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Commentationes Mathematicae Universitatis Carolinae

11,3 (1970)

FIXED POINT THEOREMS, ﬂEIYCkII AND URYSON OPERATORS,
AND CONTINUITY OF NONLINEAR MAPPINGS

Josef DANES, Praha

Introduction. This paper contains three sectiohs.
In Section 1 some fixed points theorems are given. The
theorems are of two types: the former are characterized
by the condition xﬂ' Il - TCx)l = 0 (see Bel-
luce-Kirk (1] , and, implicitly, Dane& ([4,5]), the lat-
ter deal with concentrative mappings. Section 2 contains
some necessary and sufficient conditions for Nemyckii
and Uryson operators to be 5ubadditive, convex, subho-
mogeneous, Lipschitzian and so 6n. Also, a sufficient
condition for the concentrativity of the Uryson opera-
tor is given. In the last section, we give a sufficient
condition for a nonlinear Giteaux-differentiable mapping

to be continuous.

§ 1. Fixed point theorems. In this section we deri-

ve fixed point theorems generalizing some results of
Belluce-Kirk [1] and Dane# [4 - 7].

Let C be a subset of a normed linear space X .
Then a mapping T : C —> Y (7Y is a normed linear spa-

ce) is said to be demicontinuous if T:(C, ») — (¥ ,w)
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is continuous (A = the strong topology, @ = the weak
topology). T is weakly continuous iff T: (C,w )= (Y, wr)
is continuous. |

A subget C of a linear space X is said to be
atur-ehapé_d with respect to a point x € X if the seg-
ment ’[x,'zJ is contained in C for each xe ( . By
the kernel of ( we mean the set K (() of all points

x € X with respect to which C is star-shaped.

Let (X,d ) be a pseudometric space and C its
subset. We define the set G(C) = {g£ >0 : there exists
; finito subset 6 of X .auch ihat the closed € -ball
about € conta.{ns C3. The function u-;:’z"—» <0,+00>,
"defined by g (C) = .imnf R(C) ,‘ is called the measure of
non-compactness in the space ( X ,d) . A continuous '
mapping T of X into another pseudometric space
(Y,e) is called concentrative if for each bounded
non-precompact subset C of X, F,(T(C) < x (M) .

If (X, ) is a pseudonormed linear space, then
we denote .B*(.x.,R) =f{xeX: plx-x)@R?t ,
the closed R -ball at x, (x, 6 X, R >0 ), and
B,=B,(0,4). Further, (X, P) denotes a locally
convex Hausdorff linear topological space, where P
is a system of pseudonorms on X such that
in'(<0,e) : 0<e<1,neP? isa basis of neigh-
borhoodl‘ at 0 for the topology of X . A coniinuous
mapping T of a subset C of X into X is said to
be P -concentrative, iftMcC, pe P, 0< 7, (MI<+c

il
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imply 4, (T(M) < Ap (M) . For some results on the
measure of non-compactness and fixed point theorema for
concentrative mappings see [2 - 8, 11 - 151 .

The following lemma is obvious, but useful.

Lemma 1. Let C be a non-empty compact topological
space, T: C—> C a mapping;d:Cx C —» <0,+ co0)
a function such that d(x,4 )= 0 if and only if x= 4,
for x, 4 ¢ C . Suppose that the function f-da(f'dtx‘r),
i.e., f(x) md(x,T(x)) for x ¢ C, is lower semi-con-
tinuous on . Then T has a fixed point in C if and on-
1y if '

inf d(x,T(x)) =0 .
xeC

Theorem 2. Let X be a normed linear space, C a noh—-
empty weakly compact subset of X and T:C~— (C a map-
ping. Consider the following conditions: )

(1) the functionsl £(x) = fx - T(x)l is weakly
lower semi-continuous on C. 3§ »

(2) the mapping T 1is weakly continuous on C ; -

(3) the set C and the functionalf(x)= Ax-T(x)\
are convex, and the mapping T is demicontinuous on C .
Suppose that one of the conditions (1) - (3) is satisfied.
Then T has a fixed point in C if and only if

ot la-T(x)l =0 .

Proof. In the case (1), the theorem follows immedi-
ately from Lemma 1, where we set d.(u;q')- Ix 79!
for x, 4 ¢ C.

Case (2). Since T is weaxly continuous, I - T
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is so. Hence the weak lower semi-continuity of the norm
b0 in X implies that of the functional f(x) =
allx-T(x)l. Thus, the theorem is reduced to the case (1).

