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Commentationes Mathematicae Universitatis Carolinae 
8,3 U967) 

CONSTEUCTION OP SPECIÁL FUNCTOBS AND US APPLICATIONS 
Miroslav HU3EK, Praha 

Let three categories X X , *•€ and two faith-
ful functo*s IJ ; Xi —+ *€ be given. We want to con-
struct "the beat funetor" O from Xi into Xž commuting 
with fy and having given values at some objects Xt- € o$f X^* 

"The best" for G meana to háve as many as possible good 
properties (to be one-to-one, full, to preserve products, quo-
tientaj, etc). It follows that if each object X of X4 can 
be.embedded into a product of ÍK{i , then GX must be em-
bedded into the product of {GrX^ } . This f act is the basic 
idea for the construction of 6 . We shall prove under eer-
tain conditions that G is the only funetor preserving pro-
ducts and substructures (Theorem 8) or that G is full when-
ever there is a full funetor from Xň into Xž (Theorem 3 
and its Corollary). In some cases €t[Xil ia a coreflecti-
ve subeategory of 3^ (Theorem 5) and G is the only full 
funetor from Xi into Xž (Theorem 9). 

As applications of our generál theory there are some il-
lustrative examples concerning relations between Top, Prox, 
Unif• We shall obtain also new results in Examples 4 and 5 -
characterizations of continuity structures and a generaliza-
tion of Smirnov theorem on the equivalence between compactifi-
cations and proximity spaces. 
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We s h a l l use the notát ion from t 2 i aa<* from E4J. I t seems 

t o be su i table to r e c a l l concepts being often ušed in the s e -

quel (we sha l l deal wi th project ive cases only - the duál 

ones are induct ive) . In t h i s páper, the term "functor" means 

"covariant functor"• A non-void indexed c la s s f f4 J of 

morphisms i s said to be project ive i f a l l the -fy háve the 

samé domain. The fol lowing d e f i n i t i o n i s a modification ať 

the project ive generation from [4J (see C l ] ) : 

Let F : Jd —i *f be a f a í t h f u l functor, <̂  a sub-

category of *£, {Xjf an indexed c lass of objects from X 

and l e t í % í D e a project ive indexed c l a s s in <ť such 

that {FXi í ~ i$cf4 i . We s h a l l denote by 

an object X of X with the fol lowing properties: 

there e x i s t s an f̂  ; X —¥ Xj for each i such 

that F*i * <% J 

i f í ^ - í i s a project ive indexed c la s s i n X, fyc '• 

. y —y Xif Fq*i • % • <j for each i , where cg e % , 

then Fq. « cf for some <£.; Y—t X • 

In the čase that í % í - <F*i4i, { B4v4 J - { X4 } , {ti^} i s 

a project ive indexed c l a s s , we s h a l l denote X by <Ff
t€tf>-

- &w» { Jhfi . The symbol < F, *£, > - pu£ X' , where X' 

i s a subcategory of X ; designates the c l a s s 

£ K < Fi < , > - *£w f** } I í A - 4 } i s a project ive inde

xed c l a s s with ranges in 3 ť / j * 

Let us háve two f a i t h f u l functors F4 t X4 — • *£ m k 

functor ff s < 4Č,, E, > — • < 3C* , FŘ > ( i . e . f̂  # O * 

o F1 ) i s said to be projec t ive ly F2 -preseryin|j With 

556 



respect to *£, i f G[< f>,*f > - $2> <f4ih <Ft,% > " ^ í ^ i 
whenever the le f t side ex i s t s . 
In most cases (see [41) the generation does not depend on 
^ and therefore ^ wi l l be omitted in thw čase. 

