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Commentationes Mathematicae Universitatis Carolinae 

9, 2 (1968) 

ON THE CONTINUITX AND DIFFERENTIABILITY PROPERTIES OF CONVEX 

FUNCTIONALS 

Josef DANES, Josef KOLOMf, Praha 

Introduction. This paper is a continuation of our inves

tigations [1,2] concerning the continuity and differentiabi

lity properties of nonlinear functionals (in particular con

vex functionals). 

Section 2 concerns with the continuity and boundedness 

property of such functionals, while § 3 is devoted to the dif

ferentiability of convex functionals. Among others there is 

shown that a convex functional f defined on a linear normed 

space X possesses the Fr£chet derivative f ' f x . 1 at x# * X 

if and only if t is smooth and continuous at x0 • The case 

of continuous Frdchet derivative is also considered. 

• Theorems 2,3,5,6 contain some answers to an open ques

tion C) by M.Z. Nashed 13, p.753 concerning the Gateaux and 

Fr^chet differentiability of convex functionals. Some atten

tion is also paid to study of critical points and the exis

tence of the Gateaux derivative of directionally smooth func

tionals. This paper concludes with some important examples 

of convex functionals and their properties. For the recent 

results in these topics see the bibliography cited in C1.2]. 
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i« Notations and definitions* --et X be a real linear 

normed space, X * its dual, E ^ the euclidean n-space, 

(x, «£* > the pairing between -e* e .X* and x e X . A 

functional f defined on a convex set M g X is called 

convex (strictly convex) if 

(1) i (Xx + (4- X)<fr)h X*(x) + (1-X)f(ty) for each 

X, ̂  € M and X C < 0 , 1 > (if the sign < holds in 

(1) for each x , <& e M and A e ( 0 , ^ ) ) # We shall 

use the symbols n — > " , * ̂  »* to denote the strong and 

weak convergence in X • A functional f is said to be weak

ly lower-semicontinuous at X0 € X if ̂ X^ «-̂--* X0 -*•-> 

•f Cx<>) •£ JiaCt -f C-X,̂  ) . We shall say that a functional 
41* —•oo 

f possesses the Gateaux differential V - f ^ ^ , ^ ) at*x̂ e X 

there exists 
(2) J*nv ±-U(X0+t*,)-t(*.)l « Vf (*.,*>) 

i-+0 * 

for every Jh e X . Thus V*f* f ,X0 , M* ) is in general non-

linear(and not continuous) mapping on X • If Vf (X07<h>) i s 

linear in h e X ? we denote th i s d ifferential by Pf(Xoth,). 

A functional f i s said to have the Gateaux derivative -f'(x,) 

at X9 i f there exista 2)-f f %x«, , h,) at tX0 and this mapp

ing i s bounded on X • The one-sided Gateaux derivative 

V+•<*,,*!*) of f at X, * X i s defined by (2) for t-J> 

—» 0, . By d f CX0, *H ) we shall understand the Fr£chet 

differential of f at X<, B X (cf• L4J,chapt,I). If 

di (X0J h* ) i s continuous on X -then we shall say that f 

possesses th« Fre*chet derivative 4*(Xc) at X9 •Through 

th i s paper in theorems and propositions we shall assume that 

functionals f , V̂  -f £«**> >fa* ) are f i n i t e . 
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2* Continuity properties of convex functionala 

Theorem 1. Let X be a l inear normed space, f a cpn-

vex functional on X • Suppose there exis ts a constant M >Q 

such that tlxp + Jh)-tt C*#-.#*,)-2-fCiX*) £ M «-& ! for 

each heX with 1 <fi> II *- R > 0 , where X, i s a fixed 

element of X • I f e i ther a) V^ f (#0 7 Jh) is upper bounded 

on some open convex subset B 4= 0 of X (in par t icu lar 

V̂  f C#p 7 Jh) i s upper-semicontinuous at some h • 4i>, e 

€ X ) or b) X i s complete and V f (xc 7 h ) i s lower-

semi continuous on X , or c) f i s continuous at X0 , then 

(3) \4C*P+H) - f C*#)l k N H<M 

for each Jh, € X with II -fc II -fc R 7 where the constant 

fs| > 0 does not depend on h • 

Proof. Since f i s convex, the one-sided GSteaux d i f fe 

r en t i a l V+ 4 (&07 Jh) ex i s t s , is positive homogeneous and 

subadditive in Jh € X t 5J. Hence Y+ 4 (** , <h>) i s 

convex on X • Assuming a) (b)) and using theorem 2 [6,11, 

§ 5 3 (the Gelfand lemma£7,chapt.I3) we see that V+ 4 Cx, , ^ ) 

