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NETS AND GROUPOIDS.
Véclav HAVEL, Brno

In this article we shall investigate general "(half)-
nets" which correspond canonically to general (half) grou-
poids in an analogous manner as the usual 3-webs correspond
to quasi-groups or loops, respectively. This concept of a
general "half-net" seems to be new. Our interest is then
concentrated onto the discovering of the expected more ge=
neral parallelism between closure conditions in
"halfnets" and algebraic laws in halfgrcupoids as in the
usual cases of 3-webs contra loops (for this usual case see
[1),[3),(41,(51,16]). We shall also take notice of general
"double nets" and their corresponding double groupoids and
give an elementary construction of all double groupoids over
a given groupoid using left multiplications. Finel;y, spe~
cial halfgroupoids called the binars are studied and some
results on homomorphiem‘fheory of normal binars are obtai=
ned, generalizing certain results of Kiokemeister [2].

The author wishes to express his thanks to Professor
Je Aczél for his suggestions leading to the realization of
this paper. )

de Definition of a halfpet. Let S be a nonempty set

and__%___g_mrtition in S S 1? such that there exists

1) it P in 8 set S# f is a nonempty set of non-
empty ubsets in which are mutually disjoint.If more-
over covers S then P is called a partition on S .
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an injective mabping 13 X =S, Th()en H=(5,%,§¢)
g . L2
will be called a palfnet With injection

me denotations: Let £Dom ¥  be equal to 7%, & vea

. We shall need sd—

partition on Jom Z consisting of nonempty sets of the
form § (&) ={(x,y)|ly=47 and Y be apartition
on .’()m, z consisting of nonempty sets of the form

n(a)= {(x,44)Ix=a §. Call elements of Dom ¥ the points
and elements aof 'a?, Y, % respectively the X -lines, Y -
lines, Zz -lines, respectively.

It Qom Z = S x S we get a pet (with injection).

Note that in any halfnet %% =(S,Z, §) there
holds card (X AY)<1 for each X€ ¥, Y € Y and the-
re is always precisely one ¥-, % —, Z -line, respectively,
passing through any point of (/A .

In the following, we restrict ourseives tc the case
card S 2 2,an X -line § (&) is said to be full if
(x,£)e£C8) for all x € S . Similarly a full 4/ -line
will be defined. We say that a halfnet % = (S, %, §)
admits an ¥ =-gxis, if there is a A& € S  gsuch that (i)
f(&) 1is afull ¥ -linesand (ii) for each Z e %, it
holds (§ Z,&)e¢ Z . The admitting of & /Y =axis will
be defined analogously. We say that 7! adnits a frame if
2) Thus a halfnet is the abwve couple (S, X)) where on=-

ly the existence of a preceding injection f is postu~-
lated. If one such injection § is fixed, then the half-
net becomes akready some algebraization. In the sequel the
term "halfnet" shall mean al ready the halfnet with injec-
tion § even so the fixing of § is on many places not

essential,
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it admits an & -exie §(&) and a Y -axis 7 (a)
such that @ = £ ; (a,& ) is then called the grigin
of the frame.

Proposition 1. In a halfnet 7¢ = (S, %, f) admitting
an ¥ -axis, each 2 -line intersects the X =axis in
exactly one point.

Proof. If there are different points (X,, &), (x,,4)
lyingonany Z & £ , then Z= §x = §7% ,which
contradicts to the assumption that § 1s single-valued.
Q.E.D.

Be given two halfnets 9L = (5, , %, ,§;); 41,2 .°
A surjective mapping € : Dom Z, — Dom Z, will be cal-
led an gpimorphism between 7!, and 722 , if
XeX, =26Xek,,% Y =0YeY,ZeZ=>676eZ Civen an
epimorphism 6 between ﬁ, and N, define derived map-
pings 6,:{x € |3yed, s.tlxylTom % j+{xeS[IyeS st.iyleIom ],
6 iyc S, |3xcs. t.(x,y)e om Z,f—riyeS,|3xeSst.ixyle
€ Dom, z;?:

6522 £ by 07,00=7,6.x),6F,@)=£,GY),0Z=5'C §Z .
An jgomorphigm is, as usually, a bijective epimorphism.

