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A REMARK ON SELECTIVE FUNCTORS X’
Ales PULTR, Praha

In the present remark, we show that the definition of se~-
lectivity from (1] may be simplified. Namely, we prove the
sufficiency of @ =selectivity for selectivity (i.e. A -se=
lectivity for any type 4 ).

We use the terminology and notation of (1] (set functor,
1, @, P7 etc.) with the following alterations and addi-

tions: We describe types by (o, ) instead of the un=

<
precise { %y, I B <73, Similarl,:{, :elational systems are
denoted by (%50, < 4 etc. We write R (A) instead
of Y (I, A) (as was originally done in [2]). For the void
type, (@) is identical with the category 77 of all
sets and all their mappings. Without fear of confusion we wri-
te again O foar the natural forgetful functors of rarious
R(A).(Thus, inthe case of A = #, O =1 .)If

v : F—G is a transformation of functors, we say that it
is a monotransformation (an epitransformation) if every X
is a monomorphism (an epimorphism).

In [1], a one-to-one set funetor F is said to be A -

-

x) Supported by the Alexander von Humboldt-Stiftung

-
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selective if there is a type A and a one=to-one functor

d  nmepping R (A) onto a full subcategory of R (A")
such that the diagram

R (A) ——Q——-> R(A")

commutes.

The aim of this note is to prove

Theorem: A set functor is selective if and only if it
is f -selective.l.ec.,a one~to-one set functorFis selecti~-
ve if and only if there is a type A  and a one~to-one

functor, mapping 7§ onto a full subcategory of 22 ( A)
such that the diagram

5 . R
r o
=, |

¥

commutes.

First,we formulate and prove some lemmas.

Lemmg 1: Let F be a covariant one-to-one set functore
Then there exists a monotransformation  : I F.,

Let F Dbe a contravariant one-to-one set functor. Then
there exist transformations w : P"—>F ma ¢ :F— P
such that € +@« 1is the identity transformation of P~
(consequently, ¢ 1is a mono- and € an epitransformation).

Proof: We use the notation 4 = {03 ,2= {0,1}% etc.
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Far every set X and every X € X define f: HE B 4
by §: {D) = X . We have obviously, for every f:X—*V,

. X = y
f g.)t §#(.x)

Let F be a one-to-one covariant set functor. Thus,the-

re is an a € F(4) such that

FO§2yca) # F(ghi(a) .

Put wX(x) = F(EX)(a) . FPor $: X5y we ob-
tain F(#) @ (x) = F(8-£X30@)w FUEY V@) = @f(x))
and,hence,. & 1is & transformation, If X,y € X, X & 4,
there exists an + ¢ X —> 2 such that f(x)= 0, f(q)= 1.
Thus, F(§) @ ()= @"(0)= F(f} @) # F(§})(@) = F(£) w®(y) and
hence (a.x(.x)d- (wx(@) .

Now, let F be a contravariant one- to-one set functor.
Instead of for P~ , we shall prove the assertion for B
defined by:

ii(X):{acIcc a mapping of X imto 273,
R(#)(a) = x-F
which is evidently naturally equivalent with P~ .
There is a & € F(2) such that
a, = F(FY) (&) + F(g2)(8) = a, -
Define «w:f— F and e:F— F as follows:
for i X— 2, (u.x(a:)-F(ac)(lr),.
tar e e F(X), eX(e)x)m=1e>F(Ee)=a, -
If #: XY, we have F(#)uY(a) = F(f) F(x) (&) =
e Fla: $)(8) = @i(x.$) = @B (#)(),
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(B (#)e¥eN(x) = EY(e) (£(xN = 16=> @, = F(EY, )(e)m
= FO8 65 (e) = FEXY(F#) (Vo= (EXF(4)(e)ix) = 1,

For any oc: X— 2, ex((.d‘(cr.))(.x)s 1= q, =

= FUEO@ @ Pl §5)00 b %+ §X = % K (x)=1 and hence
U -
Leppa 2{Hedrlin): For A.c @, (X) define 9Ac
c QM P™(X) by
PEQAES Va: Mo+ X ((Ymalm)eEp(m))ep x € A).
Let A c@y(X), BcG,(Y), f: X->¥ . Then
QM ($)(AYc B <= QM PT($)(qB) c gA .

