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Commentationes Mathematicae Univeraitatis Carolinae
11, 2 (1970)

FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS

Milan KUCERA, Preha

Introduction. Let X be a reflexive Banach space

(real or complex),let A, T,S be nonlinear mappings of

X into its dual X* , This paper deals with the solu-
tion of the eqﬁations

Aw)=h, Tw)-AS(w)= h |,

where A is a number (real or complex), #1 € X*, There
is given a generalization of the results of J.Nedas [1]
and S.I.PochoZajev [2), first of all the proofs of Fred-
holm alternative for nonlinear positive 2¢- % qtiasiho-
mogeneous and strongly positive ¢ - X quasihomogene-
ous mappings (Theorems 5.3, 6.4). All the main results
are coz{tained in Paragraphs V. and VI. In IV, there are
defined mappings with Properties (B) and (B") and the
fundamental assertions about these mappings are proved.
These mappings are examined in the pspers of F.E.Browder
and in [131,(3], too. The basis of Parégraph V is [2]. But
S.I.PochoZajev works only with a separable reflexive Ba-
nach space with Schauder basis and he supposes that T,S
are positive ¢ ~homogeneous mappings satisfying other
assumptions than those given in this paper. The founda-

tion of Paragraph VI is {11, where analogical theorems
- 337 -



as here are proved. The difference is in the assumption
about the mappings T and 8 :in [1] it is assumed that
S is strongly continuous and T has Property (B’);
here we suppose that T has Property (B) and S is on-

ly completely continuous.

1. Terminology and notations
Let X be a Banach space (real or complex). Then

X* denotes its dusl (in complex case its antidual -
see [4]1), A denotes the system of all finite-dimensi-
onal subspaces of the space X whose dimension is lar-
ger than 4] . We suppose that the space X is infinite
dimensional, hence the system /A is nonempty. The pai-
ring between f € X* and « € X is denoted by (fu).
Let Fe A.For g € F¥ we denote by Igl. the norm
of @ in the space F* , The pairing between g€ F* and

2 € F is denoted by (g, ) . If f &€ X* then we de-

b
fine the functional f & F* by the formula(f o) =
= (#,2) forall eF.If A is a mapping of X into
*
x ’
for each «w € F letA_(u)e F* (A (), v), = (Alw),»)
for all +& F. For M ¢ X the symbol A(M) denotes

then we define the mapping A, of F into F*:

the image of M under the mapping A ., Further, we use
the following notations: D ={fu e X;lwull<R}3, 5 =
~{weX;lulsRifor R >0; if Mc X, then M
(resp. MY ) is the closure of M in the strong
(resp. weak) topology. The symbols —> , —> denote
the strong and wesk convergences. Let E, .(reap. Cy )

be the real (resp. complex) N -dimensional Euclidean
- 338 -



space. For X = (x,..., X\ ) , % = (o, ... )€ E (resp.
N~ 12
eCy ) let (x, )= X%, Boclly = (x, )™ .

Definition 1.1. Let X be a topological space,
Mc X . Then M is said to be compact, if each open
covering of M contains a finite covering. M is said
to be sequentially compact, if each sequence {um? cM
contains a subsequence which is convergent in X .

Definition 1.2. Let X Dbe a topological space,

71 & system of subsets of X . Then L ie said to
be a filter, if for each its finite subsystem 7¢, the-
re is '__‘Qn.r + B .

Definition 1.3. Let X,Y be two Banach spaces;
let A be a mapping of X into Y . Then A is said to
be
(1) continuous if 4, — w, in X implies Al«,) —
—> Aw,) in Y
(2) demicontinuous if a, —> 4, in X implies A (u,)~
— Alw)in Y ;

(3) hemicontinuous if w,v € X, t, >0,t —>0 imp-
lies Alu+rt v) — A(w) in Y.

(4) bounded if for each bounded subset M of X the set
A (M) is bounded

(5) completely continuous if for each bounded subset M

of X the set A (M) is sequentially compact and A is
continuous;

(6) closed if a4y, —> 4, in X , Alw,)—> £ inY
implies ¥ = A («,) ;
(7) strongly closed if a,—> 4, in X, A (u,)—> §

in Y implies f = A(w,):
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(8) odd if A(-a) = ~A(w) for all w e X .
Definition 1.4. Let X, Y Dbe two Banach spaces;
let A be a mapping of X into ¥, 9 >0 . Then A is
said to be
(9) positive a¢ -homogeneous if A(tw)= %A (w) for
all t > 0, we X ;
(10) positive ge — X -quasihomogeneous if there exists
a positive 9¢ -homogeneous mapping A, of X into VY
such that
K> 0 =0, 0, — w, in X, n2A( -‘,%'f: )— ¢ inY
implies A, (a,) = ¢, 4, —> w, ;3
(11) etrongly positive ¢e — % -quasihomogeneous if there
exists a mapping A, of X into Y such that
lr.“>0, b Hond 0 YAy 4L, in X implies there exist subse-
quences {lc,’»} y f‘u.f” ? of the sequences { n,3 6 fu 3
such that x) = x, if and only if w, = a«, &nd
Ib::A (—:’:;:) — f , where f € Y ; if,in addition, «,—?
>, ,then f = A, (a,)
Definition 1.5. Let X be a Banach space, let A

be a mapping of X into X*,Then A is said to be
1CA (), w)l

= + 00
wul++ 00 wl

(12) coercitive ifl ;

(13) regular surjective if the following two conditions
are fulfilled:

(1) A(X)= X* .