i s continuous (bounded) on X • But continuity of th i s mapping 

at h = 0 implies the boundedness of V̂. -t (xc , h ) in so

me neighborhood of 0 . From the positive homogeneity of 

V. f (#0J h ) i t follows that there exis ts a constant C •> 0 

such that 

(4) I V + * C x 0 ? & ) l h t\\h\\ . 

Assume c ) , then (4) i s sa t is f ied by Theorem 8a) 11J • By lemma 

2 [13 we have that 

(5> - CI fell* K fC*# ,*,) i K x , t A ) . f ^ - ) . 

On the other hand, let h be an arbitrary element of X 

with ll-M < R . Then f(x,+Jh,) + fte-*)-£*£*,)• 



fioploying convexity of t and aware that thifK"'' < 1 > 

Hjyij- R I - R we obtain 

i.^.)+d-ihHC>*Cx,)+ WM R'U (*,- ffe ) - 2 *<*.) * 

' - / I ^ I I . R - ' C f ^ . + R ^ I I ^ J T ' V ^ - R * , I A . I - * ) -

- -*C<v,)J * i £ - • M . II - j f e ' s M HA" 

by our assumption. Hence for each Jh € X with If-fe II 4* R 

there is 

(6) 4Cx,+ Jh) + 4(*,-Jh)-l4(x0)(k M «-4« * 

According to lemma 2 [13 and (6 ) , (4 ) , 

* Ccx, + Jh) - 4 (x,) * f (X0+Jh) + 4Cxp~h,)-Z4CXo) 
+ 4 (x,)-4(x0-h) £ 

£ Mil-fell + V4 4(x9tJh) 4 

| ( M + C ) « 4 I - N if -fell 

for each -fe 6 X with II Jh II £ R , where N * M + C . 

This inequality together with (5) give (3) . This completes 

the proof. 

Corollary 1. Let X be a linear normed space, f a 

convex functional on X . Suppose there exists a constant 

M > 0 such that f(h) + 4(-h> - 14 CO) £ M t Jh II 

for each he X with Hhti » R . Furthermore, l e t one of 

the following three conditions be fu l f i l l ed: a) V 4(0 h) 

i s upper bounded on some open convex subset & «t> 0 of X 

(in particular, V^4 (0, h) i s upper-semicontinuous at 
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some H m Hp € X ) ; b) X i s complete and Y^-fCO^A) 

i s lower-seaicontinuous on X | c) f i s lower-semicontinu-

ous at 0 . 

Then f i s bounded on the closed ba l l DR(\l4v II & R ) • 

Proof. This assert ion follows at once from Theorem 1 and 

Theorem 4 £2). 

3. Differentiability of convex functional. The follo

wing assertion is true tcf.Cll, Th.5 see also Correction J: 

If X is a linear normed space, I a Banach space, F/X-» 

-* y a demicontinuous mapping of X into X, then the set Z 

of all «X € X where the GSteauxvdifferential VFCx, 4v) 

exists for any (but fixed) h, e X is a F^-set.In parti

cular, if f is convex continuous functional on X, then the 

set Z of all X 6 X where the linear Gateaux differential 

P-f (x7 H) exists for any (but fixed) H e X is a F^r -

set. Moreover, the following result has been established in 

[2]; Let X be a separable linear normed space, f a convex 

finite functional on X . Suppose that there exists an open 

convex subset U «*» 0 of X such that f is upper bounded 

on U (in particular, assume that f is upper-semi continu

ous at some point x9 6 X ). Then the set Z of all X £ 

e X where the Gateaux derivative -CCx) of f exists is 

a Gy -set. 

Now we prove the following 

Theorem 2. Suppose X is a linear separable normed spa

ce, f a convex continuous functional on X . Then the set 2 

of all X 6 X where the Gateaux derivative -f'CoO of f 

exists is a f^y-set. 
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Proof* According t o lemma 2 £13 we have that 

4(x)~4(x~H) & V¥4Cx,H) & 4Cx + H) -4Cx) 

for each x and H e X . Since f i s continuous on X , 

V+ 4 Cxy H ) i s continuous at h -= 0 for each x e X . 

