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Commentationes Mathematicae Universitatis Carolinae 

12,1 (1971) 

ON INTERFRETABILITY IN SET THEORIES 

Petr HAJEK, Praha 

Denote by ZF the Zermelo-Fraenkel set theory (with 

regularity but without choice) and by GB the Godel-Bernays 

set theory (the same restriction). Both theories are suppo-

sed to be formulated as formal systems with one sort of 

variables and one binary predicate € . Every ZF-formula 

can be considered as a particular GB-formula by means of an 

obvious relative interpretation. 

In a discussion with Professor G. Kreisel in summer 1969 I 

formulated the following 

Problem: Does for every ZF-formula p relative inter-

pretability of \ZF, g>) in ZF imply relative interpre-

tability of ( GB , $>) in GB ? 

Denoting, for every theory T which is either an ex

tension of ZF or an extension of GB, by X- the set of 

all ZF-formulas such that ( T , g>) is relatively inter-

pretable in T , our problem reads: la 0r £ J ? 

We shall prove a theorem which implies the negative 

answer of our problem. The theorem also implies that 3L-. 

is not recursively enumerable (whereas Jf is, which is 

easy to show). I discussed the problem with Professors G. 

Kreisel, J.R. Shoenfield and R. Solovay; I thank them for 
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their interest and for the encouraging advice to look for 

a counterexample. Discussions with my wife on her work £43 

were not only an exciting pleasure for me but also helped 

me to find a solution. 

First, let us recall some known facts on finitary 

relative consistency proofs useful in the sequel and yiel

ding a background of our problem. Presupposed is the know

ledge of the notion of a relative interpretation in the 

sense of Tarski [71 and some familiarity with Feferman's 

fundamental work [23. 

Lemma 1. For every ZF-formula p> 9 ZF r-9? iff 

GB r- 9? > equivalently, for every ZF-formula $e , 

Cxrn, C ZF, gr ) i** Con> CGB , <p ) . 

See C63 for a finitary proof; in fact, Shoenfield con

structs a primitive recursive function associating with eve

ry ZF-formula ff> and every GB-proof of $p a ZF-proof 

of %p . 

Although we shall be dealing with set theories, we 

shall explicitly use only variables ranging over the set 

of natural numbers; the letters x , ty,, ... will be used 

for this purpose. £ Cx) is an arbitrary but fixed bi-

numeration of the set of axioms of ZF in ZF. If ^ is a 

ZF-formula then £ u i $p 1 means the formula 

£(x) v X & y> which bi-numerates the axioms of 

<ZF,9>) in ZF. 

Lemma 2. For each ZF-formula cp f c$ « J2F iff 

ZF I— tort, <. *-,._- *or every m, . 

See C2_ Theorem 8.10 (and also 6.3, 6.9 »nd 5*9) for 

the proof of the implication ==--_-* (cf. also [531 foot-
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note 22). The converse implication is easy to prove using 

reflexivity of ( E F , 9> ) and observing that 

( -* denotes the image of the respective formula in the 

interpretation in question). 

Hence, having proved £ F ^ Cf^c u i» * f* a, for 

every m f we have the following: (i) C ZF9 gp) is rela

tively interpretable in ZF, (ii) consequently, gp is re

latively consistent w.r.t. ZF and (iii) is relatively 

consistent w.r.t. GB. But the question remains whether 

CGB , Qp ) is relatively interpretable in GB and we are 

led to our problem whether 2 „ & 2Lm . 

A counterexample is a ZF-formula $p such that 

CZF 7 g> ) is relatively interpretable in ZF, but 

( GB cp ) is not relatively interpretable in GB. Such a 

g> is consistent with GB, and also -15? is consistent 

with GB, for otherwise the identical interpretation of GB 

would be an interpretation of ( GB , <p) in GB. 

Theorem. Suppose that ZF is o -consistent. Let K 

be a recursively enumerable set of ZF-formulas such that, 

for every g> f cp 6 W implies Co-rtCZF, $>) . Then 

there is a <p such that <p c 3 - W . In fact, 

there is a primitive recursive function associating with 

every RE-formula i£ (x) a formula 9? such that, if 

W is the set numerated by n9>(x) in ZF and if every 

element of W is a ZF-formula consistent with ZF, then 

Proof. Let W «s {m, j (3/m-)A (m, 9 nv ) I where A 

is primitive recursive. Let oc (x9 *+*) be a HI-formula 

- 75 -



such that oi, (x, ty) bi-numerates A in ZF and 

Voc Cx, t^) numerates W in ZF. (Cf.L2D 3.11.) 