Proposition 2. A halfnet 9L = (5,%, §) is isomorphic
to a halfnet admitting an & -axis iff there is a full X -
line in 7! which intersects eac‘h % =line always in exact-
ly one point. A halfnet 7 = (S, ¥ §) 1is isomorphic to a
halfnet admitting a frame iff there is in 9 a full £ -
line and a full ‘Y =-line each of which intersects any X -
line always in exactly one point. _

m.‘ The necessity follows from Proposition l. We
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shall prove the sufficiency: Suppose there exists f(»b')
such that (x,#-)€ §(4) for each X € S and that
card (ZA§CH) = 1 for each Z € % . Define a mapping

g*: Z — S 1in such a way that §*¥Z 1is equal to the
firet coordinate of the common point of Z and §(4) .
Form a new halfnet * = (S, %, §%) . Then there is
en isomorphism & between 4 and N* for 6, = idg ,
G =id; and & deterninated by = §*¢ £ . -
Suppose now that there exist §(£r) and 7 (a) such
that (x,4)e § (&) and (@, x)€ 77(a@) for allxe$S
and that caxd (Z n § (&)= card(Znn@N= 1 for all
' Z e X. Define mappings :Z—=S5,5:Z+8 by §,Z
to be equal to the first coordinate of the point of inter-
section of Z, £(4) and § Z to be equal to the se-
cond coordinate of the point of intersection of Z, »n (@)
(Fig.l).
Define mappings &;: S —+ S
Fig.4 and 63: S — S so that
6(5,2)=6(52)=6Z
for each Z € Z, Let 1%
1) z = (S,Z* §%) be a half-
net where Z* consists of
all Z* such that (x,44)¢€
§ ) ($Z,&) eZe 2 (§,x,5p)6 Z"e Z*
and §*Z"= §Z . There is
an isomorphism € between 71 and ?* such that 6, = §,,
6y = 1 and 6, = ids . Q.E.D.

(G.S;_Z)
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‘2, Closure conditio nd their glgebr

Let ?¢ = (S5,%, §) be a halfnet possessing a
frame. By an 20 -rectangle we shall mean any quadruple
of points A, B, C, D in 2 such that A, B 1lie on the
same X -line, C, D lie on the same & -line, B, C
lie on the same 7 -line and D, A lie on the same % -

/y.w:a line. (Fig.2)
We shall investigate

D ¢ the following closure condi=-
A B tions in a halfnet % =
=(S,Z, §) possessing a fra+
[ aad
Fig 2 X-acin  me.
Reidemeister: If (A, B, C, D),
¢ a+r(&+e) (A, B, ¢, ') are H -rec-
tangles with A, B on the
bee @+bwe X -axis, B, ¢" onthe Y -
B A axis, A, A’ on the same % -
o ! ¢ line, B, B’ on the same % -
ym\‘a\ b1 line and C, C’ on the same
- N N | .
® \‘\\‘ Z -line, then D, D’ lie al-
SN
AN b so on the same % -line (Fig.3),
F-avio B i
ng 3 A particular form of Rei-

demeister with A, D, B°, C* on the same % =-line, A, B”,
C’ on the same X -line and A, A", C, C* on the same X -
line, respectively, will be called X -Bol, % -Bol, ¥ -Bol,
respectively.

Hexggonality: If A is a point on the ¥ =-axis then
there are 91 -rectangles (A,B,C,D), (A°,B; ¢”,D’) , with
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Cc’ on the 2 -axis and with
B',D’ being equal to the ori-

B ' gin, so that A,A' are on the
vas0| @ same Z -line, B,B",D,D’ are

w Y £-adis on the same X2 =-line and C,

aed C’ are on the same % =-line
(Fig.4).
Thomgen: Let 4,B,C,A",B’,
C’ be points such that 4,B
lie on the X =-axis, A",C’

B' ' ’ d
ard on the same & -line, B’,C
& on the same 2 -line, A ,B’

Yo .
A w— N on the Y -axis, 4,C° on the

same Y -line, B,C on the sa-
me %Y -line, A,A” on the same

y %-axib Z -line and B, B’ on the sa-
me Z -line.

Then C,C” lie on the same & -line (Fig.5).