Case (3). Since T is demicontinuous, I-T is al-
so demicontinuous. From the weak lower semi-continuity
of the norm I+ } it follows the (strong) lower semi-
continuity of the functional £(x) = fx - T(x)l . Hen-
ce the convex sets {x 6 C:f(x)&ci A ce R , are
closed, and therefore weakly closed. Thus, the functio-
nal £(x) is weakly lower semi-continuous on C . Now,
by the casé (1), the theorem follows.

Corollary 3. (Belluce-Kirk {1, Theorem 4.1].) Let(C
be a non-empty weakly compact convex subset of a normed
linear space X, and T a continuous mapping of C in-
to itself, such that the mapping I -T is convex (i.e.,
the functional #(x) = llx - T(x)l is convex) on C.
Ifw Ix-T(x)} = 0, then T has a fixed point inC.

M T s, clearly, demicontinuous, and we can
apply Theorem 2,(3).

The following proposition is a simple generaliza-
tion of Géhde [9, Lemma 3]. '

W. Let X be a normed linear sprce, (
a non-empty bounded complete subset of X, T+ C — C
a nonexpansive mapping (i.e.,AT(x)-T(g)ll @ hx-q- 0,
for x,a € C ) such that K(C), the kernel of C,
intersects R (T), the range of T: K(C) NR(T) 4-#.-

Then u-v?lu T(x)hl= 0 .



Eroof.Let T(x,) € K(C) NR(T) , for so-
me x, 6 C, and M -“,:«é.plT(x)-T(x,)lb

& suplx-x lédiam (< +00. For 0< €<M , we define

T = Tix,) + (1= £ ) (T(x) - T(x,))
( Tg(x) is well-defined, since ( is star-shaped

relative to T (x,) ). Then

IOl -£) ITG)-TN6(1-£)- M- g I,

for X ,q e C , where 1~ -Me— < 4; by Banach Contrac-
tion Principle, there exists a point X, € C  with
X = To(x;) . Further,

Ixg- T(x & Mx = T (x M+ N T (%) - T(x ) =
- ITx) -Tx N & - M=¢ .

Hence, .
Corollary 5, Let X be a normed linear space,(C

a non-empty weakly compact subset of X andT:C— C
8 nonexpansive weakly continuous mapping (more gene-
rally, T is nonexpansive and the functional £(x) =
=llx = T(x)! is weakly lower semi-continuous on C )
such that X(C) N R(T) % 0 . Then T has a fi-
xed point in C .

Proof. Since C. is weakly compact, it is (strong-
ly) complete. Now, we can apply Proposition 4 and Theo-
rem 2,(2) (or (1)). '

Proposition 6. Let X be a normed linear space
and Bwi{xeXs lxl €11 its unit closed ball.
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Then

(1) g (B) = 0 if and only if X is finite di-
mensional; '

(2) x (B) =1 if and only if X is infinite di-
mensional.

Proof. (1) If x(B)=0, then B is precompact,
and, by Rﬁeu Theorem, X is finite dimensional. Con-
versely, if X is finite dimensional, then B is com-
pact.

(2) Clearly, B({07,1) =B, i.e., 4 Q(B) and
we have y (B)% 1 . Suppose that X(B)< 1. Let
Xx(B)<a<1. Then a € a(B);/hence there exipts a
finite subset & of X (even of B ) such tbet B(6,a)>
DB.But B(6,a)=6+ab , From this, we can obtain
successively,

6+a6+a*B=6+a(6+aB)>6+aB >B.
By induction, we have »

6+aB+...+a""6+a"BoB,

for all positive integers m, The sets 6 = 6+ a6 +...
wta®% (m 2 1) are finite ana B (@, , a™)>
>B forall m,i.e., @ ¢ @(B) for all m . Sin-
ce 0 <ca<1, we have x(B)~ 0, and by (1), X is
finite-dimensional. From this the assertion (2) follows.

- Corollary 7. Let (X, f2) be a pseudonormed linear
space and 1%, its unit closed bsll. Then:

(1) x(B,) =0 if and only it X/n~"(0)

is finiti. dimensional;

- 486 -



(2) % (B,) =1 if and only if X/p~"(C)
is infinite dimensional.

