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Commentationes Mathematicae Universitatis Carolinae 

9, 2 (1968) 

ON THE SOUSLIN-GRAPH THEOREM 

ZdenSk FROLfK, Praha 

L. Schwartz in L133 turned the attention of analysts to 

a particular case of Theorem 1 below. The subsequent develop

ment in [103 is also contained in Theorem 1. Theorem 1 is a* 

quite formal generalization of Theorem 2, which will be pro

ved here. Everything what is needed for the proof is well-

known, however the theorem is so useful, that a short survey 

might be in place. We use the term meager for "to be of the 

first category"• All spaces are assumed to be separated. 

Theorem 1. Assume that E is a T.L.S. which is induc

tively generated by homomorphisms from non-meager T.L.S., 

and that P is a locally convex T.L.S. which is analytic 

(see Definition below). Then: 

if f is a homomorphism of E into P such that the 

graph of f is a Souslin set in £ x F then f is con

tinuous. 

Theorem 1 follows immediately from the following 

Theorem 2. Let fy'* En -H• £ , and M, * F —¥ F- be con

tinuous homomorphisms, where E1 9 E and P are T.L.S., 

and Pn is & locally convex T.L.S. Assume that E 1 is non-

meager, and that F is analytic. Then 

if the graph of a homomorphism -P : E —* F is a Sous

lin set in E x F then Jfe «» *fi, • "f • g* is continuous. 
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Just the closely related terms Souslin and analyt ic 

should be explained. For a survey of the theory of analytic 

se t s see 133, for abstract theory of Souslin sets l93fC63; 

the l a t t e r paper also contains a t r y for an abstract theory 

of analytic s e t s . There we reca l l what i s needed to under

stand Theorem 2. 

A Souslin set derived from a collect ion of se ts ffl , 

or simply a Souslin - 171 se t , i s a set of the form 

<-/M = U{n«CM*U-< ei lere 2: J , 

where M is a single-valued re la t ion with domain S - the 

set of a l l f i n i t e sequences in the set N of natural num

bers - , which assigns to each ft € S an element of 771 f 

2E is the set of a l l ( inf ini te!) sequences in N , and 

/t> < & means that s i s a r e s t r i c t i o n of 6~ to an i n i t i a l 

f i n i t e segment of N (thus 4> € S )# The col lect ion of a l l 

Souslin -771 se ts i s denoted by if Cm ) . If 771 i s a col 

lec t ion of a l l closed sets in a topological space P then 

the Souslin-771 3et3 are called the Souslin set3 in P . 

Very important re la t ion (for any ?7l ) 

ycycm)) •* vcm) 
shows that VC1TI) is closed under countable intersections 

and countable unions. Recently two simple proofs were given, 

the one in -.101 use9 aba tract aetting of contidion (2) be

low, that one in 1-6] uses the abstract setting of condi-tion 

(l) below. Th$ latter proof also works for some special ca

ses of operation tf • There we only need to know that the 

intersection of two Souslin sets in a space Is a Soualln 

set. It should be remarked that many important colle ctions 

of sets in analysis are invariant under the operation *if , 
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e.g. measurable sets, capacitable sets (in a proper setting), 

the sets enjoying the property of Baire (see Lemna 2 below)* 

The set 51 endowed with the topology of pointwise 

convergence (i.e. -El -=• N in the topological sense) is 

known to be homeomorphic to the space of irrational numbers* 

It is easy to observe that (see M],Remark preceding Th.l) 

X c P is a Souslin set in a space P iff there ex

ists a correspondence f ( -* a multivalued map) of 2L into 

P such that the graph of f is closed, and X * Ef ( « 

the abstract range of f ,i.e. -f C SI 1 ). 

If M is given then f is defined by: 

f&=* fHM* U-« 6" I , 

and if f is given, then M is defined by: 

M* = ce-pcsu 1 
where Z ^ - s E - C o ^ l C c X . , /&*<€] . Now, a cor

respondence -f : Q -^ P i s called usco-compact if f i s 

upper semi-continuous, and if the images of points are com

pact. For example, any continuous mapping and the inverse 

of any surjective proper mapping are usco-compact. The met

hod of correspondences was introduced in £3J and E4J. 

