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Commentationes Mathematicae Univers i tat i s Carolinae 

7, 3 (1966) 

ISSmD&VBSDmSE OF WEAKENED FORMS OF THE AXIOM OF CHOICE 

Tombs' JECH, Praha 

,1, Introduction 

The aim of the present paper i s to d iscuss the in ter

dependence of weakened forms of the general axiom of choice 

in Godel-Bernays axiomatic set theory 2E ( c f . f 2 j ) : 

/'There i s a choice-function on the universal 

(E) < c l a s s , i . e . there i s a function F such that 

* F(x)ex for every non-void se t X • 

I t i s well known that the following axiom of choice ( i n c l a s -

s i c a l form) and the well ordering principle are equivalent 

(a number of se t- theoret ica l statements equivalent t o these 

i s s tated in [ 1 0 } ) : 

( On every family of non-void s e t s there i s a 
(AC) < 

v choice function . 

(WE) Every s e t can be wel l ordered . 

Let us consider t h e i r weakened forms (these are, i f cC i s a 
2) 

special ordinal numbey. , statement* of the set theory): 

( On every family of cardinality H^, of non-
(ACtf^) | 

ШЮ 

void s e t s there i s a choice function . 

c Every card inal number la -comparable with v-s^ 

Jf^ i ( i . e . equaH, ;iess or greater than H ^ ) 

1) read "in Vopenka'« Seminar on s e t theory at the Carolina 
..»„USiEerf ity- in P^gue i n March 1966 . 

Z) i . e . m spec ia l class; (cf .£2J) which i s an ordinal number. 
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Furtheraore, l e t us consider the ordering principle, which 

i s a consequence of the axiom of choice-

(0.P) Ivery set can be ordered • 

And f inal ly , let us consider the principle of dependent 

choices (considered by A. Tarski in [123) and i t s generali

zation (A. Le>y [6]):, 

f If R i s a relation on the set a such that 

J (Vxea,)(3/j^ea^)[<H^>e R3 , then there i s 

J a sequence x1 9 X^,,.. j X,n,r.- of elements 

of (̂  such that CX ,̂ -X**,**)^ f or m,*% 2f — 

Let a- be a set and R a relation such that 

for every r e ^*c- ^^^ every gear (func-

(PDC^) J tion of r i n t o ^ ^ there i s a function 

f e of*" with < f r > - f ^ » € R for ever^ 

rec0*> • 
It is known that (AC) s (WE) m (Vr)(^^t)mCV^)(9K ^ ' 

Moreover, i t i s apparent that, for Qfccf, (ACt^)-* 

^(Miht)f(Wtt\r)^(Wi Hr) and (PiCBj) -> (PK Hr) * 

All these weakened forms of the axiom of choioe are in

dependent on the axioms of the set theory Z • The indepen

dence of (WS,H9) (and therefore also of the axiom of choice) 

was shown by Bgjek and VopSnka [3 ] , the independence of the 

other forms by Jech and Soohor £43* £53* The following form 

of the axiom of choice i s weaker than a l l the statements 

statedaabove (••gV (4P)^y (c) i s shown below): 

( .Every denumerable family of pairs contains 

• denumerable subfamily, on which there i s 

• choice-function . 
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The statement (e) i s a l so independent on axioms of the 

set theory -Z • This fo l lows from mentioned papers of 

Jech and Sochor. 

The interdependence of weakened forms of the axiom 

of choice has been thoroughXy invest igated in axiom s y s 

tems where the ax,j.ott of regulari ty - Fw<?jerunfl;saxipa -

i s not considered, v i z . where the existence of individuals 

(or ureXementa or non-founded s e t s ) i s permitted. Fraenkei 

showed in [Xl the independence of the axiom of choice on 

the existence of chn^ce-function on every denumerabie f a -

miXy of f i n i t e s e t s . Mostowski [ 7 ] , [ 8 ] showed the inde

pendence of the axiom of choice on the ordering pr inc ipie 

and on the prinoipXe of dependent choices , and the inde

pendence of (Vy < cc ) (AC H>T ) - > C AC H^ ) for r e -

qular spec ia l H\*, • The most thorough inves t igat ion 

was carried out by L£vy in 16T. 