Theorem 8. Let (X, n) end (Y,q) be two pseudonor-
med linear spaces and T: X — Y a linear mapping.
Then T is concentrative if and only if

x,}ﬂb,.)) <1,
where B, is the unit closed ball in X

Proof. Suppose that T is concentrative. If Xmp'(0)
is finite dimensional, then T(B« ) is compact, ainc;
B, is 80, and hence %, (T(B,) = 0<1. 12 X/ 0)
is infinite dimensional, then 0 < 1 =%n (B) < + @,
and hence 7 (T(B, ) < 7, (B,)=1.

 On the other hand, suppose that 5(,('1‘(5«_ N<1.
Since xg('r(nﬂ)) <1, I‘(B“) is bounded and hen- -
ce T is continuous. Now,let M be an arbitrary boun-
ded non-precompact subset of X ,i.e., 0 < Xp (M) <
< + 00 . By the definition of the measure of non-com-
‘pactness, for sach a > 'JL”(M) there exists a finite
subset & of X such that B, (6,a)=6+aB,5M .
Hence, '

T(M)e T(6+aB,)= T(6) + aT(B,) ,
and consequently,

% (T(M))igg(T(e’ha.T(B ))-a.z (T(B » .
Thus, we have

a(& T(M))‘x&(T(B ) ‘Ap M) < x”(M) .
Therefore, T is concentrative..

Corollery 9. Let (X, P ) be a locally convex
Hausdorff linear topological space and T: X — X a
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a continuous linear mapping. Then T is P -concentrative
if and only if '

(%) Ap(T(B,NN <1 forall neP.

Remark. The condition (%) is satisfied, if

X (T = 240 4, (T(BLN < 1.

Theorem 10. Let (X, P) be a locally convex Haus-
dorff linear topological space, C a non-empty bounded con-
vex subset of X , 8and T+ X —> X a linear mapping such that
T(CY C and

5(,”('!'(3‘,)) <4 forell peP.

Then T has a fixed point in C .

Proof. See Corollary 9 and [7, Theorem 31].

Corollery 11. Let ¢ be a non-empty complete bounded
convex subset of a normed linear space X and T: X—+X a
linear mapping such that T(C)c C eand x (T(B))<4, where
BP={x6X:Uxl6& 41} is the unit closed ball in X . Then
T has a fixed point in C .

§ 2.Nemyckii and Uryson operators. In this section,
we give necun:;y and sufficient conditions for Nemyckii o~
perator to be subadditive, subhonosoncoua: Lipschitzian,and
8o on. For the Uryson operator, only\nocunry conditions
are given.

Let G be a measurable subset of R™ with the posi-
tive ch;-suc measure, med G > 0 . By a Carathéodory-func-
tion we mean a function #(s,4 )t Gx R—> R such that:

(a) #(»,u):GxR— R ie continuous for a.e. » € G; (b)
£(-,4): G — R ie measurable for each « ¢ R . It is well-
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known that £(»,x(»)) is measurable on G for any measurab-
le function x(») on G .

Proposition 12, Let £(4,4): Gx R— R be a Ca-
rathéodory function. Suppose that f(4,0)= (0 for a.e. s €
6€G.Let T: X— L,,,(G)\ (1& pn <+co) be the Nemyckii
operator generated by £ (s,w), (T(x N(H)m £(m,x(p)),
where X is a linear space of measurable functions on &,
containing characteristic functions X of all measurable
subseta M of G, mew M < + 0 .

(1) 1f T is (ot ,3)-subadditive for some <, B3 ¢ R, i.e.,

IT(x +Bx,) & lecl- NT(x, )l+l/3| tl‘r(.x i
for x,, %, e X, then

1£(h, car,+ 3] € locl-|£(s,2))1+1B1 I!(b,u,_)l
for a.e. 46 G @and all «,, «, € R .
(2) If T is o -subhomogeneous, i.e.lT(ots) & locl- AT (N
for all xe X, then

18 (s, x4l delccle 18(h )] for a.e.r€ G and allue R.
(3) I1¢ T is subadditive, i.e. IT¢x1+a&)lﬁ l’r(x,‘)l +
+NT(x,)N for all X, %, € X, then
1 (b, 4, +4,))] 10,4 )1+1$(s,u)lfor a.e. 6 G and all «
u,e R.
(4) I£ T is ot -convex (for some O <k < 1 ), i.e.,
NT (o x, +(1-c ) x IV & HT(x I+ (1~ T (x )0, %, , %, € X,
then |£(s,0ca, + (1-0c)at, | & oc1€(h, a0 )| + (1~ )| #(4, ,)]  for
a.e. »6G andall u,, «, € R. ’

Proof. First, let us note that T is almost additi-

ve: if x . x are functions in X with disjoint supports,

1272 .
then T(x + X, )= T(x )+T(.x_'_) .

