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Commentationes Mathsmaticae Universitatis Carolinae 

12,1 (1971) 

THE LATTICE OF RADICAL FILTERS OF A COMMUTATIVE NOETHERIAN 

RING 

LadiSlav BICAN, Praha 

As it waa shown by V. Dlab [2]% there is a ont-to-ont 

correspondence between all radical filters and some sets of 

prima ideals of a commutative Notthtrian ring (namely, the 

set of all prime ideals contained in % corresponds to any 

radical filttr % ). In this brief nott, thtrt is given a 

ntw ont-to-ont correspondence bttwttn all radical filters and 

some stts of prime ideals of a commutative Noetherian ring 

A and it is shown that the lattice X of all radical 

filters of A is distributive. Furthtr, somt necessary 

and sufficient conditions for A , under which tht latti

ce X is complementary, art given. 

In what follows, A stands for an associativa commu

tative Notthtrian ring with unity. Rtcall that a (non-emp

ty) family % of ideals of A is called a radical fil

ttr (commutetivity is assumed!) if 

(1) 1 * <§ , l£ J *** j€ t f 

(2) t S. J,. J € *£. and (I ; & ) # < £ f or any X e J =-*> 

.wa*L.X*% 9 whtrt (It X) m ifju c A , puA « I J . 

Let us. denote by ? tht aet of all prims ideals of 
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A and by 771 the set of all maximal ideals of A . 

We call a subset TV of (P a radical set, if any two ele

ments of 7C are incomparable (in the order of the inclu

sion). Let Si be any (non-empty) set of ideals of A . 

The maximal elements of the set of all prime ideals which 

are contained in some ideal from Sb form a radical set 

- the radical set belonging to & . 

Lemma 1: Let 21 s 3* be a radical set. Then the 

set %n - i I , 1 *J¥, VN e 71 , I ideal in A ? 

is the radical filter. 

Proof: The property (1) is evident. 

Proving (2) indirectly we shall show 

(3) I # * „ - VJ , J e ^ , IS J , there exists 

A € J with ( I : A) f %n . 

Let us suppose I £ *£,%* • Then there exists N e 71 with 

I S N . For J € %9t we have J •*• N 4» <p , hence we 

can take A « J -*- 1/ . Then ( I : A ) * { ^ e A,(tt^6 l £ . N j c 

S (/( j A ) , But (Hi A) » X because H is a prime ideal 

ant A $ N which finishes the proof of (3). 

Lemma 1% Let 7^ , 71* be two radical seta. Then %^ s 

£ %^ if and only if to any K c 9t„ there exists 
71% * * * 

i\f c 71 with Jl S Jl , Consequently> *j* s ĵL if and 

only if ^ » ^ • 

Proof: At first, suppose that the condition holds. Then 

i%%n «#i*jf f VN € n^i^H.VH c ata *•> i c %n . 
Conversely, if there exists H € Tt^ which is not con

tained in any H9 * ft* , then H * *&** •*• %* * For the 
^1 2 

proof of the last part let us note that if %n «• *£^ , 
then to any H» & %± there exists K. 6 71 and, 
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further, N't • tt,% with N% S ,1% £ N^ . Buti^- l£ 

for ?t being a radical aet which impliea 7tz S 71^ . 

The inclusion 71 SL TIL follows by symmetrical argu

ments* 

Theorem 1: 25here is a one-to-one correspondence bet

ween all radical filters and all radical sets of prime i-

deals of A . 

Proof: In view of Lemmas 1 and 2 it suffices to prove 

that to any radical filter *£ ... there exists a radical aet 

71 such that % ** % . Let 71 he the aet of all ma-
Tit 

ximal elementa of the aet of a l l ideals which do not belong 

to % , It ia easy to see that i t aufficea to show that 71 

contains the prime ideals only. One can easily show that an 

ideal I ia prime if and only i f CI: A) » I for any 

X e A -*~ I . Let ua take I & 71 arbitrarily, and l e t 

us assume the existence of A 6 A - I with C I : A) £ 

j£ I , By hypothesis (maximality of I ) i t ia CI * X) e 

C % a n d J e { I , A i * % ( J ia the ideal genera

ted in A by I and X ) * Writing any element f € J 

in the form $ D » o & A + y $ , e c # A , / 3 # I , we have 

-(**$ * <*(*' X + #u(l m I tor any p, « C I : X ) , hence 

(liX)SCltp) for any jp c J . Then I € % by (1) 

and (2), which contradicts our hypothesis* Theorem 1 i s . 

therefore proved. 

It i s easy to aee that the intersection of any set of 

radical f i l t e r s i s a radical f i l t e r ao that the radical 

f i l t e r s form a (complete) la t t i ce which we denote by it . 

Theorem 2: Lat—Tt̂  , 71 be two radical seta of prime 
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ideals. Then %^ A *tf, m %^ , where 7t is the ra

dical set belonging to % u It* and «fĉ  v <L a. %^ 

where Vt is the radical set belonging to the set 

Jt m < N^n Nz , -V, * a^ , N^ m ft% } . 