(ii) for each R > (0 there exists x > 0 such
that £ ¢ X*, I#1 &R, A(w)=f, wue X implies
bl € 1 .
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Definition 1.6. Let X be a real (resp. complex)
Banach space, T and S positive ge -homogeneous map-
pings of X into X* , where 9¢ > (0. Let A be a real
(resp. complex) number. Then A is said to be an ei-
genvalue of T, S if there exis{s « € X such that
s 30, T(u)-AS(w)=0.

2. Local degree
Let G be an open and bounded subset of EN, G

its boundary. Suppose that # is a con®inuous mapping

of G into Ey,x€E, 6 x ¢f(8G) . We shall

denote by deg.(#, G, x,) the local degree of the mapping

f . The degree has (see [7]) these propértiee:

(14) if deg (f, G,x,)# O , then there exists z,€G

such that f(z,) = X, ;

(15) if ¥ is a continuous mapping of G x <0,1> in-

to E, , F(x,t) s x, for each x € G, t € <0,1),

then deg (F(x,0), G, x,) = deg (F(x,1),6G,x,) .
Theorem 2.1 ([8)). Let R>0, NZ 2, G =

= {xeE, ;IxV<R1?.suppose ¥ is a continuous map-
f(x) " £(-x)
(ETES] M ST W

for all x € 3G . Then deg (f, G, 0) is an odd number.

ping of G into E, f(x)% 0 and

3. Approximation of positive oe¢ -homogeneous com-
letely continuous mappings ’

Theorem 3.1. Let X,Y Dbe two Banach spaces, 3¢ >
> 0. Suppose A .is a completely continuous and posi-

tive 49e -homogeneous mapping of X into Y, let € > 0.
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Then there exists a completely continuous and positive

2¢ -homogeneous mapping B of X into a finite di-
mensional subspace of the space Y such that #A(w) -
~B(w)l & € lul®™  for a1l w € X . If, in addition,
A is odd, then we can take B odd, too.

Proof. Let the mapping A Dbe 0dd (otherwise see

{1]). The mapping A is completely continuous, there-
fore A(S ) is a sequentially compact set (S ={uw €
¢ X;llawll= 1% ). Hence there exists a finite € -net
of AC(S;). Let 4. ..., %, Dbe this € -net. For
4= 4,..., f define
e lAW) -yl ifweS, HA(L)-gl<E
~N

) = 0 for the other « € §, |
(16)

i) S E-HAC) vyl it eSS, AL +yli<E

< N 0 for the other .« e 54 .

For each s € 5, we have qu"’&(“’) > 0,‘,.5 sy () >

> 0 and we can define (for w« € s, )

o o
Pl) = JE my (), Y ALY

2'$§ n, Cu) 2":?:4 my (W)
and
B(w)= lwl®. P( = "“u for all w6 X .
We obtain

ny () VAT -,
2 qu w(_i'>

2. 1154 “(llb.
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The mapping A is odd, therefore 4, (-wu) = 4; (w) .

Hence B is odd, too.

4. Mappings with Properties(B) and (B').

Definition 4.1. Let X be a reflexive Banach spa-
ce, let A be a mapping of X into X%, Then A is
said to have Property (B), if there exists a mapping A
of Xx X into X* such that the following conditions
are valid:

(a) the restriction of A on any finite dimensional sub-
space of X is a demicontinuous mapping;

(b) A is bounded, for each « € X the mapping Al )
is hemicontinuous on X and A (u,ud= A(w);

(¢)Re (ACu,u) = Alv,se) s-2) 2 0 for each m,reX,
(@) wy—> w0 in X, (Ala, s V-A (U4 4 ~ )0
implies E('v,u.,,,)—-’- }-\(u,u) for each 7 € X anda,—> «;
(e) w,—~ & in X, ve X w*e X* Alvu)— w*in X*
implies (A (1, w,), 4, ) —> Cw* w) .

Remark 4.1. Let s (t) be a real-valued non-nega-
tive continuous function defined in the interval (0,+¢o)
such that t,> 0, A (t, )— 0 implies t,— 0 .
Suppose that there exists a mapping A of X x X into
X*  such that (a),(b),(e) of Definition 4.1 and the
following two conditions are valid:

(¢*) Re (A (w,w)-Alr,u), w-v) 2nllu-vl) _for
each wu, v e X ;
(@) ap—> a4 in X, (B (b))~ Alu, i), - 1) 0
implies A (a7, a4, ) — A (2w, u ) for each v € X -
Then the mapping A has Property (B).
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Definition 4.2([1})Let X be a reflexive Banach
space, let A be a mapping of X into X* . Then A

is said to have Property (B’) if there exists a mapping
A of Xx X into X* such that Conditions (a),(b),
(¢),(e) of Definition 4.1 and Condition (d°) of Remark
4.1 are fulfilled.