In present paper, s imilar r e s u l t s are obtained for 

the set theory JE . The fol lowing assert ion i s proved 

( in sec t ion 4 ) , A£ H *̂ A? fifty reg.uT.ar gpecjai. cardinal 

number: 

None of fo l lowing statements: ordering pr inc ip le (OP). 

r e s t r i c t e d well-ordering principle (WlStC), r e s t r i c t e d 

ffflPB ftf ^9-rge (AgBj jflfl g.eneraX;lqed pr inc ip le pf depen

dent choice? (PDCrtJ oafl h? PrPVgd foPfl %k$ flftipfflg of th,e 

3 ) A s p e c i a l aXeph f̂ * i s c « l l e d regular i f i t i s regu
l a r under v a l i d i t y of the axiom of choice . E.g.- B^ i s r e 
gular-, although i t can be a union of denumerabie c o l l e c 
t i o n of denumerabie s e t s i f the axiom of choice' does not 
hoXd. 
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set theory £ ffflfl 1frg ftgPVttPtion \fraft,, (AC rt^iJIg^^J 

and (PDCMy) hold for every y e <**. 

In [63 i t i s proved that (PDC H*) implies both (AC^) 

and (WBH ,̂ and that, for singular fr*, (VY-tfocK^C ^s^) 

implies MC H^) y and (Vyfioc) CHDC «Hr ) implies CPDC t^ ) , 

The ordering principle implies that on every family of 

f in i t e sets there is a choice function (indeed, i f a i s 

• family of f in i te sets and Ua is ordered, then every 

X e ou has the least element which can be chosen). 

The following questions remain open: 

1. Does (Vre«,)(W£Hr) imply (WE H*) for s in

gular K * * 

2 . What relation is there between (ACH^) andWE^)? 

3« Is the axiom of choice independent of the ordering 

principle? 

4. Is the axiom of choice independent of(Vy)(AC Hr) ? 

5» Is the general axiom of choice independent of the 

"weak" axiom of choice (AC)? 

If the validity of the axiom of regularity i s not required, 

the answer to questions 3,4 and 5 is affirmative. The pro

blem is whether the same holds for theory IE. . 

The results of present paper are obtained by construc

t ion of a 6 Hoaodel of set theory. The reader i s assumed 

to be familiar with the papers [2] ,£l4J ,£l6jand[4]; the 

notation used in these papers i s preserved here* 

St The w<Lel V tng the Qtafftrtgrtotlc #(**) of the 

frPPPlPfligftl gPfiftfl 



The model V (with parameters JmdLf<dft>9 G, # . , #* ) 

introduced by VopSnka in [13J and I14J i s the syntactic mo

del of the theory H* (Godel's axioms A,B,C,D,E) in the 

theory -£,**«£ (A,B,C,B with individuals).4^ In £151, the 

dependence of properties of the V -model upon the cha

racterist ics fU>(et) and^y>(ct) of the topological 

space ( ct > i s investigated. For the purpose of present 

paper i t i s useful to consider a further characteristic 

of the space (. C t > ; 

Definition. G(ct) i s the least cardinal number M^ 

such that there is no basis t0 of the topology t with 

the following property: The intersection O tr^ of any 

monotone ( i . e . 1& 2 ify for § s 1£ )4 collection of e l e -
. 5) 

ments of % contains an open non-void subset. 
I.̂ flffiaJL. Let ,X € Pot, A* e M, Hy < 6* (ct) , l e t 

JU, + 0 be an open set and let AA,& FrX s A>& Ca*dx~ H^ -

Their there exist X, & Jtr and open V -£ 0 such that 

WJUJL -» » Ĥ  , <w m <u*n Frx » x^ . 

Proof. Iiet t# be a basis of the topology i such that 

f\tfy contains an open non-void subset for every monotone 

4)-In the present paper,-the operations, notions etc. In 
the V -model are provided with an asterisk. 