(1) For any nusurablc subset M of G ,
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meoM < + co , we have

lT(ccu,’xM-r ﬁ“’a“m)n € l{.l, T Cay X, 00 +
*lBI-IT(uzxM)lI (4, ,u,eR) ,

and by the almost additivity of T ,

AT Y PRIV i NEIE

LG, u ) "de TP+ 1BI-LL 15 (o, Pn T
For each measurable subset M of R™, we denote:

/ n
6(M) = "/."anf(/a,ocaq +Bu)d0ds

6, (M) = {nm,“‘-"“")'”‘b’ iwd,2.
By (#), we obtain:
ex) L6 MI & 1al- Le MI* w11 g "

The measures 6‘; , 6"- possess regular dérivativn (see
Zaanen [16, § 37)):

D 6(n) = It (b, +Bu )™ =

o ] , ~
=, e K () ‘,c;ox,‘(o)”“'“‘?v*n“a)' ds»’ ,
D, 6,000 = 14(m, 0 ) ™=
y 1 ’ ) ",y .
=, R onkm T WA, im1,2,
for a.e. 56 G, where K, (A) denotes the closed
ball of redius

m .

centered at A. The inequality
(%) implies that o

- 490 -



4
[D,6(s1 ,”é lx!-[D 6 1" IR1-I[D, 6,(s) K

for a.e. H€ G , that is

106, o0ae,+ Bacy)l & 141+ 1£0m, 401+ 131 1£0n, 2,)] , for a.e.
»€ G, . )
The assertions (2),(3),(4) follow from (1) by set-

ting (x =, 3=20), (x=3=41), (x =x ,(3=1-0o) , respec-
tively. '

Remark. A similar proposition holds for (a,B) -
superadditivity, ot -superhomogeneity, superadditivity,
and o -concavity of the Nemyckii operator.

Proposition 13. Let G, f, p be as in Proposition

12..If X is a linear space of measurable functions on
G’ and T: X — Lﬂ(G) the Nemyckii operator gene-
rated by £(s,«), then the converses of (1),(2),(3),(4)
of Proposition 12 hold.

Proof. The easy proof is omitted.

Remark. Proposition 13 does not hold, in general,
for (o ,@B)-superadditivity, oc-concavity and super-
additivity of the Nemyckii operator, as simple examples
show. But it is true for ot -superhomogeneity of T
(the. proof is as that of Proi:oa‘ition 13 in the case
£« =, =0). '

" Corollary 14. Let £(s,u): GxR — R bea
Carathéodory function with #(»,0) = 0 for a.e.seG.
Let T be the Nemyckii operator generated by f (4,4 )
and suppose that T: L, (G) —> L, (G)  (for some
n,q vith41en,9<+ o ). Then T is convex, i.e.
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1 Teox,+ (4-0:)»(,)] i"oclT(xq)l-o-M—ac) NTc(x,)l  for a1l
xe<0,1), X, X, & LQ(G) , if and only if

“ +
(+) 1205, 552 | % 11 (h,e,)l+ -%If(b,uh)l
for a.e. &€ G and all &y, &, € R.

Proof. By Propositions 12 and 13 we have: T is con-
vex if and only if If(s,-)l: R — R is convex
for a.e. A € G. It is sufficient to prove that (+) imp-
lies the convqxity of T . But this follows by the -1- -

convexity (Proposition 13) and the continuity of T (see,
for example, Krasnoselskii [10, Theorem 17.11).

Remark. Analogous corollaries hold for (et ,/3)-sub-
additivity, ot -subhomogeneity, o -auporhomogeneify, and
subadditivity. ,

Propogition 15. Let £(»,4): Gx R — R be
a Carathéodory function and T the Nemyckii operator
generated by f(4,4«) such that T:L,(G)— L (6G)
(1€ n <+ 00 ). Then T is Lipschitzian with con-
stant K if and only if £(»,<): R — R is
Lipschitzian with constent K for s.e. »6 G .

Proof. If T is Lipschitzian with constant K ,
then

L 18 00yt 5, ) = oy aty 3, W el K® et -, 170y s
for all m,, 4,6 R nd MC G, meM< + 0 . If we
take M= X (M)={t ¢ R": Nz-nl& 1/m § , then
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1 ® ~”
o K G j;nk.mlftb’,%)—f(m’,az)l da' & K®lu~a, I™ .