Lemma 4.1. Let X be a Banach space; let A be
a mapping of X into X* satisfying Condition (a) of
Definition 4.1. Then for each F e A the mapping A_
(see 1.) is continuous. ‘

Lemma 4.2. Let X be a reflexive Banach space,
let A be a mapping of X into X* with Property (B”).
Let «, € X, M & X¥ , Aesume that for each F e A
there exists ® sequence f{«,3c X (dependent on F )
and a number t. € <0, 1> such that
Aty o (A (), 40,) = b U jas,), (A iy )t ()
for all ~+re F .
Then there exists t, € (0, 1> such thatA(w )=t & .

Proof. Let F e A be arbitrary (but fixed) such

that 4, € F, let {w,?, t. be the sequence and the
number of the assumptions. The mapping A is bounded,
therefore by Eberlein-Smuljan’s Theorem there exists a
subsequence {4, 7 such that A (4, , 4l ) — u* |
where u* e X* . By (e) we have
an (A, ul)-Alu,, ), “y -aL,) —>
—t, (R, 2,) - (W)=t Ch )+ (¥ a,) = 0,
(@°) implies A (v, «)) — A(w,u,) for each v e F

and by using (e) we obtain
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(18) (A& () ,a0)) = A (wyua, ), ity - )= (t I -A (05 0,) sy = )
for each & e F .

The real part of the left side in (18) is non-ne-
gative by (c), hence Re (t . M-A (v, ), 4-v) 2 0
for each v € F'. If we write v = 4, -Aw , where
A>0, wre F, then
(19) Re (t 4 - Alu,-dw, &, ), w) 2 0.

Moreover, by (b) we obtain (19) for A = 0, too. That
means Re (f b - A («,),w) 2 0 for each A «
¢ F.In this inequality, we can write (=) or(fw)
(in the complex case) instead of W , hence

(20) (t,hh - Al,), wr) = O for each w e F .
We can suppose A («,) & 0 , because for A(«,) = 0
the assertion of Lemma 4.2 is clear. Let (A(w,), ;)% 0,
w, € X eand assume w; € F . It follows from (20)

(A («.E )lfw’!)

that (M, 4% 0 and t. = t, Ch,wg) 7
’ o

, Where t’-

hence ¢, is independent of F . All preceding considera-
tions are valid for each F € A such thati,w € P .

But UF = X , therefore (t,v-A(u,),w) =0
FeA

4,6 F
for each w € X , that means A(4,) = t,#2 . This con-
cludes the proof.
Lemma 4.3. Let the assumptions of Lemma 4.2 be
fulfilled, let A have Property (B). Then for each Fe
€ A and for the sequence {u, § from Lemma 4.2 we

have u.”——-) &y -

Proof. By (17) in the proof of Lemma 4.2 and
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(a°) we obtain i, —> «, ,where {u.,’n? is a subsequen-
ce of {am,3, A(w«,, «, ) —~ wu* . Suppose, on the
contrary, that there exist a subsequence {u, § 2and a
number ¢ > 0 such that Nu) -« Il > £ . By Everlein-
Smuljan ‘s Theorem we can suppose A (w,, u,,’: )= ¥,
w* ¢ X* ., Analogously as in (17) we obtain (K(uz,u,,"’)-
~ Ay, b)), wl-a,)—> 0 and by (d) ) —> «&, -
This is a contradiction, hence 4« —> « .

Remark 4.2. If ¢, = 1 for each F 6 A in the
assumption of Lemma 4.2 or 4.3, then t, = 4 . It follows
from the proof of Lemma 4.2.

Lemma 4.4, Let X be a reflexive Banach space,
let A be a mapping of X into X* with Property (B').
Then A is a strongly closed mapping.

Proof. Let 25, — «, inX,A(y,)—> & in X*,
Define for each F & A a sequence {u, 7 and a number te
s0: uwy , t. = 4 . Then the assumptions of Lemma 4.2
are fulfilled and, by Remark 4.2, we obtein A(«,) = h .

Lemma 4.5. Let X ©be a reflexive Banach space,
let A be a mapping of X into X* with Property (B).
Suppose a;, — &, in X, A(y,)—> = . Then Al«,) =
=N y VUp—> M4, .

Remark 4.3. Let X be a reflexive Banach space,
%¢ > 0, let A be a positive ¢ -homogeneous mapping
of X into X*, If A has Property (B), then A is po-
eitive 3¢ -~ % -quasihomogeneous. 1f A is completely
continuous, then A is strongly positive ¢ - % -qua-

sihomogeneous.
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Lemma 4.6. Let X be a real (resp. complex)
reflexive Banach space, let T,S  be mappings of X
into X*.Suppose T has Property (B) and S is com-
pletely continuous. Then for each real (resp. complex)
number A the mapping Aa =T-AS has Property
(B), where Ku (h,v)= Tlu,»)-2SCr) .