Proof: The proof for intersection is direct and we 

shall omit it. Proving the part for join, let us have 1 € 

c t n t , i m 7, 2 . Then I * JY. for anyjft « ̂ , * - 4, 2 

and therefore I ^ N for any JV e 2fl which denotea J € 

6 £*., and hence 18 v £^ S ^4^ , Conversely, let 

£ be any radical filter containing ^ o <JL * Then 

from 1. S <!„,, , i *» 4« 2 and Lemma 2 it easily fol-

lows that to any Nf * 9tf there exist ̂  m fL, i m 491 

with Nf S N r\ K . Hence Nf S N for some N € 11 o-

wing to the definition of VI . Uaing Lemma 2 again, one 

gets ^ £ %^, as was to be shown-

Theorem 3: The lattice X is distributive, 

Proof:We shall prove the "cancellation form" of dist-

ributivity indirectly, namely fr 4* c f cu A Jtr m a, A c *+ 

«> cv v X^ 4= a* v C , Let us suppose we have three radi-

and cal f i l t e r s %,, . 
' ^ З 

s a t i s f y i n g ^L -J- Ä э 

(4) Ч л V « % - V # 

Lat ua put 

л; - tf л л, > 

*ł" - Я,'« я-- «i > 

* J » ítł s *<> зM« • ï ł H %Mi > 

я; - <X« V з^ « i *£«, •• N шMî * 
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Vl% ** KNcn%f3M e ^ > N SMi . 

One can easily see (by using Theorem 2 and (4)) that 0t! 

and At? are disjoint and fl\ u &>% ** fy 9 i m 49&f 9 * 

In view of 3L, -# ?L* two cases can arise: 

a) There exists N» € #L incomparable (in the in

clusion) with any Jl 6 0t. 9 

b) there exists Hz c 9%z , N$ c 2£3 with 

(we omit the symmetrical two cases concerning 7L% and K$ ).* 

Ad a): For N2 c W we have #2 e 7l\ S 1L% 

a contradiction. Hence JV * 01" , *•••• there exists i t * 

€ 9t, f ^ S M . 

At f i r s t , Afj m M A Na , Mm fl > -^ * # j implies 

^ * ^ t v *at b y T h e o r e m 2* Secondly, Nz S Mi n M% , 

M1 c ^ , Mf « ttf implies J ^ s J^, M3 C 0ta -

- a contradiction proving /^ • ^ft v $t * * 

Ad b) : It i s easy to see that H$ m 0lf gives N2 * 

s W - a contradiction. 

Hence N$ fe Jl^ , i . e . there exists M e Pt̂  sa t i s 

fying K3 fi M . For N3 £ JUj n Ma , M, * ft, , W£ e ^ 

we have #a $ M2 - a contradiction. Hence H^ * *^ v *^ * 

Finally, ^ * M o ^ , M c ^ gives r ise to H% { %H y ^ 

which completes the proof of Theorem 3 , 

Theorem 4; An element % • has a complement in it 

i f and only i f 

a) ?t contains the maximal ideals only, 

b) for any prime ideal P the set #1L of a l l ideals 
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from 771 containing P satisfies either 721 £ 71 or 

MT n HI 9 <p . 

Proof: It is clear that the unit element of # is t> 

and the zero element is % . Let us suppose that the 

conditions a) and b) are satisfied and let 7t9 m 77t ~ 7t . 

Then %n * <LW m 1m by Theorem 2 and * n v t^9 ** % 

by b) and Theorem 2. 

Conversely, let %^. have a complement % in «6 , 

If 7% contains an ideal N which is not in 77t , then 

there exists M € Ttt with N £p M . For Hi * 71' we 

have Jlf « ^ — * ^ v %%9 by Theorem 2 and for M 4 71' 

we have M < % ^ A 'EL, -1- ̂ ^ - a contradiction proving 

a). Finally, 9t9 must be a complement of Pt in iE (in

tersection). If there exists P fi Al n W 7 P prime, 

M e at ,M'« 7tf
 fthen ? € « « , - ^ v 1m9 - a 

contradiction proving b). 

Theorem 5: The lattice i& ia complementary if and on

ly if any prime ideal in A is maximal. 

Proof: If X is complementary, then by a) Theorem 4 

and Lemma 1 any prime ideal in A ia maximal. The conver

se follows immediately from Theorem 4. 

R e f e r e n c e s 

tlj A.P. MlSlNA, L.A. SKORNJAKOV: Abelevy gruppy i mouli. 

Moskva 1969, 

[2] V. DLAB: Distinguished sets of ideals of a ring. Czech. 

Math.J.18(93)(1968),560-567. 

- 58 -



Matematicko-fyzikální fakulta 

Karlova Universita 

Praha 8 Karlín 

Sokolovská 83 

československo 

(Oblátům 13.5.1970) 

- 59 -


		webmaster@dml.cz
	2012-04-27T19:50:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