Now,we shall describe the main construction: 
Let fy *> %4 * *€ be fai thful functors, X^ a 
subcategory of Xi and l e t G' be a functor < # J , * ^ / > " * 

Assumě that the object 
GX« <*í,Fil1C<l>-fm.«FSlM»K,l** X^S, {G'S*Í> 

exists for each X € ofy V(^ . Then the mapping O can be 
extended t o a functor G i <X<,, F^ > —^ < X&, F* ) *** 
th i s way: For each f Í X —* Y, Y €. X$ there exis ts an 
í : GX —* G/Y such that £ f̂ , e 5 f • I t follows 

that GX * <Ft, FitX^l)- tom, {f^, í and, hence, for 

each Jh, € Hrnu^ < X', X > there is a morphism GJh € 

€ Hrm^ <GX', GX> such that Fz GJh - F1 A . 

Definition. The functor G i s said to be project ive-

ly ( Ft, Fz > -generated by the functor G/ • 

In the aequel, we sha l l use the notát ion from the preceding 

construction and we sha l l suppose that F^ are amnestie 

(see t2]> - i . e . the conditions Fj -ř • 1, t i s an e-
quivalence imply f » i (see also £!])• 

The f ollowing two theorems deal with cases when O i s 

one-to-one (i«e» an embédding). 

The ořem 1* If G i s one-to-one then each X € ofy Xf 
i s & maximal object having the given morphismi into X+ • 
Consequently, i f the projective generation exis ts in 
<Kl i PÍ > f then Xi-'<F194t *> - f**5Í «*/ • 
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Evidently, we must add some further assumptions for the 
oonverse statement to be trues 

Theorem 2 . Suppose that F+ÍHm^ <X,y>J« $ ÍHm^CGX^Y)^ 
for each X € X1 , Y € X$ . Then G is an embedding if ^ * 

Now, we approach to the more speciál čase of an embedding 
in our čase - to the fullness of & • 

Theorem 3 . The conditions F1 ÍHdm^<X,y>2m F^Hsn^KGX^y^ 
for each X « « , , y c ^ m d *%•<%•FzíČL^m-W*!, 

i s the fu l l subcategory of X^ generated by 
GíXi] ) are sufficient for G to be f u l l . I f G extends 
6 ' then they are also necessary. 

Proof. Let 0, C H*m% <GXf GX' > . By the f i r s t eondi-
t i o n , there i s a mapping -f-ř -+4'i: HúfnýC<X/

fY>--¥Hafr^<X,y> 

for each Y € K^ such that 4Q, • 9. » f£, * By the second 

condition, ^ 9 . e ^ Jh for some A : X —* X ' . Clearly, 

(y<k » g^ . The converse s ta tě ment i s obvious. 
Corollary. G i s fu l l provided that there exis ts a fu l l 

functor H : <XénF1}-+ <^C%}FZ > which extends G' and that 
#,, * <r7, fj c « t 3 > - **<* # ; •• 

Theorem 4. $ i s fu l l provided that # , * < f ^ , ^ : tf> -
"pícf VCj and that there exists a projectively (Fz, EfCX^l)-
preserving functor H : ^#£ , F2 > —* ÍSťf, f̂  > with the pro-
perty H * G' * 4^/ • 

Proof* If i s sufficient to prove the equality H * G «• 1^ . 
By the def ini t ion <rX« < Ftf ^ t X ^ > - $ & { % , \4: X-* >£ Ycicj. 

Thus Htfx»<Ff, F^coťfj>.^íH^/f/ x - t y , y€ ar; j • 
Because 6 H-f̂ , » e#, £J Hf^, « Jyf w e h a v e H$X e 
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Now, we shall turn our attention to other properties of 

(j - to the preservation of generations• 

Theorem 5. Let FJ C Hom^ <X, Y>J* FttH<m^<GXf &Y>J 

for each X C # , , y c 0TJ . Then the functor G f # , —fr #* * 

where 3C- i s the fu l l subcategory of Xg generated by 

< Fz , * > - fwwtf G' 1X^1 i s inductively < Fx#t f€>-

preserving» 

Proof. Assume that Xc < Ft, *€>-- J&m,^ 3,9-4'' <?*$-*-* > 

AeXg, ^g^4s V°^i^i • We a r e to prove the existence of a 

morphism g,', (?X —* A 'such that Fxq •• Cf , First , sup

pose that A «* G'Y» Then q^ =• >#t^tf/ for some ^ * -

; 3)£ —• y and, consequently, gp e P^ JK for some Jh* X-t 

—> y , It follows that the requested (1, i s equal to Jh, , • 

Let .4 * < Fx , tf > - jfan {Jfy f } where Eie^ e £' £ * ^ J . 