5) For every space, €(ct)* y>(ci)(t>(ci) i s the least car
dinal number 8p such that there Is no-open-non-void set -
which can be covered by tf# closed nowhere dense sets ) . The 
present 0Tci-) i s a minor modification of the characteris
t i c s considered in [13 ] (unpublished) and in [9J . 
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collection {ify, \^€ $% of elements of \ . There is a 

polynomial g, and u, e t9 such th&tJu,&u,nFrg>3h&L&WC£)*x*. 

There exists a monotone collection {VritfeajL, VL,& t0 

and a 1-1 sequence {tyy ?y€ &„ of elements of J!r such 

that t£ m Hn F^y^y > e <p . Let x - -f y r ; 2" ^ ^ ? » 

le t 0 4- nr * r / l ^y • Let us p-jove ir* & Frx «? JS"1 . If 

there were oi^c t0 and ^ « fi*£ such that w s trn Fr«4*ex& 

& ty ^ X f then there would exist ^ f f i i and vr e t9 

with ^ttrs i<rn F r </y. y > c 0. £ /y. 4- / ^ 9 contradic

ting %r e> Fr<tyTT> * 9>& &** (fy)1 • 

Lemma 2 . Let Jb> s ft* . Let f ---*«%> ea*d*f <***+ > 

H- * tfYci). Then there exis ts £. € R?€ such thatg,-**f 

and (Vxe&Cq-VLfrCx) s Jlr& (Mcd^Cx ) < &% J . 

Proof. We can assume that QCffci*} * € FrfCx)s 

sjlrlk <MtdfCx)< H^ ] - Evidentlyr 3) Cf) i s the union of 

pairwise disjoint open sets f~*Cy,) (for ^eWCf) ) . 

Let ic-r^Yx) be one.of these, i . e . 4A,* Frxs*Jtr& caxdxKkQ^ . 

According to the preceding lemma tnere exist %TCAA+) mn&zCAt) 

such that aa>tdaU44,)<ti ,zCu,)£ £r and vC<u,)& Frx *ZrCa>P. 

Let us denote u, by AA,0 . Let >uk,* In^fa - U v C<U« )) * Let 

% be the f i r s t ordinal such that AJU^ •» 0 . Let U*J>L vCu^)' 

Obviously| JUL* IS dense in AA, . Let us define the function 

^, on ic/ s A*, m follows* $(nf.) • x C<Usr) for nf e tr C^T ) • 

Similarly on other AJU • *"Yx) , X e WCf). Evidently BCg*) 

i s dense in 3i(i) and thus 2) Cg.) € £ * 

Then obviously f » * £ * 

Theorem L Let X f i U . Letf S*X, o u u l ? ^ ^ItfXfet). 

fhen there ex is ts a fy. such that g,m*-f and 
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(Vxe$(g.))tg,(x)eX& cwulg.(x)< H%1 . 

Proof. Let f fi*X . There i s a subset Z, of the class 

% such that (V^e*ii)(3^i€X,)[A^Ji,iA^CAif)aXl . 

Let &~.U ZtfCh).Then f &*Jk&, and the assertion follows 

from lemma <-"• 

3 . Permutation submodels of the model V 

The reader i s assumed to be familiar with both permu

tation models and permutation submodels of the V -model, 

and with the notation used in [16] and [4.J. G i s a group 

of permutations of the set a, F a f i l t e r on (r, (X m 

* Q(a,,G7 F), a subclass of TT(CL) determining a Permuta

tion model (model of the set theory without the axiom of 

regularity) • ' Q~ i s a group of permutations of the set 

ind, f a f i l t e r on Q,, P ~ P(Q, f) * subclass 

of RHJ . The class P - determines an inner complete sub

model (denoted as Vp ) of the model V . This model i s 

called a permutation submodel of the model V -and axioms 

of the theory Z hold in it (VopSnka and Hdjek f l6J) . 