Being V+ -PC*, H) subadditive in H e X and 

V+4(x70)=0 for each x e X, V+ 4 (X7 H ) i s con

tinuous in H e X for every X € X . Let A t ., >H%y... 

be a countable and dense subset of X and denote by Z^ the 

s e t of a l l X € X where the Gateaux d i f f e r en t i a l V4Cx7Ht) 

ex i s t s for fixed M,^ (m, & /f? 2.9 ... ) j i . e . 

According t o above mentioned theorem t l ,Th .5 t .3 Z,^ i s 

a r»L-~set for each /n- C/n, * 4f2L7... ) , As ^ € Z <-----> 

^ ^ ^ ^ ^ 7 ^ > » - \ f ^ r \ ) i n v i e w 01> continuity of V^4Cx^7H) 

In <H e X and sepa rab i l i ty of X, we have that X0 e Z ^ 

(m, ^A,!,.,. ) and Z ~ J \ Z~, ( c f .£8J ) . Since Z i s 

an in te r sec t ion of f^^-.-sets Z ^ (<*-*- -= 4? 2,... ) ? Z i s a l 

so a f v ^ - s e t o By Proposition 6 12} for each X € Z we iwe 

V4CX,A) « 4'Cx) <H , where *f'Cx) denotes the Ga

teaux derivat ive of f at x • This concludes the proof. 

Corollary 2. Suppose the assumptions of Theorem £. are s a 

t isfied* Then the set P of a l l ** e X where the G&temvx 

derivative of f does not exist i s a ^-r"*s6t# 

Similarly as previously we can improve the result of Theo

rem 6 [1J as follows: 

Theorem 3* Suppose X is a separable Banach space, f 

a convex Lipschitzian functional on X • Than the set Z of 

a l l X e X where the Gateaux derivative 4'Cx) of f ex

i s t s is a FLj^set of the second category and hence i t contains 
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a (Sb'-set which i s dense in X • 

Remark 1. For each convex functional f we have that 
(7) Jtimv Z4Cx0 + tH)+4Cx0-tH) -Q.4CXt>)l ** 0 , 

where ^ ? M* are arbitrary (but fixed) elements of the con

vex open domain of f . In fact from convexity of f 

(0 £. t £ 4 ) we obtain at once that 

0 6 4(x0 + tJh,) + 4Cxp-tH)-24CMp) & 

£ (1-i)4Cxc)+> t4Cx0 + H) + C1~t)4 Cx,) + 

+ t«rV*,~^> - 24 CX0) -

z> i Z4 Cx0+H) + 4Cxt,-H)- 24Ccx9)2 . 

As t —+ 0 we have (7). To investigation of convex func-

tionals we introduce the following 

Definition 1. Let XfX be linear normed spaces. A map

ping F J X - > y is said to be directionally smooth at X^e 

e X if for each (fixed) H e X 

(8) Um,\\lrtFCXe+tH)+FCxc-tH)-2FCx0)l\\ - 0 > 
t->o x 

We shall say that F ; X - f y i s uniformly directionally 

smooth at X0 B X with respect to H e X with IIHII* 

s 1 i f (8) holds uniformly with respect to H e X, IIHII* 4. 

Remark 2« Smooth functions in £ . ; i . e . functions 

which sat isfy $Cx0+H)+4Cxe-H) - 2 4 C xp ) » <rCH) have 

been introduced by Riemann and have been largely studied by 

A.Zygmund t9JfClOJ in connection with trigonometric ser ies . 

Analogously, a mapping F t X -+ Y i s said to be 

smooth at X0 € X i f 

Jtfco T^lT " FC** + +')+ FCx0-H)-2FCsX6)t m 0 . HAJ 
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I t i s easi ly seen that i f F J X - i > Y possesses the 

Gfiteaux differential VF(X0 , H ) (the Freshet differential 

dF(xP7 H ) ) at Up e X , then P i s directionality 

smooth (smooth) at X0 * The converse i s not true in general. 