Then, by the preceding proof, there exist morphism JL » GX-+ 

-V£41. such that F%L ~ Ft Jh^ • <f * I t follows from 

the definition of .4 that ^ f e ? f o r s o m e ^ • ftV-^4. 

Of course, i t is possible to state Theorem 5 more gene

ral ly for *̂ j instead of St? . But in that case we must 

add a condition ensuring that •£-> i s stable under composi

tions with morphisms into G' t %\ J # 

Theorem 6, Let #-, * < f> , *£ > - fWK> ^ . If 

X * < ^ , * € ' > - fcW^J, &** * ^f implies <?X * 

* < 5# &>~!ton if%, } then <J is protectively £ -

preserving with respect to *£'. If <r extends G' then 

the convers holds, too* 

The last theorems deal with relations between \G and 

other functors H \ <1Cf<, ^> —* < Kg, F^} . We shall denote 
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H < 6 i f HX «C r GX for each X m 3K, ( i . e . 

i f there i s an 4 s HX r-*<?X such that F% 4 - *f ) , 

e .g . we have always G%, < <3-' • 

Theorem ? . Let ^ be a subcategory of X, such that 

X J c %, and that H s ^ < X , y > « H ^ . <X, y > for each 

X € 5̂-f > y « 7£J . Assume that H^, <* G' for a func

to r M : < & f , F ; ^ >-> < # £ , f=i > . Then H < G^ . 

gproUary* G extends G' if 'and only if G' can 

be extended to the fu l l subcategory of #<- generated by tffj 

with preservation of the equality I-" • G ' » .F . 

Theorem 8. Suppose tha t 9^ , H fu l f i l the conditions 

of Theorem 7. If moreover r^., m G' , H is projectively 

( E ^ ^ tf > -preserving, 3 ^ c < £,<•# tf> - ft*p. 3CT/ ? 

then H « Gj* , 

ZbUBttLi* Let « a » < f ^ , ^ , e > - f M ^ G ' £ j C < ; j . If H 

i s a f u l l functor from < 3IC,, fj > —y < X^, f-[ > which extends 

&' then H • £ • 

Proof. I t follows from the fullness of H that if 

£ s HX —+ G ' y then E< 4 m £ 3 for some*; X -* y . 

Consequently, GX <)- Ĥ < . Hence' G « H . 

Now, we shal l proceed to the applications of the prece

ding general theorems to special categories* The f i r s t ones 

are only i l l u s t r a t i v e . The main applications occuring in ex

amples 4 and 5 are presented here without de ta i l s (they wi l l 

appear elsewhere). 

Exampla 1. Let 3Kj be the category of semi-uniformiz-

atole spaces ( i . e . X € AA, («+) implia* if £ u, C#) ) $ # | 

-be^-the category of proximity spaces ( in the sense of 121 $,.e«. 
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they need not be uniformizable)* 

The functors f̂  are the obvioua forgetful functore in-

to Ei%$ . 

Víe choose far X^ the least space projectively genera-

ting Xi . 

It is the three-point space < (a,, Xry c) , M,} , where 

*4,Ca)* (a7£>>), uCcyrCCiJtr) , u>C4r) * Ca,,^fc ) . If we 

want for G to be fu l l we must put G*<(&>, 4tf c )f4i > » 

c í C ď , ^ c )P fi, > ; where the only non-void non-proximal 
seta are Cu)f (C) . By Theorem 9f G i s the only fu l l 
embedding of < Xi f £J > i n t o K 3CX 7 Ft > ( i t i s the known 

embedding onto fine proximities). G í Xi 3 i s eorefleo-

tive in Xž by Theorem 5 and is not reflective* 

From the inductivity of GCX^l in Xz the uniqueness af 

G f ollows also in another way* We know that X^ i s in-

ductively generated by paracompact TJ -spaces with at most 

one accumulation point. It follows from Theorem 7 that every 

f u l l functor from ( 3 C , , í j > into <Xrf FJ > coincide* 

with G on discrete spaces and, consequently, on the parar 

compact Tj -spaces with at most one accumulation point* If 

we construct the fu l l embedding from these faots inductively 

we obtain G (without using Theorem 9) . 