5. Fredholm alternative for odd mappings

Lemma 5.1. Let X Dbe a reflexive Banach spa-
ce, let A be a mapping of X into X* with Property
(B). Let R > 0, € X*,Suppose A(w) % th for
each t€<0,1% , w € Sy . Then there exists F, e A
such that Fe A , Fo F, implies A,_. (w) * t'.hr_.
for each t€<0,1%, weS NF.

Proof. Assume that our assertion is not true.
Then for each F € A the set
Ne=fue S nFs A ()= th,, F'e A, F'oF, t e <0,1}
is non-empty. Let us prove that the system ‘ﬁ: I;GA
is a filter: let /A, be an arbitrary finite subsystem

of the system A ,let I, be the linear hull of the set

ﬁ,ZJA,P ; then F e A, N,_; = B, N’_.1 € No for each

W . . w
FeA,, hence {NF ;Fe/\ is a filter. The sets NF
are weakly closed; N—Fw c 5& , Wwhere 5& is weakly
compact (see {4],p.200). Therefore there exists &, €

EFD‘ NF“’ . By Eberlein-Smuljan’s Theo-

rem the sets N-FV.V are weakly sequentially ccmpact;
hence for each F € A there exists a sequence {u § c

c N_ (dependent of F ) such that ., —> «,
- 347 -




(see [6],p.52). By definition NF there exist sequen-
ces {F 3 c A, it 3 c<0,4> (dependent of F )
such that w, ¢ F, , L o F, Ag (w,) = ¢, h, .
The set ¢ 0, 4% is compact, therefore we aan assume

th—>t, , t,6 (0, 1> . We obtain

(A, u, )= (A;-w(u”),u,,)% =
- t,,,(/ﬁ,”,u,,‘)% =t ()t (h,4),
(Alup),v) = (A p) ) =
=t, (hs”,v)%= t,(h,v)—= t_(h,v)
for each v+ ¢ P , hence the assumptions of Lemmas 4.2
and 4.3 are fulfilled. Thus, there exists ¢ e€<0, 1)
such that A(u,) - t.h,, e T Hence «, e ’53
and we have obtained a contradiction. This concludes the
proof.

Lemma 5.2. Let X be a real reflexive Banach spa-
ce, let A be an odd mapping of X into X¥* with Pro-
perty (B). Let h € X*, R > 0 . Aesume JA (w) il > Il
for each w € §, . Then there exists F, € A such that:

for each F e A, FoF, there existsu 6INF
satisfying the equation A (w ) = h,_ .

Proof. For Fe A 1let EF denote a homeomorphism ‘
and isomorphism between F* and F. The mapping E.A, ofF
inte Fis continuous by Lemma 4.1, and odd. Lemma 5.1 imp-
lies that there exists T, € A such that A (W) t h,
for each T ¢ A, FOF, ,ue€5nF, t €(0,1) . That
means E A (w) -t E b, %= 0 for each ¢ S n
AF, te<0,1>. Theorem 2.1 and Property (15) of the

local degree imply
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dlq.(EFA,.-Eﬁ.hF,DR,0)-du;.(EFA'.,]>., 0) % 0.

By (14) there exists a_ € DR AnF such that

EA (w)-E M, =0, i.ec A_(u,)=h,.
Theorem 5.1. Let X be a real reflexive Banach

space, let A be an odd mapping of X into X* with

Property (B). Let b € X*, R > 0. Suppose A («)l>

> 14l for each u € S, . Then there exists 4 € Dy

such that A(uw) = h . X
Proof. By Lemma 5.2 the set M_ = {ueD, nF’;

AF' (w) =hy,, F'GA,F’; F1%is non-empty for each

FeA. Analogously, as in the proof of Lemma 5.1 we

. w . . . w
obtain: {Mﬂ, ?‘.‘A is a filter; the sets ﬁ'_.
are weakly cloeed; M;.” c 5& , rR is weakly

compact, therefore there exists w, erf)‘ MY ; the sets
)

h_/—l: " are weakly compact, therefore for each Fe A
there exists a sequence {4, 7 (dependent of F' ) such
thet u, —> 4« . By definition MF there exists a
sequence {F, 3 ¢ A such that «, & E,,F.oF,
Ar:”(“m) = XmF” . Lemmas 4.2, 4.3 and Remark 4.2 imply
Alu,) =, u.,e'l—)g . We have IA(u)l > KAl for