Broof: Let @, (#)(AVc B, ¢ge€@B . Let oc(m)e
€ QP () () m) = (P (#)eg)m) = £ ((m))  and hence
$.-a@m)e glm) for sny me M. Then $£-a ¢ B g
hence « ¢ A .

Let @y P (£)(gB) c A . Let o0 : M— X .
If #:< & B, then ¢ : M— P7(Y) ,defined by g (m)={f-atm)},

is an element of g B . Thus, GMCP‘(«#))(Q): P (). e
€ 2A . Since av(m)e+ f(x (MmN} = P F)NPplm)), o ¢ A.

Lemmg 3. If g 1is a one-to-one mapping, then
| GCF(AN € g(B) &= £(A)C B .

Proof is trivial.

Eroof of Theorem: Let F be @ -selective. Thus, the-

re is a A’ = (cc;, dpay and & commutative diagram

d 4 R4
oy

>
T
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with one-to-one functor ¢ , mapping J onto a full sub=
category of R (A") .

I, Let F be a covariant. Let A = (), . . Put

Xy =y for f< 7 ™ % A () ey - We have

&) =(F(X), (ﬂ—,, ey ). Nau, we see easily that the
following prescription:

YO (g ) = (FOX, (ByYy s,y ) 5 WheTe By =
for B<g’, Bopron = (0,»(4, )(IL ) (for objects (X,(x, ), )
of R(CA) ; (4 from the first part of lemma 1)

O-¥Y (&) =F-O0(+) (for morphisns),
defines a one=to-one functor

¥:RA)— R(A), Let
@5 CF X, (B Yy e ) = (FOYY, (B, o )

be a morphism in R (XA ) . Hence, according to

for 3 < ', Dy = F($)

very R < 7

a5 %
for some £: X = VY

Far e~
we obtain

o, p"(@‘pm(ﬁ»- Q, FH (A, ™ r(x,) =

- Q;flm(l:ly)Cm%ﬂ) c

and herze, by lemms 3,

- Y
Briwp = QU‘ﬂ o~ (An)
Q“‘n”)("n) c A -

II. Let F be

contravariant. Take

A, &
denote again $ (X) = (F(X),

as in I,
(fl« Ya<ys ) .« For an ob=
Ject (X, (&) ) o RC(A) , put ¥W(X,(#%,), , )~
= (F(X), (n Yo<yiay), vhere A = ny for B < 77,
X
e = (a,,’ ) (g x,)

( @« from the second part
of lemma 1, q from lemms 2), for morphisms define ¥ by

D Y(y)= F-O(y) ., hgain, it is easy to see that
this defines a one-to-one functor ¥: R (A) — R(A) .
Let 1 (FCY), (Bydyega, )= (FOX), (Bp)y_ () Do @
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—

morphism in 92 (A ), According to A, E,; with <
< 7' we obtain [ ¢ = FC($+) for some £: X —= Y . We

have, for B < o ,
X
(@, P~ = x -
Q, @ (B PT(f)(qa ) a:ﬁprmco.‘p(u xR
5 = x
= ai%uﬁ(cjg’)(¢r#w) € Ry = Q“% @ (Qr,) .

Thus, by lemma 3, Q‘p P~ (-F)(an) c qr, and hence

finally by lemma 2 0% (F)(fr./’) c A o

References
{1) 2. HEDRLIN, A, PULTR: On categorial embeddings: of topolo-
gical structures into algebraic,Comment.Math.
Univ.Carolinae 7,3(1966),377-400.
(2] 2. HEDRLEN, A.PULTR: On full embeddings of categories of
algebras, I1linois J.of Math.,10,3(1966),392~
406,

(Received February 5,1968)

-196 -



		webmaster@dml.cz
	2012-04-27T17:43:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




