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Commentationes Mathematicae Universitatis Carolinae 

9,2 (1968) 

SOME FIXED POINT THEOREMS 

Josef DANES, Praha 

§ !• Introduction. There is a number of interesting fi

xed point theorems for multivalued mappings with applications 

in functional analysis and the theory of games (see CU -C33). 

The Glicksberg generalization C2] of the Kakutani theorem C3^ 

on fixed points is as follows: 

The or era (Glicksberg). Let X be a locally convex linear 

topological space and C a compact convex subset of X . 

Then every closed multivalued mapping $; Z-+ 1 tl ?C CK) 

has a fixed point in C (i.e.*x e f Cx) for some x$ C ). 

(For the notations and definitions see § 2.) 

Recently Sadovskij C43 has proved the following 

Theorem (Sadovskij). Every concentrative self-mapping of 

a convex closed bounded subset in a Banach space has at least 

one fixed point. 

Recall that the sum of a contraction and a completely 

continuous mapping is concentrative. 

This paper deals with some generalizations of the Glicks

berg 'a and Sadovskij's theorems (see §4). The method of § 4 

is derived from the Sadovskij'a proof of his theorem. This 

method can be formulated for multivalued mappings between 

seta (without topologies). We use a slight modification of 
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a result of Michael 15]• Let us note that not a l l loca l ly 

convex spaces are paracompact. 

In § 5 we mention a fixed point theorem for one valued 

weakly continuous mappings in weakly compact (non-convex) 

subsets of a Banach apace and a proposition generalizing 

Problem 1 E7fp#262 J . 

§ 2 . EiP^aUpng ma fleffrhlUona. Let R , resp. C de

note the f ie ld of real , resp. complex numbers .Let X be a 

linear apace (over R. or € ) and M c X . Then eo M 

and sp M denote the convex and linear hull of M into X , 

reap. If X is a linear topological space and M c X > then 

co M and sp M denote the closed convex and closed linear 

hull of M in X , resp. 

For every set C put 2.C» { M € e*p C t M #- 0 J C « the 

system of a l l nonempty subsets of C ) . Under a multivalued 

mapping of a set C into another aet D vie mean a mapping 

* i C - * 1* . 

Let X and X be topological (Hausdorff) spaces and 

•f i X —y 1 a multivalued mapping of X into Y .Then 

f la called: 

(1) Lower semi-continuous ( l . s . c . ) i f the aet f»x c X : 

4CX ) H V #» 0 } i s open in X for every open set V 

in X . 

t2) Upper aemi-contlnuoua (u . s . c . ) i f the set { X e X ; 

fCo() c V j i s open in X for every open set V in X . 

l ) Cf.Stone A.H.-Paraeompactness and product spaces-Bull. 
Amer.lfiath.Soc.54,1948,977-982. 
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(3) Closed i f the graph GKC-f)m{Cp<,y,)i^eX,^e^Cx)i 

of f i s closed in X x Y * 

Por I a linear topological space denote: 

yCCy)m{Cely : C convex I > 

$Cy)*?{C € 2 y ; C convex closed | , 

V(Y) = i t e 2* : c convex compact ? . 

Let (Mjd ) be a pseudometric space. Then a mapping f ; 

M-*M is called a contraction i f there exists a constant 

cce<0j<1) such that 

cL(-fCtX)jfty)) .4<*d-Gx,/y,) f or any *x,/y. e M . 

If C c M , then we define 

ft (C)*{£ € R : £ > 0 and there ia a f in i te £ -net 

for C J • 

The number ^ C O * im& Q,CC) Ct^vfjSf^ + oo ) i s called the 

measure of non-compactness of C • If ( M t , cL^ ) i s another 

pseudometric space, then a mapping *f : M —¥ M1 i s cal 

led concentrative i f f i s continuous and for any bounded 

non-precompact subset C of M 

%iWCO) < ?l(C) (fa i s the measure of non-

oompactness in ( M̂  , d^ ) ) . 

Let X be a local ly convex linear topological apace 

and P a defining" system of pseudonorms for X (i»e« 

ip,'*C<0, B )) : ft e Vf t € C0,4 ) } i s a base for neigbor-

hooda of o in X )• 

Then a multivalued mapping f of a subset C of X 

into X i s said to satisfy the condition (C) i f for any boun-

- 225 -



ded subset M of C and for every <p> c P such that M 

i s non - p - precompact there i s 

^ C - f C M ) ) < ^ C M ) . 