Examole 2« The second method from the preceding example 

(a comparison of the functors generated projectivaly or in-

ductively) i s useful in the cases when Xt # <fwaj> & ť%í 1 • 
The last inequality holds i f we replace the proximity space© 
by the semi-uniform spaoes in Ixample 1* We s t a l i provf that 
there i s a class of different fu l l embeddings of < #f i /£} V 

into < *3Ct, Ft > in thls oase* Lat m% be an infinite 
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cardinal number, A^ a discrete space of cardinality /m,f 

(J^ m A^ x < (a9 1r,c, ), *c > , G^ f^ the fine semi-uni

form space inducing f̂ n, , and <?»-, be the functor projec-

t ively < fij., Ft > -generated by ££,, • 

Then ^ -J-» ^ for m, # /n- # 

If we use also the inductive generation we shall get that the 

value HP of an arbitrary fu l l functor H i # , —• Ot̂  is 

uniformly coarser than the fine semi-uniformity and i s uni

formly finer than the fine proximally coarse semi-uniformity 

of P . 

The same results can be proved for uniformizable and uniform 

spaces (we use the closed unit interval instead "of 

KC^fr, C>, «* >) . 

Example 3* Let X"Y * W*t# j *Xt be the category 

of uniformizable proximitiesf F^ the forgetful functors in

to Bn% , VCj the full subcategory of 3Q generated by 

metrizable spaces and G' be the obvious isomorphism of 

3CJ onto #^ • Then the functor G protectively 

< Fj i Ft > -generated by G* is the forgetful functor (the 

left adjoint of the embedding JCt onto totally bounded uni

form spaces). 

As a consequence of Theorem 5 for the restriction of G to 

the proximally fine uniformities we shall get the coreflecti-

vity in tCt of the proximities having proximally fine uni

formity (this result (see also f7J) can be more easily proved 

directly or as a consequence of Theorem 6 in £43)• 

%4lP^e, 4- Now, we describe a method which serves to 

characterizations of continuity structures.(A similar method 
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was ušed by H. Kowalsky i n t6J to a characterizat ion of the 

category of topologica l TJ - spaces . ) 

E#G. /we want to find conditions for a category X to be 

equivalent to Top. F i r s t , there must ex i s t a f a i t h f u l func-

tor F from % into EftS and an objeet 2> of X 

such that F J i s a two-point s e t and 

% s < F, EfU > - +*0f, C $ ) . Now i t i s suff i c i e n t to con-

struct the functor Q pro jec t ive ly ( Ff FTop > -genera-

ted by G' ( <r' ass igns to D a connected T9 - t opo lo -

gy on FD ) and to find conditions under which O i s 

f u l l and onto a representat ive subcategory of Top. Using 

Theorem 3 we s h a l l get the fol lowing proposit ion: 

A category flf i s equivalent with Top i f and only i f 

there e x i s t s an object D in 'Si such that : 

1) H m ^ ^ , ] ) > *• (ec, /2, 1, ) ^ where cc*fi**, /*•«>* fl> 

2) I f Jh,í € H&mýc<XfY>f 4%i ¥> Jv± then there i s an 

4 € Hon^<J), X > with the properties l**,***/***, 

M,^ Ů 4 # K% • 4 ( l e t us denote by C^ < V , X > the s e t 
£ { 4 i * € Hom^ <2>, X > , 4 A c « * • /3 « 4 } ) • 

3) Assume we háve given mappings y s H0mg<X9}}-+hom<y,P>f 

Cf/t^<P,y>-tc f l ť<]> f X > such that 4»cfJh,myr-f»A for 

each 4v, -ř . Then cf s {Jv ~+ Q.* &} for some q, s Y-+ X . 