“ € SR , hence ., e D; . This completes the proof.
Theorem 5.2. Let X be a real reflexive Banach
space, let A be an odd mapping of X into X¥* with
Property (B). Suppose ““&ng HA(w)l = + 00 . Then
the mapping A is regular surjective.
Proof. Theorem 5.1 implies A(X)= X*, Assume
that (ii) of Definition 1.5 is not valid. Then there
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exist R > 0 and sequences{w, 3 c X, {f,} c X* satis-
fying the conditions A(u, =%, IIf Il & R, lu, I =+ 00 .
Simultaneously, by the assumption NA (w, )ll—> + oo .
This contradiction concludes the proof.
Theorem 5.3. Let X be a real reflexive Banach
‘space, let T, § Dbe two odd mappings of X into X*,
2 > 0. Suppose T is a positive g¢- % =-quasihomoge-
neous mapping with Property (B), & is strongly positive
28 - ¥ -quasihomogeneous and completely continuous. Sup-
pose that A is not an eigenvalue of T,,S, , where T,
and S, are the mappings of Definition 1.4, (10),(11).
Then the mapping Aa. =T-A8 is regular surjective.
Proof. By Lemma 4.6 the mapping A.;,L has Property
(B). The mapping Au is odd, therefore it is sufficient

to prove m HA,(u)l = + o0 and to use Theorem 5.2.
Hwlld 400 2

Assume that the condition m A, (w)ll =+ ao is not
Naw. “be0 A
fulfilled. Then there exist a sequei~e {u,? c X and a

number K >0 such thatlw I—=+00, 1A, (k) € N .

If we write ar = %2 , then we can assume 7, —> v~
LA VN |

in X .The mapping S is strongly positive #e — » -qua-

sihomogeneous, hence we may assume without loss of genera-

lity that
1
(21) (W’ns (“T‘%ﬁ‘_‘;)-—" g, where g € X*
P
We know uAa,(“‘o»)I o Tl Y — 0 , therefore
(22) ( 1 )“T (—‘}Em'—‘)—’f where f-Ag =0, fe X*
(2] T, 17 ’ =% ‘
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The mapping T is positive 4¢ - -quasihomogeneous,

hence f = T,(»), v, —> v+, From here g = S (+) and

we obtain
; 4 Lz
(23) (™A (F2F) = T, ) - A8, )= 0, brl = 1.

This is a contradiction with the assumption that A is

not an eigenvalue of T, , S, . Hence,'“l‘é_:t‘“ﬂAsz)ll =+ 0o

and Theorem 5.2 has proved Theorem 5.3.

Theorem 5.4. Let X be a real reflexive Bapach spe-
ce. Let ’I‘,S b_e two odd mappings of X into X*, Sup-
pose T , 5 are positive 3¢ -homogeneous, 9¢ > 0, T
has Property (B) and 8§ is completely continuous. Then
for each real number A one and only one of the follo-
wing two conditions is fulfilled:

() A is an eigenvalue of T, S ;

(3) the mapping A.z' T ~-AS is regular surjective.

Proof. Let Condition (o) be fulfilled, « € X , « %
+ 0, A,(u) =0, Then A,(tu)=0 for each t >0 ,
hence Condition (ii) of Definition 1.5 is not fulfilled,
i.e. (f3) is not valid. Now suppose A is not an eigenva-
lue of T',.S . By Remark 4.3, the assumptions of Theorem
5.3 are fulfilled, hence () is valid.

Theorem 5.5. Let X be a real reflexive Banach spa-
ce. Let T,S5 be odd mappings of X into X*, 2 >0.
Suppose T, & are positive o¢ -homogeneous, T has Pro-
perty (B), T(w)# O for all w € S, and S is com-
pletely continuous. Let A be an arbitrary.real number.
Then there exists an odd, positive a -homogeneous and

completely continuous mapping B of X into a finite
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dimeneional subspace of the space X* such that
T-AS=T,~ AB , where the mapping T,= T-A(S-B)
is regular surjective. '

Proof. The condition T(w)# 0 for allw e S,
and Lemma 4.5 imply o -“ﬁn:f; HT(u)l > 0 . From here

because T is po-

we obtain &m N T(w)l =+ co
et Ny 400 ?

sitive ¢ -homogeneous. If A = ( , then define B («)=
= 0 for each «w € X .
By Theorem 4.2 the mapping T = T, is regular surjec-

tive. Now assume A o (0, Let 0 < ¢ < By Theo-

a

LY

rem 3.1 there existsan odd, positive 9€ -homogeneous

and continuous mapping B of X into a finite dimensio-

nal subspace of the space X * such that 1S(w)-B(w)l &

& ellwl®, By Lemma 4.6 the mapping T,= T - A(S-B)

has Property (B). For all w €5, we have

ﬂTofu)ll w I TwW)-A(SW)=-Bu)la iT(l-1a] -
clSwW)=-Bud2d-€lAl>0 .

From here we obtain . Lm [T, (w)ll = + co , because the
Hulptoo

’
mapping T, 1is positive se -homogeneous. Theorem 5.2
implies that T, is regular surjective. This completes
the proof.