Propoaition 1* Let f be a convex functional defined on 

a convex open subset M of X (X i s a linear normeu space)* 

Suppose that f i s directionally smooth at x0 € M • Then 

f possesses a linear Gateaux differential J>4(#p, h>) at 

X^ . Moreover, i f f i s continuous at X0 ,then 3)4 (xP 9*t)m 

- 4'(XP) fo> , where 4' (x0 ) denotes the Gateaux deriva

tive of f at Xp • 

Proof. Since 
JL £4 (*P+t-h) + 4(x0-tA,)~ 24(x0)3 ~~* 0 

whenever t ~fr 0 f we have 

(9) ^t4Cx0+tH)--4Cxo)]-%£fCxo)-4Cxo-tA)3-+ 0 

as t —* 0+ . In view of convexity of f ,the one-sided Gateaux 

differential N£ 4 C# , h, ) exists at X0 e M far He X. 

Prom (9) i t follows that 

V+4Cx§9Jh,)m-V4.4CK;-A>) • 

Hence f possesses the Gateaux differential V4(XP9 4v ) at 

H0 , Convexity of f implies that V4(xP7H) » P4 (XP7 h ) . 

Suppose f i s continuous at Xfi . By lemma 2 ill we see that 

P4 CM, •) Jh, ) i s continuous at h - 0 and hence bounded in 

it e X # This completes the proof* 
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Corollary 3 . Let X be a linear normed space, f a con

vex functional defined on a convex open subset If of X • As

sume f i s directionally smooth and continuous at xp 6 M • If 

X0 i s an extremal point of f , then Xc i s cri t ical point 

of f , i . e . 4'Cx0) m 0 -

Let £ be a topological vector space over the real num

bers E.j with dual E* and suppose that f i s a proper 

convex functional on E , i . e . f i s an everywhere-defined 

functional with values in C — oo,*- oo) not identically 

+oo . A subgradient£ll,12j of f at ,* c £ i s an . x * e 

e E* such that 

iC<&) & 4(x) + < ty-x, x* > 

for a l l nj> € E ? where K 1£-X9 X*> denotes the value 

of X* at the point y - x . Denote by <9f Cx ) the set 

of a l l subgradients of f at x . If dfCx ) 4" £f } t 

i s said to be subdifferentiable at x (see the above cited 

papers). Thus <?*f i s a multivalued mapping from E to 

£* assigning to each X € E a l l i t s subgradients. 

Recently J.J.Moreau [11,131 has proved the following 

assertion: If f i s convex, f in i te continuous at x* € E and 

the subdifferential diCxQ) of f at .xc consists 

of a single point, then f possesses the Gateaux differential 

Vf Cx01 M, ) at x0 . The subdifferential 9iCx0) of 

f at x6 consists of a single point i f f i s s tr ic t ly con

vex. 

It i s easy to construct the functionals which are direc

t ional ly smooth at x$ and being not s tr i c t ly convex. 
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The existence of aubgradients has been investigated by 

G.J.Minty [12J , J.J.Moreau [14.3, A.Br/Sndsted, R.T.Rockaffelar 

[15J. I t i s known [12J , [14J that a convex functional f i s 

subdifferentiable whenever i t is f i n i t e and continuous. If E 

i s a Banach space and f is lower-semicontinuous on E , then 

the set of points where f is subdifferentiable is dense in 

the effective domain of f (which i s the convex set of a l l x€ 

e £ such that 4 Cx ) < + CO ) £15J. The re la t ion be

tween convex subdifferentiable functionals and supportably 

convex ones has been obtained by M.Z.Kashed Ll6J« 

Proposition 2. Let X be a l inear normed space, f a 

convex functional on X such that e i ther a) v̂  4 Cx0, 4rt) 

i s upper bounded on some convex Subset D 4s 0 of X ( in 

par t i cu la r , V^ 4 Cx6 , 4v ) i s upper-semicontinuous at some 

K * 4vQ e X ) , where X* is a fixed element of X, or 

b) X is complete, V̂  4 Cx0 , 4t ) i s lower-semicontinuous 

on X . Then f i s subdifferentiable at X0 .Moreover, i f f 

is s t r i c t l y convex, then f possesses the l inear Gateaux dif

fe ren t ia l V4(x0-> *v ) • 

Proof. Assuming a) or b) V^ 4 Cx0 , 4v ) is continuous 

on X (cf. the proof of Th . l ) . According to lemma 2 Clj 

(10) ~V+4Cx,rMk V+4Cx0>H) k 4Cx0 + H)- 4 Cxa) 