Definit ion. A uniformizable ( s completely regular) 

space P is said to be analytic if the following four equi

valent conditions are fu l f i l l ed : 

(1) P i s the image of 21 (or any Polish space) 

under an usco-compact correspondence. 

(2) P is the image of a K^-, under a continuous 

mapping ( Kg^ means a countable intersect ion of 6 -com

pact spaces)o 
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(3) P i s absolute Soufclin, i . e . , P is Souslin in 

any ft a P (separated!). 

(4) P i s a Souslin set derived from the compact sets 

in some space* 

Thus the class of a l l analytic spaces i s closed under 

usco-compact correspondences, and i t contains the Polish spa

ces and the compact spaces. 

The proof of Theorem 2 follows immediately from the 

following three lemmas: 
LftOTfl 1- If X is a Souslin set in the product £ x F 

of two topological spaces, and i f P i s analytic, then the 

projection of X into E i s Souslin. Thence, X^CY] i s 

Souslin in 1 for each closed y c F . 

Lemma 2. Any Souslin set in any space has the property 

of Baire. More generally, the collection of a l l sets with the 

property of Baire i s invariant under the Souslin operation 

if. 

L̂ -flm-il g- Let X be a non-meager set with the property 

of Baire in an inductively continuous gtfoup G ( -» a group en

dowed with a topology such that the translations are continu

ous) • Then X - X i s a neighborhood of the neutral element .*.*. 

First we shall prove Theorem 2. Then a comment to the 

lemmas wi l l be made* 

Proof of Theorem 2 . Choose a closed balanced neighbor

hood of zero in(P^ . We shall prove that ^"''CKJ i s a neigh

borhood of zero in Ê  • 
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The set MT^tK] i s closed in P because of the 

continuity of h , hence -f" ZtC^lK 1 3 i s Souslin in E 

by Lemma 1. Since g is continuousf ieT LKlxcf Li C<fiT CK131 

i s obviously Souslin in E1 • By Lemma 2 the set Y*. AC* I K J 

has the property of Baire. Since E1 i s non-meager and 

\}{m, • YJ« E,. , some n • Y must be non-meager, thence X i s 

non-meager because i « x - » ^ £ - . x j i s a home omorph ism. Thus 

y - y* 1 • V i s a neighborhood of 0 , hence I i s a neigh

borhood of zero. 

Remark. Notice that we have proved: i f Ef , E, F and 

F are inductively continuous groups, g and h are continu

ous homomorphisms, f is a homomorphism whose graph is Souslin, 

E,j i s non-meager, and P i s analytic, then for each symmet

ric closed set in P., such that U^/rv* K ** f^ (when (m + 1)K-

m K + 'TV • K ) there exists an n such that M7 t m.. K 3 

i s a neighborhood of the zero in Ê  • This shows how much of 

the linear structure i s needed. 

Proof of L n̂̂ a } - Let K be any compact i f ication of P 

and le t JT stand for the projection of E x K into E • 

By condition (3) above, the set F is Souslin in K , hence 

E. x F i s Souslin in E x K . Since X i s Souslin in 

E x F , X ^ X ' n CE .K F ) with X# Souslin in E x K 

(use the same representation). Thence X is Souslin in E x 

x K . The mapping JT i s closed (because K i s compact!), 

and one sees that err C K 3 i s Souslin in X ( i f X « V M , 

then JYLK2 m <f { * _* jr I MA>1 ? . 

Remark. A proof of Lemma 1 based on condition (1) i s 

given in C12J. 
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The proof of Lemma 2 i s given in [93 f § 11, VII. Lemma 

3 can be found in [13, [8] , [93, [10],[141 under stronger as

sumptions, which, however, do not effect the proof. 
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