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Commentationes Mathematicae Universitatis Carolinae 

11, 1 (1970) 

PACT0K-SPLITTIN5 ABELIAN GROUPS OF RANK T1D 

Ladislav BICAN, Praha 

In this paper we shall give a structural description 

of factor-splitt ing torsion free abelian groups of rank 

two. 

Throughout th is paper by a group i t i s always meant 

an additively written abelian group* A torsion free group 

& i s called factor-splitt ing i f any i t s factor-group 

/\\ sp l i t s (sea [3J)« We shall use the following no

tation: If a i s an element of infinite order of a mixed 

group Q then M^Cfy) denotes the ^ - h e i g h t of q* 

in the group G (see £2J)# {H?* denotes the pure 

closure of a subgroup H in the torsion free group (*• 

Instead iiJhll^ , Jk e & we shall write simply 

4Jv3* • R^ wi l l denote the group of rationale 

with denominators prime to <fi . Other notation wi l l be 

essentially that as in [13. 

It wi l l be useful to formulate the following s tate

ment (see Theorem 2 from £23): 

Let G be a» mixed group of torsion free rank one* 

Two following conditions are necessary and sufficient 

for & to be s p l i t : 

(oc) If T i s the maximal torsion subgroup of G 
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then to any ^ e ff -*- T there exists? an integer 

nn, 4 0 such that /mq, has in <? the same type *m 

fy + T in /f1 • 

(/3) To any ^ 6 G x T there ex is ts an integer 

m - * tf ouch that for any prime fi with Jh^ C<fr+tT)**oo 

there exiat the element* M^ » m t ^ , ^ i ^ f A^* , , . , , 

audi that fth^ ** J*£ , /n- * 0, 4, 29.,, . 

How we are ready to prove the main result: 

Theorem 1: A torsion-free group G of rank two 

i s factor-splitt ing i f and only i f : 

(1) For any two linearly independent elements <y, Jh, e 

€ G there i s (itf% + <h,£) © R^ - G & R^ 

for almoat a l l primes .-f* with Jh^ (<fr) 4* h+^CJh,) < 

Proof: .Proving the necessity l e t us suppose that 

there exist elements <fr ., to> c G which do not sa

t i s f y the condition (!)• Without loss of generality we 

can assume that there exists an Infinite set TT' of pri

mes with \ ^ ) < i v ^ ) andC<9.jf4-{.Hjf)®R^^^® R . 

For any prime ft € TT' there- i s h^Ch) < oo ( in the 

other case i t i s easy to see that Ciq,}% + ihl% ) ® R * 

» G ® R.fv ) • 1st us denote JL~ A ( ^ ) - 4 (*^) and 

l e t M,' be the solution of the eqiations </&*'X =• f% , 

In view of C ^ j f + < A j J ) « R ^ $ <? ® R^ the

re exist elements Cfo and non-zero integers oc^ with 

V %m <*> + %*-* • Hence ^ C ^ ^ J V ^ C ^ ) 
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but Jfc^C^+iJfe]*) it Jh^Cfy) + i such that G/i4vJ 

does not sat isfy the condition (at) and hence does not 

spl i t* 

How we shall prove the sufficiency. In view of Lem

ma 2.6 from [43 i t suffices to prove that for any Jhe G 

the factor-group '{Jh} s p l i t s . Let g, e G -*- iJh$% 

be an arbitrary element. Let 

\ = <^i ***fcer *hf>fy>*%<**) or H^)<M^Ch) and 

U*f*HH£)<3>Ro~ 6® R+i , 

Then T̂  9 TĴ  , TL are disjoint subsets of the set IT 

of a l l primes whose union i s IT. The set TT̂  i s f in i te 

by hypothesis and i t was mentioned in the proof of neces

s i ty that %v CM << co . Let us put 

Now we are going to prove that 

(3) Jh^Cmvcy+iJkl)** M^Cmq, + <Jhf%) 

holds for any prime ft. For ft e TT̂  we can assume 

h^ty<00 ite Jh^fr)**hfr(h)** oo then (3) holds e-

vidently)* Suppose that the ecpation ft ** -* m 

m fy + Jh' i s solvable in <? where p h, *» 6<h> for 

suitable relatively prime integers p & * Then (^ fi)** 

** A (in the other case there i s Jl^CMf) < Jh^ (q*) and 

the given equation has no solution)* For suitable inte-
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gere * , * there ia 0V* + f t / ^ * * ^ m 4 # n d 

i t hold* f*1* < * * * + * * ) - » + <p*,#i. . 
Hence 

U) J^Cfr-C-THJ) • *»*(<}. +{Hit > • 

In view of (4t,m,)m 4 the formula (3) ia va
lid*, too. 