for each <h € X . Since V+ 4 Cxc 7 4ft ) i s continuous sub

additive and positive homogeneous using the consequence of the 

Hahn-Banach Theorem Cl7 ,Th. l ' ,§ 6,chapt.IV3 we have that there 

exists an element X* e X* such that 

(11) -V + * C*0}~M k <<h, **> k V f f Cx9fM 

for every i v l X , Henc© the inequal i t ies (.10),(11) imply 

4 Cx§ + M,) - -f Cx0) £ <4v7x*> for each Jh € X, 

i«e. f is subdifferentiable at *x„ . This result together 
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with the above mentioned Korean s one give at once the second 

assertion of our proposition. 

Remark 3. The assertion that a convex functional f con

tinuous at x0 & X is aubdiferentiable at xe we ob-

taion also at once as follows. By lemma 2 CIJ 

H*0)-4Cx0-H)& ^4CxP9H)£ 4Cx0+h,)~4Cx0) 

for every H e X . In view of continuity of f at x0 i t 

follows that V + K ^ , A ) i s continuous at h = 0 • 

V̂  4 Cx0 7 Jh, ) being subadditive and posit ive homogeneous, 

V+ 4 Cx0 7H) i s convex and by Th#C6 fchapt.II,§ 51 i t i s 

continuous on X . Now we proceed as above. 

If the conditions a) or b) of Proposition are 

sa t i s f i ed at each point * c X 7 then f i s subdifferen-

t iable everywhere on X . 

Proposition 3 . Let X be a Banach space, f a cont i 

nuous functional on X . Suppose that f i s d i rec t ional ly 

smooth at some point x0 € X and that x0 i s an ext re

mal point of f . I f V* .. 4 Cx0) m OC-t) 

for arbi t rary Jh^ , H% e X ,where \J? ̂  4Cxe)m 4Cx0+H^+\)+ 

+ *Cxp-M!l)+4(x0-Mi)-3 4Cx0 ) 7 then 4'Cx0 ) m 0 , i . e . x0 

i s a c r i t i c a l point of f • 

Prooff. Since f i s d i rec t ional ly smooth at X0 and 

XQ i s an extremal point of f , the Gateaux d i f fe rent ia l 

V4CX0 7H) of f exis ts at xo . For a rb i t ra ry >v e X7 

h^ 1 H% e X we set 

<fCx0}t,H) **4Cx0 + tH) + 4Cx,-tJh) - 24 Cx* > > 

Ai . 4Cx,)-4C*0+M,4+^)~4Cx,+H4)-4Cx,+*iz)+-

+ 4Cx0) -
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Then 

As f is directionally smooth at X0 ,we have that 

<fCx,7t,*>.4 ) m <rCt)} Ci*1,l) a n d ^ , ^ f C ^ ) « 

c OCi) by our assumption. Hence Z ^ ^ ^Co<0) -* 0 Ct) 

which implies that V4 Cxc, <h*) & D$ Cx0, H) £ cf • 4 , 

chapt,If§ 3]. Since X is complete and f is continuous on 

X f using the Baire s theorems, we have that D-fCiX* 9 <&u) ** 

= -f'C^) H ; where f'(O<0) denotes the Gateaux derivative 

of f at xc . As xp is an extremal point of f , 4'Co<0)* 

*• 0 which concludes the proof. 

Theorem 4. Let X be a linear normed space, f a convex 

functional on X. Suppose there exiata the Gateaux differential 

V f (x ,h) of f at x # & X- Let one of the following three 

conditions be fulfilled: a/ f is continuous at x« / b/ V̂  f(x# ,hj 

is upper bounded on some open convex subset U 4* # of X / c/ X 

is complete and V+ f (x„ , h) is lower-semicontinuous on X. 

Then f possesses the Gateaux derivative f'(x#) a*t x« • 

Proof. The case a/ is the assertion of Proposition 6 £2 J • 

Assuming b/,c/ we have that V̂ . f Cx# , h) is bounded on X • 

% convexity of f 

T f T x , t h ) * V„ f Cx# , h ; » D f (x# , h ) . 

