then $\mathscr{\varphi}$ holds in a θ-model with suitably chosen parameters, i.e. with β sufficiently large, $\sigma^{\prime} \geqslant \beta$ and $\langle\boldsymbol{g}, \mathcal{F}\rangle$ feasible in reference to $\langle G, F\rangle{ }^{F)}$.

$$
\text { Since the formula } \varphi=\neg\left(A C H_{\alpha}\right) \& \neg\left(W E H_{H_{c}}\right) \& \neg\left(P D C r_{\alpha}\right) \& \neg(O P)
$$

is η-boundable (η is at most $\omega_{\alpha}+3$), it is suffi--
7) The meaning of the expressions " η-boundable formulan" and " $\langle-q, \mathcal{F}\rangle$ is feraible in reference to $\langle G, F\rangle$ " is explained in [5].
cient (according to preceding section, lemma 4 and the fact that $k_{M_{\alpha}}$ is H_{α}^{*} in ∇-model, if $H_{\alpha} \leqslant \sigma(c t)$,
(i) to find a permutation model (i.e. the parameters a, G, F) in which φ holds, and
(ii) to choose sufficiently large β and find $\langle\boldsymbol{q}, \mathcal{F}\rangle$ feasible in reference to $\langle G, F\rangle$ such that \mathcal{F} is ω_{γ}-multiplicative for all $\gamma \in \alpha$.
Remark. Let G be, group of permutations of the set a. Let γ be an ordinal. All subgroups $K(e)$ of G with $e s$ $\leq a$ and card $e<\kappa_{\gamma}$ generate a filter on G which is denoted by $F\left(\omega_{\gamma}\right)$. The filter $f\left(\omega_{\gamma}\right)$ on g has a similar meaning.

The parameters a, G, F are chosen as follows (cf. Mpstowaki [8]): a is the union of afe pairs $\left\{x_{\gamma}, \mathcal{Y}_{\boldsymbol{r}}\right\}$, $y \in \omega_{\alpha}, G$ is the group of all permutations of a preserving every pair $\left\{x_{\gamma}, \psi_{\gamma}\right\}, F=F\left(\omega_{c}\right), Q=Q(a, G, F)$.

That φ holds in the permatation model determined by Q follows (as shown in section 1) from the following theorem.

Theorem 5. a) There is no function $f \in Q$ choosing one element from every pair $\left\{x_{\gamma}, \psi_{\gamma}\right\}, \gamma \in \omega_{\alpha}$.
b) If $x \in a$ and caud $x=H_{\alpha}$, then there is no $f \in Q$ mapping $\mathcal{C}_{<}$onto x.

Prodef. Let us prove b) (a) is analogous). Let $x \leq a$, card $x=H_{\alpha}$, let $f \in Q$ map ω_{α} onto x. There exist $e=a$, card $e<H_{\alpha}$ such that $H(f) \geq K(e)$. There is a $\gamma \in \omega_{\alpha}$ such that $x_{\gamma} \in X$ and neither x_{γ} nor y_{γ} belonge to e. The permutation q which exchanges x_{γ} and y_{γ} and is identical, otherwise preserves t but not f, because if $\xi=f^{-1}\left(x_{\gamma}\right)$, then $q^{\prime}\left\langle x_{\boldsymbol{r}}\{ \rangle=\left\langle y_{\boldsymbol{r}}\right\}\right\rangle$
which cannot belong to f.
Remark. The set of all pairs $\left\{x_{\gamma}, y_{\gamma}\right\}, \gamma \in \omega_{\alpha}$ is well orderable in this permutation model and has cardinality H_{α}.

Now, choose sufficiently large $\beta, \sigma^{\sim} \geqslant \beta$ and consider x_{γ}, y_{γ} as pairwise disjoint sets of individuals, and $x_{\gamma}=$ card $y_{\gamma}=k_{\beta}$.
It remains to find \mathcal{G} and \mathcal{F}.
Lemma 5. A filter F is $\omega_{\boldsymbol{\gamma}}$-multiplicative ff there is a basis B of the filter F such that the interseclion of any collection $\left\{\mathrm{H}_{\xi}\right\}_{\xi} e \omega_{\gamma}$ of elements of B belongs to F.

Lemma 6. Let G be a group of permutations of the set a, let δ_{η} be a regular cardinal number. Then $F\left(\omega_{\eta}\right)$ is ω_{γ}-multiplicative for all $\boldsymbol{\gamma} \cdot \boldsymbol{\epsilon} \eta$.