Using the diagonal lemma 5*1 C 23 we can construct a ZF-

formula g> such that 

ZFb- g> <r» A C « c C * , § n - > - i ^ u { ^ M ) . 
(a) Can, ( ZF 9 $>) . Otherwise we have 

Z F h VocCtX, ^ ) and therefore g> e W , which implies 

Cxrtv (2F , g>) -
(b) g> £ W . Otherwise we have A (in, g>) for 

some m% • then ZF h* oc (mi,<p ) andCEF?9»)f—»^^W^-cs^a, " 

But since CHF, g> ) is consistent and reflexive (see 121 > 

p.89) we have (ZF . g>) h Con,, ,*,.,.--. which contradicts 

the consistency of CZF, g>) * 

(c) ? e aMp . We show *F H C ^ f u i ^ f ^ for 

every m, y then gc? c J by Lemma 2. Since 

CZF, g?)t- Cpn, ^^ by the reflexivity, it suffices 

to show CZF, - i 9 ) I- C f n ^ ^ ^ j - . . But -i p 

valent in ZF to \£ («,(*, ?) & C^n,?u<9 f hjf . 

Now for each /nt we have HF t— —i oc (ml , ^ ) 

g> $ W by (b) and since oc bi-numerates A 

Hence we have 

(ZF,-)?)!- N/Cx > » & < - ? * „ , < . . . , , , . . , ) 

for each /m , which implies C EF, *i a>) r~ C m A ,.*.»,.— • 

This completes the proof. 

Corollary 1. If ZF is a) -consistent then 3iF - Jr # 

4- 0 . For, evidently, y c 3 & B implies COTV (ZF, sp) 

and JL is recursively enumerable. (A formula g> be

longs to ClL̂  iff there are two GB-formulas defining clas

ses and membership in the sense of the interpretations and, 
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in addition, GB-proofs of the interpretations of all the 

finitely many - 15, say - axioms of CGB, $> > . 

Corollary 2* Let GB. be a consistent finitely axio-

matized extension of GB (for example, by adding the axiom 

of existence of measurable cardinals, assuming that this 

extension is consistent). If ZF is a) -consistent then 

Corollary 3. If ZF is a) -consistent then 3MP is 

not recursively enumerable. (By the theorem, every recursi

vely enumerable subset of CL- is a proper subset.) 

Discussion. (1) A historical remark. The Cohen's pio

neering proof of the independence of the continuum hypothe

sis (CH) can be understood as a proof that, for every m* , 

ZF h~ Ccrn, « , -ww , * — (••• £3.3) and therefore yields 
• y u t-i CH s p 3£ 

a relative interpretation of ( ZF, -i CM ) in ZF. But it 

follows from our theorem that a relative interpretation of 

CEF, -i CH ) in ZF does not automatically yield an inter

pretation of CG3 , ~i CJC ) in GB. Such an interpretation 

was constructed in L83 by exploring the Cohen's proof (see 

also various relative interpretations of GB + additional 

axiom in GB constructed in £9 3 using the notion of Boolean 

valued models). It can be said that construction of a rela

tive interpretation is the most natural kind of a relative 

consistency proof; but perhaps it is the matter of one's 

taste. (In fact, VopSnka constructed a parametrical relati

ve interpretation called a parametric syntactic model in 

£33; but if (GB, 9?) has a parametric relative interpre

tation in GB such that the range of parameters is described 
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by a ZF-formula, then (G3 , g> ) has a (non-parametric) 

relative interpretation in GB, see C3Jt Theorem 4.) 

(2) Is 3&3 £ J2F ? It is true that if (Gh, p) 

has a wniceM relative interpretation in GB then <p m 0xp . 

E.g. it suffices that M * is absolute from below (i.e. 

GB H M * ( X ) —* J! (X ) ) and, in addition, both 

M*(*,) and M*(a,) & M*(*r) & CL e.* fr are equi

valent in GB to some ZF-formulas. (Here X is a class va

riable and a , Jtr are set variables.) One can formulate 

more general conditions, but the problem in full generality 

seems to be open. 

(3) By Lemma 2, 3 is a IT0 set and by Corolla

ry 3, it is not a 2L° set. I do not know whether J^F 

is a irf set and/or a A? set. 4 x 
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