( \p, i s the measure- of non-compactness of the pseudonor-

med space ( X 7 <ft ) ) . I f f i s f i n addition, one-valu

ed and continuous, then i t i s called concentrative ( P -con-

centrative). 
y 

If X and X are topological spaces and •? : X —* 1 

a multivalued mapping of X into X then a continuous map

ping Of - X —•> y is called a continuous selection of f 

i f cpCcx ) e -P <T«x ) for each x « A , If X i s a linear 

topological space then f i s said to have the almost conti

nuous selection property if for every neighborhood V of o 

in X there exists a continuous mapping Cfv:X~+y such 

that <yv Cx ) e Cf Cx ) +• V) f) co f (X) for any x € X . 

§ 3 . Remarks. Let X, X be topological spaces and 

f : X —> 2 # The multivalued mapping f i s l . s . c i f and 

only i f for each convergent net x^ —+ x in X and any 

ty. e -(-Cx) there are n^ € fCx^ ) such that <%*,—!> <y. in 

X . The mapping f need not be closed (for example, le t X = 

*<074>9 y « X x X , iCx)^{Cx9n^)t y.e<0?<1>}tor xe <094) 

and * C 1 > » 4 0 J ) # l f f i s closed, then f(x) i s closed 

for any x e X . If X is regular and f i s u . s . c . and 

f(x) i s closed in Y for any x e X then f i s closed. 

If f i s closed and f(X) is relatively compact in X 

( i . e . f(X) i s compact in X ) then f i s u . s . c . 



The following Proposition 1 is a slight modification of 

Michael'" s result £5J. 

Proposition 1. If X i s a paracompact space, I a linear 

topological space, -P ; X —• VC (y) a l . s . c . multivalued 

mapping of X into Y , V a convex neighborhood of o in 

Y , then there exists a continuous mapping Cfy : X-*y such 

that Cfy Cx) € Cf Cx) + V) 0 to f (X ) for each x e X -

Therefore i f Y is locally convex, then f has the a l 

most continuous selection property. 

Suppose ( M , c O i s a pseudometric space and 7^ i t s 

measure of non-compactnes3, i t i s easy to prove the following 

assertions: 

( i ) C c M i s bounded i f f %(C) < + oo 9 

( i i ) C c M is precompact ( i . e . total ly bounded) i f f 
XCC) * 0. 

Let CX,ji ) be a paeudonormed space and ^ i t s mea

sure of non-compactness. Then T^Cto C)-» 7((C) for every 

subset C of X o 

If f and g are two multivalued mappings from some 

subsets of a locally convex space X into X which satisfy 

the condition (C) (with respect to a same defining system P 

of pseudonorms for X ) , then i t s composition 4s * <J* also 
2) sat i s f ies the condition (C). Every precompact multivalued 

mapping in X sat i s f ies the condition ( O . 

2) i . e . i t maps bounded sets into precompact se t s . 
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§ 4» Theorem 1. Let X be a locally convex (Hausdorff) 

linear topological space (over BR or C ) and C a non

empty c o n v e x dosed subset of X • Further, let f be a mul

tivalued mapping of C into itself such that the following 

conditions are satisfied: 

(i) there exists a non-empty subset K of C such that 

co UK) D K', 

(ii) if -CI is a convex closed subset of C such that 

£5 i CA.) w IL 9 then -XL is compact; 

(iii) f admits a continuous selection on any convex 

compact subset of C • 

Then f has a fixed point in C , i.e. there is a point xo€ 

e C such that *x0 e f(x0) . 

Proof. Let 

sr̂ -ciic C: n. -r co n, Kcil, -pea) c JX ? . 
This system <& has the following property: 

(P) H c <S mm* co 4 (XI) c (5 . 

Indeed, let Jl 6 <* and - 0 . - eo 4s (SL ) . Certain-

l y , JL » co .O . By ( i ) we have K c Co f (K) c 

c CO f CJL)-=- i l^ . Since .Aj * co i (SI) c J l , we have 

f CA- ) C J l j . Thus (P) i s proved. 

Let C0 m H & . Then 0 4> Co e <» since K c C ^ 

= coC and -fCC0)=r fClKSDc H -P C<» ) c C\ <3 » Cd
 B u t 

(P) implies co -P CC0 ) e & . Therefore C„ « co -f C£ ) , 

From ( i i ) i t follows that C0 i s compact. Hence by ( i i i ) 

f admits a continuous selection cp on C0 . Then 9 i s a 

continuous self-mapping of the compact convex subset 0o of 

local ly convex space X , and by Tychonoff Fixed-Point Theo-
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rem there exists a fixed point *0 e C0 c C of g> , 

i . e»x 0 - - cyCxe)# Hence * 0 « 9>C*e)€ f Cx0) . This comple

tes the proof* Q.E.D. 

lemJ2fc. It i s evident that the condition ( i ) in Theorem 

1 i s equivalent to the following (formally stronger) condi

t ion: 

Ci ) there exists a non-empty convex closed subset K 

of C such that "So 4 CK) z> K * 

From the proof of Theorem 1 i t i s clear that the set K in 

the condition ( i ) i s relatively compact. 