Proof. It suffices to prove that $\bigcap_{f \in C} K(\underset{\xi}{ }) \in F\left(\omega_{2}\right)$ if $e_{\xi} \subseteq a$ and card $e_{\xi}<H_{\eta}$ for all $\xi \in \omega_{\gamma}$. But ${ }_{\xi \in e_{\gamma}} K(Q)=$.
$=K_{\xi \in \omega_{\eta}}\left(e_{\xi}\right)$ and card $\bigcup_{\xi \in \omega_{\gamma}} e_{\xi}<K_{\eta} \quad\left(K_{\eta}\right.$ is regular).
The parameters \mathcal{G}, \mathcal{F} are chosen as follows: f is the group of all permutations p of ind which, extended to a (let us denote this extension by eat (R)), are permutations of a and belong to G. Let $H^{x}=\mathscr{K} \cap\{\leadsto ;$ ext $(\mu) \in H\}$ for $H \in F\left(\omega_{\alpha}\right)$ and $\mathscr{H} \in F\left(a_{\alpha}\right) . F$ in the filter generated by all subgroups $H^{* x}$ of Q, where $H \in$ c $F\left(\omega_{\alpha}\right)$ and $\mathscr{H} \in \mathcal{F}\left(\omega_{\alpha}\right)$. According to $[4],\langle\mathcal{F}, \mathcal{F}\rangle$ is feasible in reference to $\langle G, F\rangle$.

Lemma 7. \mathcal{F} is ω_{γ}-multiplicative for all $\gamma \in \propto$.
Proof. Let $\gamma \in \alpha$, let $H_{f} \in F\left(\omega_{\alpha}\right)$, $\mathcal{T} \epsilon_{f} \in \mathcal{F}\left(\omega_{\alpha}\right)$ for $\xi \in \omega_{\gamma}$ and let $H=\bigcap_{\xi \in \omega_{\gamma}} H_{\xi} \quad$ and $\mathscr{X}=\bigcap_{\xi} \bigcap_{\omega_{r}} \mathscr{L _ { \xi }}$. It

is obvious that feair $H_{\xi}^{\mu_{\xi}}=H^{\text {re. and, since, by lemma 6, }}$	
$H \in F\left(\omega_{c}\right)$ and $\mathscr{H} \in \mathcal{F}\left(\omega_{\alpha}\right), \mathcal{F}$ is ω_{γ}-multiplicative by lemma 5 .	
References	
[1]	A. FRAENKEL: Sur l'axiome du choix, L'Enseignement
[2]	K. GODEL: The Consistency of the Axiom of Choice..., Princet on(1940),
[3]	P. HÁJEK and P. VOPẼNKA: Some permutation submodels of the model ∇, Bull.Acad.Polon.Sci. 14(1966) - to appear.
[4]	JECH and A. SOCHOR: on θ-model of set theory, ibid. 14 (1966) - to appear.
[5]	: Applications of the θ-model, ibid.14(1966) - to appear.
[6]	A. LEVY: The interdependence of certain consequences of the axiom of choice, Fundamenta Math. 54(1964),135-157.
[A. MOSTOWSKI: Ober die Unabhängigkeit dee Wohlordnungesatzes vom Ordnungeprinzip, ibid. 32 (1939),201-252.
[8]	: On the principle of dependent choices, ibid. 35 (1948), 127-130.
[K. PŘfrif: The consistency of the continuum hypothedis for the first measurable cardinal, Bull.Acad. Pol.Sci.13(1965), 193-197.
[10]	H. RUBIN and J. RUBIN: Equivalents of the Axiom of Choice,North-Holland Publ.Comp.,Amsterdam(1963)

[1]] E. SPECKER: Zur Axiomatik der Mengenlehre, Zeitschr. f.Math.Logik 3(1957),173-210.
[12] A. TARSKI: Axiomatic and algebraic aspects of two the α ems on sums of cardinals, Fund.Math. 35(1948), 79-104.
[13] P. VOPE̊NKA: Předsvazek, relaci, Model ∇ (in Cze ch, Presheaves of relations, the model ∇ d, mimeographed, Prague (1964).
[14] : On ∇-model of set theory, Bull.Acad.Po-lon.Sci.13(1965),267-272.
[15] — Properties of ∇-model,ibid.13(1965), 441-444.
[16] $]_{\text {_ }}$ HAJEK : Permutation submodels of the model V, ibid.13(1965),611-614.
(Received May 18, 1966)