For X € TRa), HCx) i s the group of a l l £ « G 

such that £X » X} and K(x) i s the group of a l l £ e G 

such that 5, la identical on x .The subgroups 9£Cx) 

and $C(x) of & for *X e ffr£ have a similar meaning* , 

Pffinitio§-> Let G be a group of permutations of 

a , let F be a f i l t e r on G, gr an ordinal. F is cal

led a-w ^multiplicative i f the intersection, C\ HL of 

6) This is a useful generalization (due to Specker, cf#£lXI) 
of Fraenkel's and Mostoiraki's methods.̂  
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, w L ., of elements of F belongs 
any collection { n j | | « ^ n 
to F '. 

IjejBmjLl. Let &H be a cardinal number. Let the f i l 

ter $* be ^ - m u l t i p l i c a t i v e for a l l Xs ^l * L e t P * 

- •Pr^^-Then, i f X « P aid cawj£x<H1j , then X c P -

Froof. Since M(x)sX(x)m Q^ Wty), the asser

tion i s obvious* 

Theorem 2* Let H^ be a cardinal number, let H%4 

4G(ct). Let the f i l t e r £* be ^ - m u l t i p l i c a t i v e for 

a l l tfm i% . Let P* P(Q9^)0 Then, i f f fi* P and 

CMd*?<*Afy , then ? e r* . 

££pjg£. According to theorem 1 there i s Q*m*4 such 

that (Vxe2)(g,))Zg,(x)6P&eaMd<fr(x)< B.^J . By the pre

ceding lemma, <fr(x) belongs to P and thus 4 € P * 

Theorem 3 . Let the axiom of choice be true* Let M 

be m perfect class determining an inner complete model Hi. 

Let B«c be a cardinal number* Let (x)tx& M&eaJtdx* 6%c-+ 

- > X c M J . Then (PBC^) holds in ffi * 

tXW&t I*t R be a relation in the model Wl, a, € M , 

and fo* every T* &* and £ ,€ (of)^ » ofn M l e t the

re exist an X i d such that <f. X > e R * It follows from 

tte assumption that a n M • a,** (beoause 9. ft M and 

ca*d$, * B* i f 9- «f a r ) . Thus the assumption* of (PDC^ 

are satisfied by R, a, and (since the axiom of choice 

holds) there i s an # € a,*1* such that <**?9 f(<?)>€ R 

for every 'jf 0 ft** * Since emd 4 * H^ 9 f belongs 

t o M • 

QW9llm* X* # , # a-fc t ) i s a cardinal number and 
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f i s OV-aultiplicati^e for a l l T€ 1 t than <?J>C H r) , 

(ACHT) andfiV£My) hold in Vp ,for a l l cardinals (of 

the model Vp ) less than 4k. 

4t The spflgl 9 ' 

The model $ (with parameters /3 , <f7 Q,f Q*7 T ) is a 

permutation submodel of the model V (cf .£4j,f5J). 

Lemma 4» If the model 5 has parameters ft, cF, Cu^Q^f 

then &(ct) > H^ . ( < c i > i s the space from the defi

nition of the model Q . ) 

In this section the following.theorem i s proved for my 

regular special cardinal number H^ • 

Theorem 4. The parameters ft f (f9 O/, ^ &* can be cho

sen such that the .statement (Vf €<*,)[(ACHT) A (WE Hr )&. 

&C?DCHr)3&i(ACHjki(WZtQAi(Pl>Ctic)&i(0r) holds in 

the model 6 . 

In the proof the method described in [4J and (5J wi l l be 

used. There the following assertion was proved: 

Let 1J be a special ordinal, le t cp be a ^ -boundable" 

formula* If there exist ^bu, G~t F such that cf holds in 

the permutation model determined by &(o,7 &, F) } then if 

holds i n a 6 -model with suitably chosen parameters, i . e . 

with ft sufficiently large, cT> ft and < £,#"> feasible 

in reference to < <r, F> 

Since the formula f»n(ACt\c)Ai(mtic)Ai(T])C^()&i(OP) 

i s \ -boundable ( ^ i s at most c^ + 3 ) , i t i s suff i -

7) The meaning of the expressions " ^ ~??mv1f|Hl«- r<y»fi3i(-fw 

«*-& * < -^, F> is ftwilb.lt *fi refsmeg .tg «r, F > " is 
explained in [ $ ] . 
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oisnt (according to preceding section , lemma 4 and the fact 

t&ai -4 .^ is H* in V -model, if M̂  < CT Cat) , 

(i) to find a permutation model ( i . e . the parameters 

a, <r, F ) in which & holds, and 

( i i ) to choose sufficiently large /I and find < £ , F> 

feasible in reference to < <f-f F > such that ^ i s 

^ - m u l t i p l i c a t i v e for a l l %* € eC . 