JiejfflaJL* **et X be a local ly convex (Hausdorff) space 

and C a compact convex subset of X • Then each closed mul

tivalued mapping of C into i t s e l f which has the almost con

tinuous selection property has a fixed point in C • 
c Proof • Let -f : C —1> 1 be closed with the almost 

continuous selection property* Then for any convex symmetric 

neighborhood V of o in X there exists a continuous map

ping 9>v : C —* C such that c?v Cx) e 4Cx) -+• V for 

•by x e C . By Tychonoff Fixed Point Theorem g>v has • 

fixed point xy e C . Then xv e fCxv ) + V . Since 

0 is compact | the net *f *xy / has a convergent subnet 

{*tyl • Let be xw —• %xo . The closedness of f implies that 

x0 e f Cx0 ) . Indeed, sines xw e f Cxw ) -t- W there are 

% 6 ^Cxw) *nah t h l t *w "" /Vw e W * Sim* *w "~* x° > 

there is %>w —y *x0 . From the closedness of f we have 
X0 € *Cxo)0 The lemma i s proved. Q.£«D# 

Theorem 2. Let C be a convex closed subset of a loealiy convex 
CHausdorff) space X Cover R or C ). Let 4 t C - * 2C n JC (X) be a 
closed multivalued self-mapping of C vs4iich satisfies the condi
tions Ci) and Cii) of Theorem 1. Then f has a fixed point in C. 
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Pr>Mo£ 0 Let C0 be as in the proof of Theorem 1* 

Since C0 i s compact convex and f0 m 4 I C0 i s a closed 

self-mapping of 0o and a l l the aets -P0 C*x ) are convex 

the Glickaberg's Theorem can be applied. Hence there exists 

a point x0 6 t0 such that xp € f0C ,xc ) *- -f CXP ) . The 

proof i s complete. Q.E.B. 

Remark. If the mapping f in Theorem 2 i s in addition 

l . s . c . with almost continuous selection property then the 

Theorem 2 can be proved from the Lemma 1. 

It i s clear that the mapping f in Theorem 2 i s from C 

t o 1C C\ PCX ) , i n f a c t . Also fp: C0—> Z°P H V C X ) 

(since Cc i s compact). 

trUITOM g - ket C be a convex closed subset of • linear 

topological apace X • Let f be a multivalued mapping of C 

into i t s e l f . If there exiata a point x e e C such that 

xe e eo Mn.i *"* Cx* ) 9 then f sa t i s f i es the condition 

( i ) of Theorem 1« 

£rj2fl£.Let K » L £ , {""Xo . Then -fCK) u<Cxe J« K . 

Since o ( p e £5 -PCK) ; there i s K c c o - P C K ) - Q.E.D# 

LejamjtJ. Let C be a convex complete bounded subset of 

• local ly convex space X and f a multivalued se l f "-mapping 

of C which sat i s f ies the condition (C). Then f sat is f ies 

the condition ( i i ) of Theorem 1. 

Proof. Let J l c C be a set such that Sim Sd t(~0~). 

Then SL i s bounded, and ^CfCfLytx^CobfCXD)* fa CXI) 

for each <fi e P ( P is a defining system of pseudonorms 

for X with respect to which f satiafiea the condition (C))« 
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Hence -Q. is pre compact. Since C is complete (and J2. 

closed), the set Jl is compact. Q.E»D. 

Proposition 2. Let X be a locally convex linear to

pological (Hausdorff) space and C a complete bounded con

vex subset of X . If f is a multivalued precompact closed 

self-mapping of C with the almost continuous selection pro

perty on any compact convex subset of C , than it has a fi

xed point in C . 

Proof. From the precompactness of f and the complete

ness and boundedness of C it follows that the convex set 

t0 m cb i C C ) is compact. Since *0 m -f I t0 i C0—r 1° 

satisfies the conditions of Lemma 1 the proposition follows. 

Q.E.D. 

Remark. The mapping f in Prop. 2 is compact (i.e« it 

maps bounded sets into relatively compact sets),in fact. **!-

so the mapping f in Prop.2 has the almost continuous sclec

tion property on any compact subset of C iff it has this 

property on any compact cottvex subset of C . 

Proposition 3. Let X be a locally convex linear topo

logical space and C a complete bounded convex subset of X • 
c 

up £ . c —• 2. is a precompaot multivalued mapping which 

has a continuous selection on any compact (convex) subset of 

C then it has a fixed point in C . 