Y-axin £ -_Bol: Let (A,B,C,D),

D" (A°, B°, ¢°, D’) be 2¢ -rec-

o+l tangles with A,B on the & =~

[

Fig. 5

;
a,(.%‘)'
B \ exis, A,D,B",C’ on the % ~-

A 3 axis, A,A" on the same Z -li-
@,a ne, B,B’ on the same <2 -line
and C, C’ on the same X -1li-

ne. Then D,D’ are on the same
A B T-a4 » _1ine (Pig.6).

r =Bol: Let (a,B,C,D),
(A%, B”, ¢, D°) be 9% -rectangles with A,B on the

- Fg.6
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Y -axis, 4,D,B”,C” on the

Y -adin
8 ¢ % -axis, A,A” on the same
% -line, B,B’ on the same
a+dr ,
Z -line and C,C’ on the sa-
Fain me X -line. Then D,D” lie
A D B ¢’ on the same Z -line (Fig.7).
Qa
" A halfgroupoid is defi-
(@ wd)+.
ned as a couple § = (S, 8)
Fia.¥ W, &) - X where S 1s a nonempty set
A ’

and 3 a mapping of some

set Jom B € S> S  in-
to S.If Qom B =Sx=x S we get a groupoid. - In the
following we shall restrict ourselves to the case card S 2 2,
Dom 3+ 4 .

1f @ = (S, B) is a halfgroupoid then the halfnet
(5, Z,§) defined by 3(X,n )= X=d (X, )€ §x for all
possible X, %4 , x € S , is called ggsociated to @ and
it is denoted by Aa G. 1 % = (5 %,f) is a half-
net then the halfgroupoid (S, B3) defined by B (x,4) =
= 2¢=p(x,y4)€ §2 for all possible X,%4,Z€S is cal-
led gssociated to ?L and it is denoted by Qo ¢ . Clearly,

o (W @) =G, Wb(A?t)= X for all halfgrou-
poids @ and all halfnets 77 .

Recall that in a halfgroupoid & = (S, 3) any left
peutral element @ is characterized by the validity of
pla,y) =4y for all 4 € S (so that (a,y)c JomfB
for all 4 € 5 is included).

Similarly one defines a pight neutral element in @ . An:
element @ is called peutrgl if it is simultaneously left
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: and right neutral. The cancellation laws will mean: if
B(X,&)=p(y,&) then X = 4 and if B(a,x)=
= f3(a,%4) then x=y.

Proposition 3. Let 2% = (S,Z,§ ) be a halfnet. It
follows:

a) . admits an & -axis iff Qb N possesses a right
neutral element.

b) 71 admits a frame, iff b 91 possesses a neutral
element.

¢) ecand (§@)nZ)<4, card(n(a)nZ) £ 4  for all
ae S ,2Ze¢ X 1is true iff in @b 7 the both can=
cellation laws hold.

da) Mcg(a’)f\2>=°@‘d(’2(“)”z)"4 for all
aeS5,ZeZ iff (s ? 1is a quasigroup.

Proof. a) Let ¥ admit an & -axis §(4&). By Pro-
position 2 and by the definition of the ¥ =-axis and Qs
it follows that [B(x,4£)= x for every X € S. Conver-
sely, if there exists a 4 € S such that Bx, ) = x
for all X € S then by the definition .of @ # it
follows that card (Z " §( &)) = 1 for eachZe X
and (§ Z,4) sothat § (&) mst be an % -axis.

b) Let 91 admit a frame with the & -axis § (@)
and the Y -axis % (a). Then, according to part a), it
follows MB(x,a) = f8(a,x)= a for all x€ S, and
conversely.

- ¢)=d) Clearly, c¢mrd (f(adn Z) < 1 or =1,
means that the equation B (X, a )= §2Z has not at most
one solution X € S or exactly one solution x € S res-

pectively. From this it follows the required conclusion.

- Q.EID.
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Let @ =(S,) be a halfgroupoid. We shall still need
some algebraical laws which we wish to formulate as follows:
Asgociativity: B(B(a,4&),c)=B(a,B3(& ¢)) for all
a,&,c €S for which (a,4), (B(a,&)ec); (&re),
(@, (&,c)) e Dom B .