Remark. .Let (r be a group of permutations of the set a,. 

Let y be an ordinal. All subgroups KCe) of <? with € s 

£ a and ca*46 e < H ^ generate a f i l t e r on Gr which i s 

denoted by F Y o y ) . The f i l t e r 0rC<VT) on £ has a simi

lar meaning. 

The parameters (X,, (r, F are chosen as follows (cf• 

Mostowski C8J): a i s the union of G^ pairs {*r, ^ t - J > 

tf€ O^, G i s the group of a l l permutations of a preserving 

every pair f X r , <y-r ?, F » F f ^ >, fl - # ft*Vff > F> * 

That 9? holds in the permutation model determined by Q 

follows (as shown in section 1) from the following theorem. 

Theorem g« a) There is no function fe A ehooaing one 

element from every pair { X-j* ., tyy if T * °ic ' 

b) If * £ a and awed**. H* , then there i s no f € <3 

mapping 6^ onto X • 

Proof. .Let us prove b) ( a) i s analogous)* Let X m a>, 

tovuLx s H^ , 1st f c fl map &^ onto rx • There exist e c a,, 

ca«^e<H-c such that HC-f) J2 KC-e). There is « y € o)^ such 

that X.^$X and neither x^ nor / ^ belongs to -e . The per

mutation £ which exchanges X r and ^ ^ and i s identical 

otherwise preserves € but not «f, because i f f m f^fx^), 

then $' <X r £ > . <q,T £ > 
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which cannot belong to f . 

Remark. The set of a l l pairs { x r , np }9 <pe a>^ i s w*ll 

orderable in t h i s permutation model and has cardinali ty #^c-

Now, choose sufficiently large (I., cf & /& and consi

der iXy , t^.y as pairwise disjoint sets of individuals, 

oxvuL * r m cxvtd, ajr - tip ' 

I t remains to find Q* and f • 

Lemma 5. A f i l t e r F is o>r-multiplicative i f f the 

re i s a basis B of the f i l t e r F such that the intersec

t ion of any collection {He}q€6j of elements of 6 be

longs to F -

Lemma 6* Let <J be a group of permutations of the set 

Ouf le t Hm te a regular cardinal number. Then FCHJ^) i s 

CJp -multiplicative for a l l Y*€ ?Z • 

Proof* I t suffices to prove t h a t . Q KC^)eF(d^) i f 

€ ~ s a and caxd e~ < H~ for a l l f e 4)^* But .O KT4 >* 

"KCU-e?) and QjaxxLU e c < H . ( #-, is regular)* 

The parameters &7 T are chosen as follows! ££ i« 

the group of a l l permutations jv of -CTM̂  which, extended 

to 0/ (let us denote th is extension by -tut C<(i> ) ) , i M 

permutations of 0/ and belong to 6 • L»t H*»d£s) CfM 

txt(p>)€Hj for HeFCa^) and * e ^ ) • ,T ***!-». 
f i l t e r generated by a l l subgroups H a£ ||» ,where H i t 

c FCa^) aid 2* € SYa^ >. According to £ 4 j t < £ ? £"> i s 

feasible in reference to K & $ F > « 

Lemma 7. ^ i s ^ - m u l t i p l i o a t i * e for a l l ye <t . 

Proof. Let y € o C , le t Ĥ  € FCcJ^ ),Htce T C&U ) ' 

for 0 € a>* and l e t H » A H^ and X» H 3& . I t 
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i s obvidus that m f i H1** m HM and,since, by lemma 6, 

H € F&fe) and 92 € ^"64^) , iT i s O r-mult ipl icative 

by lemma 5. 
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