4) Let 9 be s mapping c ^ O , X > —> (oí , A ) 

which can be described by means of a family {q£ I -í c I , ̂  * *3J , 

0^ are f i n i t e / from Hům^ O í f £ > in th i e w^r: y g , * *e 

i f and only i f <J-* • £ * cC for some i e I and each 

£ c â  . Then y * { 9. —> **> • fy\ for some -?w X - * J> • 

5) Let S be a aet and $ be a subset of 
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8 * 1 ^ < 6f (*, & » eatiafying the conditioa Í4) with S 

and $ inatead of c^ <P , X > and Hom^< X,~3>> . Theí} 

there i s an K € bfy % and a bijective mapping y : 

i S—*ex<3>„ X> such that the mapping {4-*«(.x-W• tyxlh 

i Howi^OC,£>-*<£ i s bijective, too# 

One obtains similar propositions for closure and proxi-

mity spaces using three-point space. It i s also poasible to 

give external characterizations as the greatest categories 

having certain properties etc . A characterization of the ca-

tegory of topological spaces by means of a two-point space 

was recently found also by D« Schlomiuk (see L8j), but I do 

not know any further details of that characterization* 

Examole 5» Let X^ be the category of those proximi-

ty spaces satisfying the implication X *p, Y ••» X jv Y f 

and Féf be the forgetful functor of Xn into Top. Let tC2 

be the category of compactificationa of topological spaces, 

i . e . the following category: 

objects of %% are triples < P, 4, Q, > where P i s a 

topological space and -f ^a a homeomor̂ žU-sm of P onto a 

denae subspace of the compaet topological space fl , 

morphisms of lí% are triples <ty,<P, 47 « > , < P% 4% Q' » , 

where cg i s a continuous mapping P into P' such that 

there i s a continutms mapping ty'i <? —t Q' making the obvi-

ous diagram commutative (ty* • 4 * 4' • ty ) # Denote by ř£ 

the faithful functor { < ty, < P, 4, <3 > , < P', 4', a?'» —• 

~V<cj, P, P'>Í i *CX—> Top . 

The Smirnov the ořem, concerning the equivalence bet-| 
we«n the uniformizable proximities and the uniformizable com
pactif icationa, i s bf the following fora ( VCJ means the 
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category of uniformizable prox imi t i e s j : 

There e x i s t s a unique f u l l embedding & : <%"% ^ v > —• 

—* ^ *^i * ^L ^ such that G l%%2 i s a r e p r e s e n t a t i -

ve subcategory of uniformizable compacti f ieat ions . (The proof 

fo l lows a l so from our Theorem i f we také the closed unit i n 

terval for %\ . ) 

I t suggests general izat ions of Smirnov theorem for other pro-

ximity spaces and other categories $Cf , We sha l l mention 

here only one such a generá l izat ion . The d e t a i l s and other 

general izat ions w i l l appear elsewhere. 

Let ICJ * £ *f< P,1hp > I P i s a s e t j , where ft-p i s 

the only proximity from ^ inducing the coarsest Ti -

topology 4A on P ( . fy i s the Wallman proximity of Álf ) 

and G' be the functor { P —v < P, \ , P > J . Then the 

functor G pro jec t ive ly ( E, j ^ > -generated by Cr' i s 

a f u l l embedding of < IC, , f-J > into < ^ , JJ>. Each P* otytí, 

i s a dense subspace of the third member of OP with the 

Wallman proximity. &ťK^2 i s core f l ec t ive in < ř P t 1 T&p>-

proj G í °K\ 2 ( t h i s l a s t c lass i s a t r i v i a l projec t ive ex~ 

tension of G i JCj 2 -compact spaces in the sense of C3J) 

and, hence, QP has obvious extension propert ies for each 

P . 

The advantage of th i s method i s in the fac t that we 

sha l l get functor ( i . e . continuous extensions of some map-

p ings ) , which i s impossible in some s imi lar embeddings con-

cerning only spaces and not mappings ( e . g . in C5J). 
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