The particular case of associativity for @ = &, & =¢ ,
Bla, ) = 3(&,c) respectively is termed a lefi, right
and piddle alternativity respectively.

Now let & have a neutral element € .

Existence of inverse elementg: To any @ € S  there
is at least one element a’ € 5 such that B (a’,a) = ‘
e fl(a,a’)= € .

The left inverse property: For all triplea(a)a, ) € S=x5xS
such that (@', a)e Dom 3, B(a,a)= € it holds
pa,B(a, £)) = & .

The right inverse property: For all triples (a, &, &“)¢

€ Sx S S such that (&, £")e Bom 3, B (&, £”)= €

it holds a = B(A (a, &), £4")

Proposition 4. Let 7 = (S, X,f ) be a halfnet ad-
mitting a frame. Then the following couples of conditions
for ? and (s 7¢ - are equivalent:

(1) Reidemeister and associativity, (ii) &-, Y-, % -Bol,
respectively, and left, right, middle alternativity respec-
tively, (iii) hexagonality and existence of inverse elements,
(iv) l-,/t. -Bol, respectively, and the left inverse proper—
ty, the right inverse property, respectively, (v) Thomsen
and commutativity.

Broof. Denote the composition B3 of Qs 2 also by +
and the neutral element of Qb X by 0 . Part (i) is
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described on Fig.3. Part (ii) is only a particular case of
(i). The schema for (iii) is given on Fig.4. If an element
a’' exists with @'+ a = 0 then (2, @) must lie on

€=7(0) o that (a’,@) can be situated into A", The
situation for (iv) is demonstrated in Fig.6-7. Finally,
Fig.5 illustrates the situation for (v).

An igotopy between halfgroupoids H; = (S;, 3;);
1=1,2, is defined as a triple (67, 6;, 6, ) of bijec-
tive mappings & : 5 —S5,; 7 =1,2,3, such that
{(6x, 60) | (x,n)eDomB,}=Dom 8, and that
By (6%, 6 4) = 6 (x,ip) for all (x,y) e DJom f3 -

Proposition 5. Be given two halfnets 7% = (S, %, £:);
4=1,2 . They are isomorphic iff the halfgroupoids s 77,,
s ?‘lz are isotopic.

Proof. Let there exist an isomorphism ¢ between 7%,
and 71, . Then (&,, 6, , & ) is (up to restrictions) the
required isotopy between b 2¢, anda v 722 . = If the-
, 6, ) Ybetween ar 7, and
7S ?¢, , then there is am isomorphism 6 between 2,
and 7, such that 6= 6, by=6,, 6
strictions). Q.E.D.

re exists an isotopy ( 6;, 6,

= 6, (up to re-

3. Double zroupoids gnd double nets. A double grou=
poid Q, is defined as a couple of groupoids 9..,. =(S,x),
G.= (S, B) 3) yhere @, has a neutral element 0 such

3) We shall use the denotations (S,e)= (S,+),a(X,y)eXx+y
and (S, 3)=m (S,), B(x,u) = Xo g .
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that OexX=Xx:.0 = 0 for all x € S .
Broposition 6. Let a groupoid @, = (S, +) with a neut-
ral element O be given. Then every double groupoid over
@, can be constructed as follows: Let ¢ be some mapping
of S into the set & of all mappings from S into S
reproducing the neutral element ( and such that & (0)
sends each X € S onto O . Define « by X g =
=(¢p(x)) ¢ for all x,=5 . '

Proof. Clearly, the described construction gives rise-
to a double groupoid. Secondly, in each double groupoid over
a given @_,, , with second composition » , each mapping °
L, defined by Lyg=x+ 4 forall 446 S 1is & map-
ping of S into S satisfying the above conditions.Q.E.D.

0, es: (S, ) contains a neutral element 1
(the unity) iff 6 (1)e idg and, for each x € S, 6(x)
takes 4 onto X .« The left distributivity x (g + 2 ) =
=Xeng+ X+ holds iff each 6 (x) is an endomorphism
of G, . @.=(S\{0},) is a quasigroup iff each
&Cx) is a permutation of S and & (S N\ {0 }‘) acts simp-
ly transitively upon S\ {0} . & is without zero di-
visors if eaxd 6"'x(0) = 4  forall x €S .