Hence D f Cx# , h) =- f V x # ) h which concludes the proof. 

-340-



Remark 4» Theorem 4 and Proposition 1 imply the validity 

of the following assertion: Let f be a convex functional 

on X directionally smooth at x 0 & X • Assume that one of 

the three conditions a/,b/tc/ of Th.4 is satisfied. Then f 

possesses the Gateaux derivative f fx#) at x# • 

Now we shall study the Fr^chet differentiability of convex 

functionals in linear normed spacea-Some general theorems 

concerning the Gateaux and Pr^chet differentiability of ope

rators have been obtained irkC18,19,20J • 

Theorem 5v Let X be a linear normed space, f a convex 

functional on X. Then f possesses the Pr^chet derivative 

ffac#) at x0<6 X if and only if f ia smooth and continuous 

at x«. 

Proof* The first part of our Theorem is obvious,. Suppose 

f is smooth and continuous at x^. Then f is directionally 

smooth at x., and hence by Proposition 1 there exists the 

Gateaux differential V fCx., h) • Using Proposition 6 £ 2 J 

we see that VfCx«,h) a f'Cx0)h, where fVx0> denotes 

the Gateaux derivative of f at x0 . 

Set 

12 uCx., h) » f c x # + h ) + f Cx0 - h) - 2f < x,) • 

Since f is convex, for an arbitrary h e x we have 

u C x. , h)& 0 and 

f fx# • h) - f Cx.>-f'Cx#)h *<o(x« t K) & 0, 

f <xm - h) - f Cx #)* f'cxjh =u>(x. , - h ) A 0. 



Hence ( h + 0 ) 

0 ^Hh tf1cu(xm , h ) £ II h 0 ( W x . , h ) + c u f x . , -h)) = 

* 0 h if* u (x0 f h ) . 

Being f smooth at x# , 

A h if* ct> ( x # , h ) — * 0 

as f h K —-* 0« Thus f has the Frechet derivative f'C x« ) 

at x 0 and this concludes the proof. 

Theorem 51 Let X be a linear normed space / a Banach 

space /, f a convex functional on X . Then f possesses 

the Frechet derivative f '(x#) at x# €• X < = > f is smooth 

at x. and V+ f < x9 t h ) is upper bounded on some open 

convex subset M t # of X / 7+ f Cx„ f h ) is 

lower-semicontinuous on X /• 

Let Xf Y be linear normed spaces, f : X —-*Y a map

ping of X into Y • For x 0*X f B (x, , r ) will deno

te the open spherical ball centered at x* with radius r 

and u (x9 f h ) the expression given by C12) • 

A mapping f is said to be locally unifoi*mly smooth on 

an open subset M <-• X if for each £ .>• 0 and an arbit

rary x 0 e M there exist positive numbers o ( x0 , £ ) 

and r ( x m , £ ) such that 

(13) II u Cx 9 h)f < & > h > 

if 0 <- f h // < f and x c B (x9 , r ) /I M • 

Similarly , f is said to be uniformly smooth on M if 
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for any positive number £. .> 0 there exists S> 0 

such that if G < I h II < <T , then(13) holds for each 

x e M. 

A mapping f is said to be locally uniformly differenti-

able / uniformly differentiable/ £ 4,chapt.I.J on M 

if f has the Frechet derivative f'Cx) everywhere on M 

and the remainder 

uu(xfh) * fCx + h) -f(x)-f'(x)h 

is locally uniformly bounded / uniformly bounded/: i . e . for 

each £. > 0 and an arbitrary x,eM there exist 

<T(x# , e.) » 0, r<x# , e ) > 0 such that 

(14) U UJ( xth)H< *- If hU 

if C < It h H< $ and x e B ( x , , r)H M / i.e. 

for each £ > 0 there exists S > 0 such that if 

0 < ii h 1/ <- S , then (14> holds for each x «e- M /. 

The following theorem explains the connections bet

ween the above notions. 

Theorem 6. Let X be a linear normed space, f a 

convex functional on X , M <Z X an open subset of X. 

Then f is locally uniformly / uniformly / differentiable 

on M if and only if f is continuous and locally uni

formly / uniformly / smooth on M . 