Proof. Let C0 *» co «P CC) # Then C0 is compact, 

•f C C0 ) c C0 and f has a continuous selection <y> on Co. 

From the Tychonoff Fixed Point Theorem it follows the exis

tence of a fixed point for <p . This fixed point is a fixed 

point of f , too. Q.£»D* 
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Proposition 4. Let X be a locally convex linear topo

logical (Hausdorff) space and C a convex closed subset of 

X . Let f be a closed multivalued mapping from C to 

1C f) *K CX ) such that 4 CO is relatively compact. 

Then f has a fixed point in C . 

2£0ja£. Let C0 - co fCC ) and apply the Glicks-

berg Theorem to 0o . Q.E.JD. 

Theorem 3. Let X be a locally convex linear topologi

cal space and C a convex complete bounded subset of X such 

that any precompact countably subset of C is relatively se

quentially compact. Then any concentrative self-mapping f 

of C has a fixed point in C . 

Proof. Let *x e C and K » the set of all (sequential

ly) limit points of the sequence -f 4"%'CzC ) ; m, m j , 2.,*" } • 

Since •PC-ffT.x): <n» 1,2.,". ? ) u $4Cx )}*{*%<); <?t m 4,27>.-1 , 

there is £ ^ C{ f^Cx) : /n. * 4, 2,.-. J > « 0 for »llfz.e P 

( P is a defining system of pseudonorms for X with respect 

to which f is concentrative). Hence this sequence is precom

pact. Then K * 0 owing to the relative sequentially com

pactness of the sequence. We shall show that 4CK) « K .It 

is clear that i C K ^ c K . L e t x c K . Then 

Z m Jlvm, 4"l'*> C x ) . 

Since { 4***" CoO : Jk, ** 1, 2, ... ? is relatively 

sequentially compact, there is its convergent subsequence 

4 * C^) — ^ ^ e C , It follows from the continuity of f 

that so m 4 Cry,) . Therefore 4 CK)* K and the set K sa

tisfies the condition (i) of the Theorem 1. 

From Lemma 3 it follows that f satisfies the condi

tion (ii) of Theorem 1. 
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The condition ( i i i ) of Theorem 1 is sa t i s f ied trivially*.. 

Hence we can apply Theorem 1. I t follows that f has a 

fixed point in C * Q»E»D. 

§ 5o Theorem 4. Let X be a normed l inear space, C a 

weakly compact subset of X and f a self-mapping of C 

such that 

CK) ft*C*)-f^)R< II * - ^ II for a l l x ^ c C . , * - * ^ ' 

Suppose that one from the following two conditions i s 

s a t i s f i ed : 

(1) f is weakly continuous (resp. sequential ly weakly 

continuous) on C ; 

12) the set C and the functional R* - * C* > I are 

convex* 

Then f has a unique fixed point in C • 

Proof. Let C£ C*) *r H X - f C<* ) II for X 6 C . 

Let be sa t i s f ied the condition (1) . Since II * II i s 

weakly lower-semicontinuous, ( I - 4 ) i s weakly continuous 

and Cf * \\ • \\ . CI - «f ) the functional Cf i s weakly 

lower-semicontinuous. 

Let be sa t i s f ied the condition (2) . From the convexity 

and continuity (cf. the condition (2)) of the functional 

9 C x ) - * H x ~ f C * ) l | i t follows the weak lower-semi-

continuity of cf „ 

Also in each case g> i s weakly lower-semicontinuous on 

the weakly compa ct set C . Therefore there exis ts a point 



x c e C such that y> (oc0 ) - <mlnicf(c<): <x e C J . From 

the condition (K) i t follows that 
Cf Cc<0 > * 0, i . e . * 0 » •£ Cx, ) . 

(If in the case ( l ) the mapping f i s sequentially 

weakly continuous only i t suffices to note that any weakly 

compact subset of a normed space is sequentially weakly com

pact.) Q.E.D. 

Proposition g># Let X be a compact topological space 

and d a non-negative lower-semicontinuous function on X x 

x X such that d C«x, ^ ) »• 0 i f f x m ifr. for * , ^ € X * 

Let be f * X —» X continuous and such that 

(K) d Cf Cx), -f C^» <: a U x , ^ ) f or x , ^. € X , 

x 4* <y* * 

Then the mapping t has exactly one fixed point in X , 

Proof. Let be </ C# ) = cL C<x, -f Cx )) for a l l - x e X . 

Then the function 9? is lower-semicontinuous on the compact 

space X • Hence there i s a point ^ c X such that 

g>C«X0 ) * /rrwrt { cf Cx) ; c< e X } • 

From (K) i t follows that g> C*xo ) » 0 ; i . e . x„ =- f Cxe ) 

Q.E.D. 
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