The proof follows at once applying the definition of o

A double net ¢ is defined as a couple of nets
7,(S,%,,5,), M =(S,%, ,§ ) such that 7%, adnits a fra-
me with ¥ - and ¢, -axis lying in the same 2, -line.
Moreover we shall suppose that (i) the union of the &, -and
the 4, -axis is a X, -line 6 which will be called
gingular, (ii) the reduced net U = (S° ZJ, §7 ) where
S S\{0}, X°=Z\(0}, §* = §, ‘z: admits a frame.
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Clearly, if 77 = (?¥_, 91 ) is a double net then
(Qs 1, , Qs 71,) 1s a doudle groupoid without zero divi-
sors and with unity. Conversely, if § = (&,, §,) 1s a
double groupoid without zero divisors and with unity then
(W G, , B G, ) 1s a double net.

A double groupoid & = (&, , &, ) such that both
., . are loops 1s a well-known double loop.
Let G = (§,, G.) be a double groupoid without zero di-
visors and with unity. The geometric counterparts in
(A» G, ; A» §,) which correspond to the left of the right
distributivity are much complicated. Although the coordina-
tization of 4-webs given in [3], pp.61-63 is'geometrically
more convenlent, the preceding concept may possibly present
& further view upon the question of the coordinatization.

4. Bipars. A binar B 1is defined as a quadruple
(8,5,,5,R) where S,,5,,5 are nonempty sets and
A 1s a mapping of S; * S, onto 5, . Clearly a binar
(s, S, .S, , ) can be regarded as a halfgroupoid
(§uSuS,,B) vith dom =85 xS, -

_ Some suggestions for the study of binars are given in
(3], p.24 or in [4], p.448, respectively.

The concept of isotopy between two groupoids can be
subordinated (after some arrangements) to the concept of an
epimorphism between two binars:

Let B=(S,,5,,5,8), B'=(S],5;,S,, 3" ) be two
binars. By a mapping ¢ of 3 onto S’ we shall mean a
triple ( &;, €,,6, ) such that 6; 1is a mapping of S
onto S; ; 4 =1,2,3 . Such a mapping € 1s called

- 446 -



epimorphisp between' B3 ana B’ ifB(Gx, §x)= & B(x,4)
for each (x,a‘,)GS.,sz . By apartition & on B we
mean a triple (B, 55, 53 ) where 0% 1is a partition on
S; ;1=1,2,3. £ 1s said to be generating if, for each
(X,¥Y)eB =T , B(X,Y) i contained in some mem~
ber of B .

Some properties of generating partitiops: )16 each ge=
nerating partition % on J3 there corresponds a canonical
epimorphism between /3 and B/P = (K, R, R, L/ P)
where B/ P(X,Y)=Z for B(X,¥)g Z € . To each epi-
morphism & between J and S’ there corresponds an in-
duced generating partition P« (%, K, B ) such that
%= {6;‘1'»,41 €S;%;i=4,2,3, and consequently, N’
is isomorphicwith J / 07 . It is alao well-known that for
any system G = (.’P‘)‘_‘ 5  of geherating partitions on
J3 , the partitions Aupn G =leup G aup Gy, sup G, ) and
inf G= (inf G, inf G,,inf 6, ) with Gy = (B*) ., for
i =1,2,3 are also generating. '

Abinar B = (5,,85,,5, @) is said to be
left reversible, if, for any (&, ec)e S = S there is
a unique X € S, , such that B (Xx,4L ) = ¢ . Similarly
a right revergibility is defined.

A generating pertition P= (H, 2 B ) on abinar J3 is
called left pormal if I3/ #  is left reversible. Similar-
ly a pight normality will be defined. ; ; :

Broposition 7. Let B = (§5,,5,,S,, B ) be a left

- s e 0 o

4) See for example: Cas.p¥st.mat.91(1966),246-253,
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reversible binar and P= (2, R, B), Q= (Q,, Los s
left normal partitions on I3 . Then 4nf (&, @) and
sup (P, Q) are left normal too.