Similar calculations show that (3) holds also in 

the cae* 4* e T^ , *!^C^) > Jb c<fc-> and in the 

«we 41, c 7£ . Finally, let Jfi € T£, h^ty < \.(*^) 

and ( < 9 £ 4 - { J M ? ) **-*." G 9 R^ , Fbr^Cfc)~*x> 

it holds (4) and hence (3) evidently. Suppose that 

h^CM,)<* 00 • Let the c<pation>fi?^«9-+^/,i*e*b.ff 

have a solution in &. In G there exists am element 

9/ with Jfv*0 g? ** g, # It ia oaay to ae« that any 

*. 
element of *9>1* ® R^ i* of the form tf& otf <*, € R 

Now we hav* ^ . x 9 4> * 4*** « 1 * <r^ * + **>'& * 

By hypothesis there exists an element Q-'O 00 in 

Hence <£ & Cft*c& - - / *** ) '~ 0 a n d t h e n ^ st -» 

-.fir^ f which implies Av ** Jt^Cg*) -We have shown 

(5) *V <*> * V*>* ¥ * ^ H ^ ^ * ^ R ^ 
^ *V<*-i-<bS*) - * V C * } . 

Now i t is easy to derive the validity of (3) which 

shows that the condition (oc) 4# satisfied* 

,New we are proceeding to the condition </3)# Sup

pose that h^ (<y + 4HlK ) m co * At f irst , letpeIT 

be such m prime that Jh, C9J 2 **fy*CI* ) . Then there 
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In the case of h^Cq,) <c Jh, CH) and «<ýl* -*-

exista a Jfi -adio integer *J5T * (Q,CM ) with 

>p, .x^.* ^.-i-a >H solvable in G for amy fc, « 

-W.,2, . . . (sea £5J). Hence .f^GftXj^ - **, * • 

» Co**'* - a / * ' ) A sueh that ^i Cxu^+{Hi) *> ̂ 4 - iH?. 

It pw la defined by (2) then clearly the same holda for 

/tiLO" and f-'Jt* 

• M J M j ) ® R * - < * € > R.^ there i» Jft^Cp+Cfi?*}-

* h^Cq,) < oo by (5) and hence there i s nothing to 

prove* Finally, for ^ e TT̂  there is.li< Gm,g,)**Jh*Ch) 

and i t suffices to repeat the f i r s t part for /trig* andJi. 

Hence the condition (/3) i s aleo satisf ied union finishes 

the proof of our Theorenu 

theorem 2t Any homogeneous torsion free group of 

rank two la factor-splitting* 

Proofs The condition ( l ) la clearly satisf ied in 

this case* 

The following Theorem shows that there i s a great 

variety of factor-splitt ing torsion free groups of rank 

two. For any subset TT' c Tf we shall define the group 

£._./ as the group of a l l rationale with denominators 

relatively prime to any fv c TT' . 

Theory 3: Let TT- , TT̂  be disjoint subsets of. 

Tf such that IT *- ( TT̂  u TT£ ) i s f in i te and l e t G 

be a torsion free group of rank two* 

If G <& R— la completely decomposable and 
"1 
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G 0 Rjf homogeneous then & i s factor-spl i t 

ting, 

jfroaf: If 77' i s any set of primes, then 

C6) Apty)** A^C$,&1)7 f,e IT' and the second 

height i s meant in G <& Rn, * 

Clearljr, tfyCy,) & ^^C<^ 0 4 ) . On the other hand 

let ^ C . g . 9 * ® ^ ) - * « 4 , C ^ , * ) - * . » * • 

p u t /* m A>^ » A,% • .. m • M^ we hav<t C*9 fi> ) ** 1 

and ^ ^ 

therefore -fif.SL *#-• a** * /fro* and hence the ecus** 

jt 

t ion >fi .x «* $~ i s solvable in & . 

Now let <p M. be any two linearly independent 

elements from & . Then in view of homogeneity of 
Gr 0 Rv and (6) i t holds Jh^Cg,) m h^CJh>) *OT 

almost a l l primes 41 e 7 7 " . Suppose that 41 c ^ t 

It may be eas i ly shown that there exists an elem^t 

AA,0A e e e R ^ A. C < ^ 4 - {4ij£ ) ® R^ wit* 

>ft(4*€H) e ({^J*-M**£><8> R^ . Hencef*Co^1<8>4) 

l i e s in ( i ^ C + iMl) 0 R^ ® R^ and i * View 

of (6) >o, 0 1 ® 1 doe* not l i e in this gro*P* But 

this can occur for a f in i te number of ft, c 71̂  0t*^ In 

view of the complete de compos abi l i ty of (j (g) Rff̂  , 
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Theorem 3 from [41 and Theorem 1. Hence <r sa t i s f i e s 

the condition (1) and our proof i s finished* 

Let IT' be any set of primes. We call a tor

sion free group 6 homogeneous with respect to TT ' 

i f the types of any two non-zero elements from G res 

tricted on 7T' are equal* Now i t i s easy to sea that 

Theorem 3 can be formulated in the following way* 

Theorem 3 ' : Let G be m torsion free group of 

rank two and x , x* a n y i t s Da8^°* ^et u s denote 

by TL the set of those primes -fi> for which the <fi -

primary component of ttioi^% + ^x^i^ ) vanishes* 

If S i s homogeneous with respect to TT2 -*- TT ' whe

re TT' i s finite and TL * TT — TV then 6 
i 1 

i s factor-spl i t t ing. 

Rejaar&: The special cases of Theorem 4 are the 

following: lJ If IX, i s f in i te md G i s divis ible 

with respect to TT2 -*- IT' then G i s almost d iv i 

sible (see £31,Theorem 5) . If TT̂  * IT - TT, i s f i 

nite then G i s primitive (see C3J,Theorem 2 ) . 
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