Hence by Zaanen (16, § 371, similarly as in the proof of
Proposition 12, we havelf(s,u, )-£(s,u,)| & Klu, - «, |
for a.e. »e¢ G =andall «,,«,cR.
The converse is trivial.
Corollary 16. Under the hypotheses of Proposition 15,
T is ! -contractive (0 & fe < 4 ) if and only if
£(h,°): R — R is A -contractive for a.e. 46 G.

Let 'c R™, Gc R™ be measurable sets with positi-
ve Lebesgue measures, K(t, 5 4):'x GxR — K bea
function satisfying the Carathéodory conditions (that is,
K (t,»,«) is continuous in « € R for a.e. (t,4) &
€¢I’ x G and measurable in (t,») € I'x G for each w €
€ R ) and let T Lg(G) —> L,o(T") be the Uryson ope-
rator generated by X (t,», &) : (T(x))(t) =

=[Kt,p,x(nNds, x € L(G) . LetiE,(»} bea
sequence of measurable sets in R™ tending regularly to
A, that is, mes E (») > 0,E (A c K, (»), mrK (n)& £ .
. mes E (W) for all m (for some 1 & o < +
+o00 ), and_Lm diam E, (») = 0, where K, (») is
the closed ball centered at A with radius 1/m .

By similar considerations as made above, we can ob-
tain the following two propositions. '

Proposition 17. Suppose that 1 & f2, @ < + @ ,
K(t,b, 0) =0 for a.e. (t,n) e ' G . Let there
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exist, for each w ¢ R and a.e. 5 ¢ G , @ fupction

Yu,» € L,, (r) such that

l .é‘nsnwxft,a’,w)do’lé mes B (5) @y 4 (t)

for a.e.(t,») e ' xG, allu € R and m. If T is
(& , B) -subadditive for some oc, /3 € R , then

VKC,my e Bl & lel-NKCymt M+ 1BI-NKC o),

for a.e. »€ G and all « € R . Similarly, for the

(ec , 3)-superadditivity, o -subhomogeneity, and so on.

Proposition 18. Suppose that 1 € fo = ¢ < + o0,
me=m and "= G. Let there exist, for each. My, k€ R

and a.e. »6 G , a function € I.’,l (G) such

@i, 20,4
that
’ - ’ ’
lj;nﬁmm(K(t,a,u,') Kt, s, u)tds’| €
& mn E_(5) 9'“_4’“”4 t) ,
for a.e. (t,4) € G > G and all “u 4, € R andm.
If T is Lipschitzian with constant K , then

VKCymyu) =-KC,yn, uz)l‘_” € Kl ~u,l
for a.e. € G and all w,, «, € R.

The following proposition is motivated by Krasno-
selskii [10, Theorem 19.3].

‘Proposition 19. Let the Uryson operator T: Li.(G)—’
—Ln(T) (1€ 1,9 < + 00 ) generated by X (¢t 4, 4)
be regular ( see Krasnoselskii [10, p.3781). Suppose that
there is 0 € & < 1 such that
é B

KC,nxaNdnl, e h

m“mo u:g;f?.u.,l) " 4
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for all x e L (G) eand R >0 (B, (, 0,3, C,-),
f- '&’ I-l, denote the closed balls and norms in L&(G)
and 1,“ ry, respectively).

Then T is concentrative.

Proof. T is continuous by Krasnoselskii [10, Theo-

rem 18.5). Let R>0, X, € LQ'(G) nL,(G) be
given. We can choose d"> 0 such that mes D £ J imp-
lies

I . ( & 2oesd R
xeB:ﬁ:,R) 41(( 25y X (oNdal, 3 2

By Krasnoselskii [10, Theorem 19.2] , the set

C= T(B,(x,,Re"™) c T(B, (0, Ix, ), + Re""))
is precompact in Lﬁ(T‘) .let x ¢ Bg’(.x” R ) and define
X = X, + mim {lx-x, I,Rd”’/" $omign (x - x,). Then