Theoreq: 5.6. Assume the assumptions of Theorem
5.5 are fulfilled, let Aa- T -~AS . Then there exists
a finite dimensional subspace F' of the space X* with
the following property:

for each £ € X* there exist fe A.A(X), f,e F

such that ¢ = 41 + {i
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Proof. Let B be the mapping of Theorem 5.5,
B(X)c F, where F is the finite dimensional sub-
space of the space X*, For each £ € X* there exists
« € X such that T, (w) = T(w)-A(S(u)=B(u)) =f
(by Theorem 5.5). It is sufficient to write f, = Aa (w),
f = AB(w),

Lemma 5.3. Let X be a real reflexive Banach spa-
ce, let A be a mapping of X into X* with Property (B),
R > 0 . Suppose '

Alw) Al~w)
(2¢4) NA(w)l# (0 and A0 e Al for alluesk .

Then there exists F, € A such that FEA,Fo F, im-
Ap (-«)

il;:’:ipf“"'r* o, ﬁf‘%"t * ﬂ',f?:_:)_l; for all « €
Proof. By Lemma 5.1 there exists H, € A such that

FeA,F> H, implies A_(wu) % 0 for allu.c,SRn

A F . Suppose that the assertion of Lemma 5.3 is not va-

1id. Then for each F € A the set
M={we SynF LA G, # 0+ 1A (w)l,,

A ) (M) A (-“) .
L Ml oy ey TH F'e A, F'oF}
WA, e, ~ WAL, (~adl, ’

is non~-empty. Analogously as in the proof of Lemma 5.1

N W P MW . :
for {NF. 35‘5/\ we obtain: {MF }P“‘ is a filter,

the sets H;," are weakly closed,m: c 5“ , 152

is weakly compact; therefore there exists u&, EF?A ﬁ;’ 5

the sets I-Vl-;v are weakly compact, therefore for each

F ¢ A there exists a sequence {w, § c MF’ (depen-

dent of F ) such that «, —> w, .That means by defi-
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nition MF that there exists a sequence {F,jc A

(dependent of F ) such that .u.ﬂz F,E >oF ana

Ag (w) " A’ (=)
IIAF”(uﬂ)!I% * O-OvllAEn ("“h,)“g” ' T A“": ('“"””F“ = Ap (~atp )l

The sequence {3 is bounded, hence by (b) there ex-
ists K, > 0 such that NA(w, Mg K_, IA(-u, )l € K »
therefore HAF”(u”)ls‘ﬁ Ke, IA&(-un)llF” € K_ . Let us

write &,(P)-ﬂA%(uM)I%, cm(F)-llAﬂy(—un)l%.We can
suppose &, (F)—» & (F), ¢, (F) — ¢ (F), where

I (F), ¢c(F) e <0,K_)>, because the interval <0,K,»

is compact. Let us prove this assertion:

(25) there exists H, € A such that «, € H, , H,c H,
and FeA,FoH, inplies & (F)# 0 .

Let (25) be not valid, let F € A . Then there
exist F’6é A, F’> F end sequences {u, i C 'SR ,
{F,3c A such that «, —» «, « eF,  F oF’ and
L (F?)= IIA%(“m),'F”—’ 0 . From here we obtain (A(«,),
wy,) = (A%(uﬂ),u,,)'_.“——) 0 and (A(w,),v) =
= (Ap”(“,,),v)&—’ 0 for each 1 € F . The assumptions of
Lemmas 4.2, 4.3 are satisfying,where b = 0,t = 1 ; the-
refore u, € .‘5R , Alw,) = 0 ., This is a contradiction
with (24), hence (25) is proved.

Analbgously, we can prove that there exists 'Ha. €
€ A such that H c H, and c(F) 0 for each F e
€ A,F5H, .From here it is clear that
(26) there exists F, € A such that «, € F, eand
Fe A, FoF, implies &(F)k 0 c(F) IA ()l %0
for all w e SgnF . 354 -



Let F e A be arbitrary such that F, ¢ F (but fixed),
let {u,3,{F, 3 Dbe the sequences of the preceding part
of this proof. We shall make similar considerations as in
the proof of Lemme 4.2: ‘

We know cMCF‘)AF.“(uM)—X;,(F)AF.”(-u,,,) = 0 , that
means (¢, (FIA(w,) - &, (FIAL (- 4, ),2r)= 0 for all

w ¢F,.By (b) we can suppose A (u,, «, ) —> u.,* ,

Al-a,,—u,) —~ ¥, (e) implies

- " -
(A (5 aleyy) ) by, ) => (k) (A Cay = i) a ) > (i 0, )
From here we obtain

(e (F)A i, ,a1),) K, (F)A (s, ,~at,))-C i (FI A, ,
(27){ w) + L (FOA (=i =4 )t = ik, ) —+ = € CENUE, aa, )+
+ & (F) g, i) )+ (P )= (Y iy aay) = O

By (c) we have ¢, (F)(A (u, ,u,)-Alu, iy),p-u4)2 0,
By (FIA ity many )= Al-aty -a,), hy- b)) 2 0

therefore, by using (27), ¢ (F)(A (i , 4 )-A (it 4,,)
M= e, )= 0, B (FYACut, ~a, )-Al-ag, ~at,,), -t )—+ 0 .
We know that c,,,,(F')—vc(F), 4, (F)2&(F), &r(F)¢ 0% c(F)
(see (26)), hence