Proof. First, consider the equation ﬂ/M(@Q)(x,b—)-c
for given (W,edemf (%,Q,) = inf (B, Q4 ) . We have
Lepn,Nng,, Ceqv, N q, for convenient (43,,9,)6 & =
» 021 (1y,9406 % = ¢, . There exist uniquely determined solu-
tions n, € £, ¢, 6 44 of B/P (g, v, )= #2, and
B/ (@59, )= @5 Tespectively., By the left reversibi-
ity of f3 1t follows a = 12, N @, + # . Thus a €
enf (%,{,) is the required unique solution of the given
equation. - Secondly, consider the equation B/sup(RQ)ix,&)=c
for given (4 ¢) enup (B, Q)% rup (f, g, ). Let &, , .0,
be two members of 4} 1lying in £ and e,, ¢, two members
of @ lying in ¢ . Thus there must exist "chainings" 5)
LXv/TuTn T Tzl (ye D,% e g, for1=1,...,0)
and g Tw; Tw, TW, T.. Tw; ke, W, € B, w; € y for i =1,...,r)
. of the same length 2a + 4 . Find uniquely determined solu-
tions 4, € B, u; € §, of B/P (my,v)=w; ,
R’q (a;, v/ )= 'w,.' _for 1 =1,..., r and & unique solu-
tion @y €  of B/F (ay,4)=0¢; ; G = 1,2 . Then
by left reversibility of Jd there exists a chaining
@ Ty Tk, T AL .. Tu, € a, . Consequently a,,a, mst
lie in the same member a of sup (%, d, ) and the given
equation has a unique solution @ € aupn (%, @, )., Q.ED.

Lemma. Let B = (S5,, S,, S,, 3) be aleft rever-
sible binar. Let P= (£, %, £ ) be a left normal

5) If A,B are sets then A IL B means A B s 0.
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partitionon B . If Pe % and g € S, then R ¢ R,
RXB(Pg)=>RSE B(P,2) .

Eroof. Let 2 € P, &« € R, Let X 6 S, be a unique
solution of the equation B (Xx,q ) = 4 .

Then from 3 (42,9 ), 4 € R it follows, by left normality
of P , that « € B(P,2) -

Proposition 8. Let B =(5,,5,,5,,/3) be a left and
right reversible binar. Let P = (%H , %K, £ ) be a left
normal partition on J3 and 2= (2,,4,, g, ) be a right
normal partitionon J3 . Then Pe %, B € 2,=2pCCPR)e
€ sup (B,Q,) and B, ¢, is an associable pair €.

Proof. Let B(n,9)e Z € sun (7, ¢, ) for some
(fn,9)€ P> G . First, we shall show that each z € Z
lies in B (P, & ). Since z and B (n,Q) belong to Z ,
there exists a finite sequence Z = fl, 4%, s+ s hgs T B1,Q)
such that any two consecutive elements lie in the same member
of f; or @, respectively. As s, = B(n,9le 3 (P, Q)
then, by gradual using of the preceding lemma, all 41, _,,--,
4,1, Dust belong also to B (P, ) .

Secondly, take any (pn', ') e P x & . As P, @ are
generating, 3 (.p’, ), B(n, q" ) lie in the same mem=~
ber of $ and B(n,Q’) A(pn, ¢ ) also lie in the same

_6) A pair of partitions @, 3 onaset S+ 4 is sald to
be associable if each member C of supn (@, ) satisfies
the following conditions: if A € & and B € J3 are
contained in C then A I B ., See f.e. Journ.de math,

pure et appl. 18(1939),p.72.
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member of (o 8o that B(n,q@) B(n’,g’) belong to the

same member of Aup (B, 4,) and A(P,R)S Z . '

In the whole, we have B (P, @) = Z ,as it was required.

From the preceding it follows, by the way, the assaciability

of $ and ¢, . Q.E.D.

Corollary. Let & be the lattice of all left and right
normal partitions on B . Then the lattice of the third com-
ponents of these partitions is modular.

The proof follows by the well-known fact (from the theo-
ry of equivalence relations) that associability implies modu-
larity. Qe.E.D.

Propositions 7 - 8 generalize the results of [2) where
normal partitions on quasigroups are studied.
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