% eB,(x,,Ra™"®) n B, (x,, R, because of

I%-x,1 € Ro™™%  and I¥-x, @ Ix-x,| . Let D =
={reG: x(s») £ X(s)} . From

mes B-R-07"= [L R0 6121, 4 R
it follows that ames f§ & o . Then

1 T(x)- T(?(')l” - l,g, {K(,n,x(n)) -

-K(,m, XN¥dall, & 1L K, s,x(a0dsl, +

+14KCmSondal, & 2- 2021 B | 2hat g

and hence B, (¢, 2%*1. R) 5 T(B (4, RN, tnat s,

1CTCB G, RM & 22 Reor an1 %, e L (G20 L (60,
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Let X, € L, (G) Ve arbitrary and x € L, (G)N

ith fx - e p. A=M
ﬂL’o(G) wi I.x1 .!olg-R thes ° Then

Y(T(By (%,,R))) & L (T(B, (x, bx -xl,+R)) £
2041 2441
& (lx4-x,lg+k) & ==

3
1-% o o= R+
Ctkez “11°R 7 'R .

Let M c L,,_CG) be a bounded and non-precompact
set. Then there exists a finite subset & of Lg(G) with

3
&+ B, (0, rYYy x(M)) =3 (6',*_ 7 TMN > M .

Then :
. 3 3 et
A(TMN §(T@+B (0, o -y (M) & = - +

Mh+2 2
AM) < g M),
and T is concentrative.
Corollary 20. Let T,n =@, G = I' be as in Proposi-

tion 19 and let T map a bounded non-empty convex closed

.

subset of L”(G) into itself. Then T has a fixed point.
Proof. See Proposition 19 and Sadovekii’s Theorem
(13].

§ 3. Continuity of nonlinear mappings.
Lemma 21. Let X and Y be two normed linear spa-

ces, C a subset of X, T:C— Y @& mapping, demiconti-
nuous at & point x, € int C (= the interior of C ).
Suppose that there is a function x(t): (0, + c0) —

—>(0,+c0) such that m, 2 (t) = + c0 and

(%) ITGq+th) = TP 2 I T+« h)-Tlx)1 ,
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whenever t > 0, h € X, x,+hel, X, +th € ( .

Then T is continuous at x, .

Proof. Suppose that T is not continuous at x, .
Then there are: a positive number € and a sequence
ih,icX with h + 0,4 >0, x,+h, 6, and

IT(x,+h )-T(x)l2e>0.
Setting t, = Nh 01" ana a4, = t, h, , we have

" m
Iy =t Lh | = Ilhml’/’-—> 0, i.ev Xo+ a4 = X, 7
Without loss of generality, we wan assume that,{xo+thc
c C . since T is demicontinuous at x,, T (x, +4, )~

—> T(x,) weakly; hence the sequence{|l T(x,+nq, )~ T(x )i}
is bounded. On the other hand, (% ) implies

IT(x, +4,)- T(x ) & £ (E N T(x +h,)-Tex ) ER(L, ) > +c0

as m —» +o00 , since t, — + w , and we have

WT(x,+n4)-T(x, M= + 00 . Thie contradiction proves our
lemma. .
Theorem 22. Let X and Y be two normed linear spa-
ces, C a subset of X , T:C — Y a mapping, demicon-
iinuous at a point x, € int C . Suppose that T posses-
ses the Gdteaux differential VT (x,, h) at x, , de-
micontinuous at 1 = 0 . Further, suppose that there is a

function n(t): (0,+00) — (0,+c0) such that
bm‘_,*‘.a,(t) = 4+ O and

Rt lwix,, MM &lalx, thil (>0, neX),

where cv (x,,/h) denotes the Giteaux remainder of T
at X, .
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Then T is continuous at L

Proof. By the definition of the G&teaux differential,
we have ‘

T+h)-T(x)=VT(x, h)+wix, h).
It is obvious that w (x,,) is demicontinuous at h=0.
Clearly, VT(xo,,h) and @ (.x” 4 ) satisfy the condi-
tions of Lemma 21 with x(¢)=t and n(t) = n(t), res-
pectively. By Lemma 21, VT(x,, k) and w (x,,Hh) are
continuous at A =0, i.e. T (x) is continuous at x, -

The following well-known fact is a direct consequen-
ce of Lemma 21 or Theorem 22.

Corollarx‘ 23. Let X and Y be normed linear spa-
ces and T:X — Y a linear mapping. Then the following
conditions are equivalent: '

(1) T is continuous;

(2) T is demicontinuous;

(3) T is weakly continuous.

~In conclusion the writer wishes to express his gré-
titude to Josef Kolomy who kindly read the original ma-

nuscript and gave helpful suggestions.
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