(A, , ), V=A (i, hty)) ) thyy =ity )= Q5

(A Caty,~ a0, )-A Cany =4ty by = ) —> 0
From here by (d) w, € S5, and A(wyu,)— A(v, w,) ,
A (~v=u,) — A (-ar,~,) for all ve X .By using (e)
we obtain for each & € F

(Cn(FVA (wy i2,)- 5 (FIA (it it ) = ¢ (FVA (07 4ty ) +
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* B (IR (-0 =ty =) = Ce (FIA (v, ma,) +

+ H(PYVA(~vy-u,) y map- )

The condition (c) impfies the last expression is non-
negative. If we vrite.q}-u,-ﬂ.w', A>0, we F ,
then we obt.:ain analogously as (19),(20) in the proof of
Lemma 4.2, that |

(28) (W (F)A(-u,)-c(F)A(w,)w)= 0 for eachweF.

Assumption (24) implies A(w,) # O , because “, €S, .
Let w; € X, (A(w,),u,)d O . We can suppose w; € F, .

Then we have w, € F' , therefore (28) implies (A (-4,),
(A(uwy,), w,)
(ACu,),w,)

is inde-

pendent of F and by (28) we obtain a = -'::?(;,'-3)— and

up)d O . The number o =

(29) (@ A(-4,)~A(u,),w) = 0 for each we F .

All preceding considerations are valid for each

FEoF,,FeA .ve have U F = X , hence (29) is valid

oh
FeA
for all we X , i.e. a-A(-«4,)-A(uw,) = 0 . From
A (w,) Al-w,) .
h L £ . We h btai-
ere VAl WAl “u, € S e have obtai

ned a contradiction with (24). This completes the proof.
Lemmg 5.4. Let X be a real reflexive Banach spa-

ce, let A be a mapping of X into X* with Property

(B). Let H € X*, R >0 . Suppose that (24) of Lemma

5.3 is valid and HA(w)ll > I I for all we S, .

Then there exists F, ¢ A such that for each F e

€ A,F5F, there exists w e F A Dy satisfying

the equation Ap(w«) = hr_. .
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Proof. As Lemma 5.2 but by using Lemma 5.1 and
Lemma 5.3.

Theorem 5.7. Let the assumptions of Lemma 5.4 be
fulfilled. Then there exists 4;9, € X such that
Alw,) = & .,

Proof. As Theorem 5.1 but by using Lemma 5.4.

Theorem 5.8. Let X be a real reflexive Banach
space, let A be a mapping of X into X* with Proper-
ty (B) satisfying the conditions uil:’m’:. A (u)ll = + co

Alw) + Al-w)
HA () Il HA (=)

and for allue X, flul& R,

where R > 0 . Then the mapping A is regular surjective.

Proof. As Theorem 5.2 but by using Theorem 5.7.

6. Fredholm alternative for coercitive mapping

Theorem 6.1([13,[3]). Let X b.e a reflexive Ba-
nach space (real or complex), let A be a coercitive map-
ping of X into X* with Property (B'). Then A is a
regular surjective mapping.

Theorem 6.2. Let X be a complex reflexive Banach
space, let T, S be two mappings of X into X*,6letA,,
aﬂ.
the mapping T is coercitive with Property (B), the

be real numbers, Az-l- 0, A= .7\1 +4iA, . Suppose

mapping 8 is completely continuous. Suppose the follo-
wing condition is fulfilled:
(£) (T(w),«), (S(u),«) are real numbers for all

meX.,
Then the mapping Aa= T-A8 is regular surjective.

- 357 -



Proof. By Lemma 4.6 AA has Property (B). We

have for each ¢ > 0, a, & e E,

212 lak 2 - cl) lat- 2 4o

’

-21a lak 2 - alat- Bad 2

From here by (f) we obtain for each w6 X, € >0
WA, (W), ) = (T, w)?= 22, (S ), u) (Tw),a) +
+ A5 (S (), )+ A2 (S (), )22 (Tw)u)?
(=12 1)+ (Sw),w) (A +25 - 12l )
It a,, % 0 then there exists €, > 0 such that

™

Ia, | N |
g < g'< = , hence for «w € X , Nl
AT+ A5 ° [EWI ’ ’

1A, (w), )i 1T ), )i
—_ Vi- ¢ ——t
(30) Tl = Vi £, 12,1 Tl ,where

1—s°|14|>0 .

Moreover, (30) is valid for A.1 = 0 ,too. Therefore
Aa is coercitive, because T is coercitive and it
is sufficient to)uee Theorem 6.1.

Theorem 6.3. Let X be a complex reflexive Ba-
nach space, T and S positive 9¢ -homogeneous map-
pings of X into X* ,where z¢ > 0 . Suppose the map-
pings T, S satisfy the condition (f) of Theorem 6.2,
T is coercitive. Then all eigenvalues of T, S are
re3l and different of zero.