Theorems 2,3i5*6 contain some answers to an open 

problem C/ by M.Z. Hashed £ 3,p.75 J concerning the 
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Gateaux and Pr^chet differentiability of convex functio-

nals. 

.Analysing the proof of Theorems 4#lt 4»2 C4J and 

using the above result we obtain the following 

Theorem 7. Let X be a linear normed space, f a con

vex functional on X . Then f has a continuous Pr^chet 

derivative f'fx) on the open ball B R(|xf < R ) if 

and only if f is locally uniformly smooth and locally uni

formly continuous on B. . 

Theorem 8. Let X be a linear normed space, f a convex 

functional on X. Suppoae f is uniformly continuous on 

the open ball B- . Then f possesses an uniformly con

tinuous Frdchet derivative f'<x) on BR <=-> f is uni

formly smooth on B R C R > 0, «c > c ) . 

Remark 5» One may obtain analogous necessary and suffici

ent conditions for continuity /uniform continuity/ of the 

Gateaux differential D f ( x, h) in variable x under an 

arbitrary /but fixed/ direction h # X of a convex functio

nal f using the similar notions of locall urdform/uniform/ 

directionall smoothness and the results in £ 18tpp»324-328j. 

We leave the discussion of these facts to the reader. In 

Theorems 7t8 one may replace the open ball B^ by an open 

convex bounded subset B of X. 

Remark 6» Let f be a convex functional on X. Suppose 

that f is smooth at x« # X* If x« is an extremal point of 

f i then d f C x, f h> * 0 for every h # X. If a functional f 
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/ not necessary convex / defined on X i s smooth at an extre 

mal point x . * X and %\JthJk f Cx«) = oCt> for arbitrary h% f 

hA m X, where 

VtX
hi^t(xm) . f Cx.+ h + h%) • f Cx# - h < ) • f C a L . - . V -

~ 3 f Cx#> f 

then d f Cx# , h ) - 0 for every h « X . 

Remark 7* A mapping f : X ~*Y i s smooth at x,#X <=3> for 

each two sequences th^} feX with If h^fl = 1 / n = l f 2 f . # » / 

and { t } of pos i t ive numbers t / n » 1 ,2 f • • » / with lim t ^ = 

* 0 there i s 

(15) ^lim %£ | u ( x # , ^ h^JI « 0 . 

Indeed, auppoae f is smooth at x,6X and {t^J t/b.̂ } be 

arbitrary sequences with the above properties .Then t^ II h II a 

* t. —•> 0 as n —> *o and the condition of smoothness of f 

at xtf implies at once (15) • Conversely, assume (15.) is sati

sfied and f is not smooth at x0 •Then there exist €* > 0 

and the sequence { h^} e X such that I h \\ < xf and 

(16) | hjf'luCx. , V > fl > £. . 

Set 

Then h# * t% h^ with t^—* 0 as n—-**o and I h^B *1 

/ n * lf2f•••• /• Hence by (16) we have that 

<' ű uCx. , VЧ)I > «-

which contradicts to our hypothesis* 

Another equivalent condition of smoothness is the following: 
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a mapping f is smooth at x, * X <£=*> the limit 

lia t t1 \x ( x9 , th ) I = 0 
*->o 

i s uniform with respec t to h * X , I h l = ! • 

3 . Examples of convex f u n c t i o n a l • 

A, Let fr(u>9x) ( u< e C - oo, + oo), x € G- ; here 

G denotes a measurable subset of an euc l idean n-space £,-», ) 

be a N-function f4 ,chapt .VI.J 9H(<u,)=* %>(u,(x ) , *X ) : L^-* L^ 

(fl~ + CjJ m 1 ) an opera tor of Nemyckij from L ^ i n t o L. * 

Suppose o^C-tc, X ) i s monotone func t ion i n ^ c e C- oo ? + oo ) 

f o r almost a l l * £ Cx , Then the f u n c t i o n a l 

(1?) f Uc> *• JcLoc f a>(v, x)dv 
<J 0 

is convex, continuous, weakly lower-semicontinuous, bounded on 

L ^ and Lipschitzian on each bounded closed ball 

J)R (WxW ~ R ) of L ^ , Moreover, 4 (AJL ) satisfies the con

dition of smoothness at every u «• Lf,. 

.Proof . Since M, (<u* ) is the FrOchet gradient £ 21J of 

•fCtc), f is continuous on L^, , in view of monotonicity 

of Qs(4A,9X ) in AX, € (~ oo ?+ oo ) for almost all X 6 

6 Gr9 Sn(AA^) is a monotone operator on L ^ and hence f 

is convex C22J # Then for each real constant c the set E(c)s 

m { x 6 X\ f(x) & c j is convex closed set and hence it 

is weakly closed. By Proposition 1 £lJ f is weakly lower-

semi continuous on L^ , According to mean-value theorem 

KUfr)l» KC^)--fsCO)lSrK«f
/ce^),^)l=: \(H(QJU,)9U<)\ 6 

Since M* * L^ — f L^ 9 h is bounded and continuous £21^ 

£• J. The boundedness of f on L ^ follows at once from 

- 346 -



t h i s f a c t and the above i n e q u a l i t y . Again, us ing the mean-va

lue theorem and employing boundedness of h , we see t h a t f 

i s L i p s c h i t z i a n on each closed bounded b a l l J>R of L ^ , 

Since f i s F r e c h e t - d i f f e r e n t i a b l e on L ^ , f s a t i s f i e s 

t he cond i t i on of smoothness a t every u e 2-^. 

He mark* The f a c t tha t the f u n c t i o n a l f U ) def ined by 

(f?) i s v/eakly lov/er-semicontinuous has been f i r s t l y observed 

by M.M.Vajnberg t23J• But h i s proof depends on another a rgu

ments. 

B# Under the assumptions of the example A suppose t h a t K 

i s a l i n e a r cont inuous opera to r from L^ in to L^ which 

admits a s p l i t t i n g K « A A* } where A ; L^ —¥ L i 3 

l i n e a r and cont inuous (so t h a t A * / L# —> L^ ) . F u r t h e r 

more, assume h i s such t h a t 

f o r every Cf^ ? Cf2 6 L^ . Then the f u n c t i o n a l 

(7*) (p (44.) * | - I < * A 2 - 4CA4*), 

where f i s defined by ( * f ) , i s con; ex c o n t i n u o u s , weakly l o -

wer-semicont inuous, bounded on L^ and L i p s c h i t z i a n on each 

c losed bounded b a l l J>R CII AJU II £ R ) of L 2 • 

Indeed, 4>6a.) has the Gateaux d e r i v a t i v e c j ) ' ^ ^ on 

L and 
<P'C4J,) m AA - A*-** C A u ) 

Since 

<<t> 'Ot f ) -4> '6<v ,^-^ > - « ^ - < ^ »*-< A*A CA^) -A*AA .^ , 

AI^-A*^ * %44H-^tt-<JhCA4ti)-HCAAtaL), A"i- *">* > 

f o r every ^Ct ? .44 2 e L ^ , us ing our hypo thes i s 
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C Aui7 Au2 e Lp ) we have that 

<$'(u< )~<p'(uz),ui-u,1> & 0 . 

Thus <p is convex on L 2 . In view of continuity of A on 

L and f on L ^ . , 0 is continuous and hence weakly lower-

semi continuous on L # The boundedness of >̂ follows at 

once from the boundedness of f and A. • The property that 4> 

is Lipschitzian on each closed bounded ball JD»R of L* is 

obvious. 

The functionals defined by (19-) and (14) play an important 

r3le in variational methods of solutions of nonlinear equations. 

Suppose the assumptions of the example B are fulfilled. 

Consider the equation 

(19) Cf - K to>Cf m 0 

in the space L^ . Then th is equation investigated in L ^ is 

equivalent to the one 

(20) JUU - A* to, (AM,) °* 0 

in Lr, in the following sense: If U,0 is a solution of (20) 

in L^ , then <£ &Au>0 i s a solution of (if) ±n L^ . Con

versely: if Cf0 i s a solution of (19) in L ^ t then *u0 * 

• A*Jh,(Cf,) i s a solution of (20) in L^ , For solving the 

equation (20) i t i s sufficient to assume for instance that the 

functional (J> (u) is such that <t> (u ) —+ + co ma 

|( AA, (/ —y + oo . Then <p has at least one c r i t i c a l point in 

L. and thus the equation (2o) has at least one solution 

**• 6 I-1 • H e n c e % m Au,0 i s a solution of (19). 
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