Theorem 6.4. Let X be a complex reflexive Ba-
nach space, let T, & be mappings of X into X*
satisfying Condition (£), @ > 0 . Suppose T is a
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coercitive and positive ee - -quasihomogeneous mapping
with Property (B), S is completely continuous and
strongly positive a¢ -4¢ -quasihomogenecus. Assume that
a complex number A is not an eigenvalue of T, , §,,
where T,, S, are the mappings of Definition 1,4,(10),
(11). Then the mapping Aa. = T- 28 is regular
surjective.

Proof. It is sufficient to prove this Theorem for
A real (see Theorem 6.2)+ Let us prove this assertion:

(31) for each R > 0 there exists ~ > 0 such that

feX* IFIER, 0€ A <tueX A, 1a,(40)= T(w)-(A+i)Bw)=f

implies Hul& 2 .

Assume that (31) is not valid. Then there exists a number
R > 0 and sequences {f,3 c X*, {4, ic X, 12,3c<0,1)
such that llu, N> +00, A w)=f, Vi, 0 &R .

Asd A,
Let us write 4 = fiﬂh' . We may suppose 1, —> 2
v

inX,Z.n—> A, , A, € <O, 1> . Suppose A, > O . Then

we may assume A, & 0, J°> O . There exists g such

1Al 1

Al 1
that a'2.“",,<8‘,< X ,hencem<£,< AT

Analogously as (30) we obtain

| Ay 42l ) ICT Cut)y )]
—Apilataths 3 VIl Pl , VI-gAIS0,

Simultaneocusly,

(Ap 12, (m), p )] £1e &R

N, d m " = ’

but this gives a contradiction, because T is coercitive.
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Hence A, > 0 is impossible, i.e. A, = O . We have

1 % v f
( i“-_-,wl ) Aaua,,‘("'m“f’nu” =) = W - 0 .

From here we obtain (analogously as (21),(22),(23) in the

proof of Theorem 5.3) (-.-—1;—,—)"5(;2—:’3‘—,,-.1)-» S,

1 o s . 4 Un
(W) T(ﬁi‘f«)“’ T, (V)’(I%“I)“Aa+44"(ﬁ;i )=

"'"I;(v')-.hS,Cv)-O, lvi=1,because T is positive ge-x -qua-
sihomogeneous, S is strongly positive ge — % -quasihomo-
geneous. We have obtained a.contrediction, because A is
not an eigenvalue of T , S.' . This contradiction proves
(31).

Now, suppose f € X* is arbitrary, 0 < A, < 1 ,
Ay = 0. By Theorem 6.2 there exists {fu, 3 ¢ X such
that Aawl.a,”

> 0. Hence we mey assume 4, —> & in X eand S(u,)>

() = £ ) (34) implies Ju, Il & n,n>

—u* in X*, because S is completely continuous.
From here T (u,) —> £+ A w* ., Lemma 4.5 implies
T(uw) = f+Au*, «, —» w, hence S(w) = u*, That
means Aa*‘a”(u,,,)-? A,(w) = f . Now we know A, (X)=
= X* and that means together with (31) that Aa is re-
gular surjective.

Theorem 6.5. Let X be a complex reflexive Banach
space, let T,S be positive ¢ -homogeneous mappings
of X into X* satisfying Condition (f£). Suppose T is
a coercitive mapping with Property (B), § is complete-

1y continuous. Then for each complex number A one and
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only one of the following two conditions is fulfilled:

(x) A is an eigenvalue of T, S ,

(f3) the mapping Aaa T -AS is regular surjective.

Theorem 6.6. Let X be a complex reflexive Banach
space, let T , S be two positive se -homogeneous mappings
of X into X* satisfying Condition (f). Let T have Pro-
perty (B), let S Dbe completely continuous, A a complex
number. Suppose (T(w),w) & c"ﬂul’”‘— ¢, for all 4 €
€ X, ¢, >0, c,& 0. Then there exists a completely
continuous and positive aq -homogeneous mapping B of X
into a finite dimensional subspace of the space X* such
that T-AS = T, - AB , where T = T-A (S -B)
is a regular surjective mapping.

Proof. If A = 0, then define B(w )= 0 for
all uw € X . The mapping T, = T is regular surjective

by Theorem 6.1, Assume A & 0, 0< g < T—%"-l- . Letp

be the mapping of Theorem 3.1,IS(w)=B(wll & € e 1%,
By Lemma 4.6 the mapping 1, = T-A(S -B) has Proper-
ty (B). For each .+ € X we have

HT ()= A (S =B, i) Z ¢l e~ el fhut™”,

From here we see that T, is coercitive and Theorem 6.1
proves our assertion.

Theorem 6.7. Let the assumptions of Theorem 6.6
be fulfilled, Az = T ~-2A8S , Then there exists a fini-
te dimensional subspace F of the space X* with the
following property:

for each £ € X*  there existf e A (X) £eF
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such that ¢ -{‘4- 'Fz .

[1]

L2l

[31

[4]
L5]

[6]

(7

8]

Proof. As Theorem 5.6 but by using Theorem 6.6,
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