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A REMARK ON SCHWARTZ SPACES CONSISTENT WITH A DUALITY 

Kamil JOHN, Praha 

In [3] , a notion of ( 5 )-neighbourhood in a to

pological linear space E was introduced. We show that 

a more simple condition is sufficient for a neighbour

hood to be («S) -neighbourhood and use this result to ob

tain a simpler characterization of the finest Schwartz 

topology consistent with a duality. 

Let U be a closed absolutely convex subset of 

E . Then E u denotes the normed space obtained by 

taking U as closed unit ball in the vector space gene

rated by U and passing to a factor space, if the to

pology is not separated. By E C U . . V ) we mean the 

continuous map E „ — • Ey induced from the identity 

transformation of B , if U c V . By a neighbourhood 

we always mean a closed absolutely convex neighbourhood 

of zero. 

In this notation a neighbourhood U is called 

(& ) -neighbourhood in E , if there exists a sequence 

\ U^i of neighbourhoods in E such that \lQ s U 9 

U ^ ^ c U ^ and E ( U ^ + 1 , U ^ ) is completely conti

nuous map of £.< int0 £,. f°r a11 ^ • Tne fol~ " 

AMS: Primary 46A15 Ref.2. 7.972.2 

- 533 -



lowing proposition says that only the existence of one 

such neighbourhood U. c H is sufficient. 

--• Proposition. A neighbourhood VL in the topolo

gical space £ is IS ) -neighbourhood if and only if 

there is a neighbourhood V in E , V c U } such that 

the operator £ ( V, U ); E — • £ is completely 

continuous. 

Proof. The restricted condition is obviously neces

sary for U to be a (S ) -neighbourhood. To prove the 

converse we use the following proposition £4, Proposition 

3J: 

An operator T: E — > F (E and F are normed spaces) 

is completely continuous and IT I 4k /J if and only if 

for every fc, > 0 there exists a sequence 

l a ^ l , a ^ * E 1 , la^I & fi+ t, \a^l -+ 0 such that 

I T C * ) \ & *«fv I a^ C*) I for every * 6 E . 

Now if we have a neighbourhood V such that 

E ( V f U ) s Ey —* £„ is completely continuous, then, 

using this proposition we obtain the existence of a^ e> 

e Vy , lo^t m \ and oc^ ;> 0, oc^ -* 0 such 

that ^ ( x ) - I E C V , U ) 1 -6 ̂ afv oc^ 1 a ^ C« ) I . 

We prove first that there is a neighbourhood V in E 

such that V c V c U and the operators E ( V , V ) and 

E ( W \ U ) are completely continuous. It is sufficient 

to put V W ( x c £ l f*Z l ^/n, C * *! * 4 J i # e* t h e 

polar set of the bounded set {Jb^ } c E L , where 4%^ m 

m VdL CL • W is obviously a neighbourhood in £ and 

4*^ Cx) m *ufi | V 2 ^ a ^ ( ^ ) I - t)»ing again the above 
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mentioned proposition, we obtain that ZiV, W) i E ^ —* 

— f E ^ is completely continuous. To see that also 

E (W, 11) s E.^—> £„ is completely continuous, we 

observe that 

and /fly (i^ ) -6 4 • 

Now we put 11, •• W . The operator £ (V. IL ) being 

completely continuous, we*may, by the same reason, find 

a neighbourhood It in E ; V c IX, C ^ such that 

E (V, U ) and E ( lift ) IL ) are completely continu

ous. Proceeding by induction we obtain a sequence i U>^ 1 

of neighbourhoods in £ , V c U^^^ C tt^ C lip » tt , 

auch that £ ( U, f U ^ ) and £ (V, tt^^ ) are comple

tely continuous. This proves our proposition. 

2- Proposition. Let £ F be paired linear spaces. 

Denote by Q, the set of all absolutely convex CfCFt E ) 

compact subsets of F . Then the finest topology of a 

Schwartz space on E consistent with the duality < E , F > 

is the topology of uniform convergence on all those A c 

€ & for which there is 3 6 Ct such that the topolo

gy of the normed space Fm and the topology & (Ff E ) 

coincide on A t 

Proof. Let t •» K C £ , F ) be the Mackey topology 

on E consistent with the duality < £ , F > . In view of 

£3, prop, 3.1 it is sufficient to show that for every A € 

€ Q,, A 0 is t - ( S ) -neighbourhood in E if and 

only if there ii B € d such that the topology 

& C Ff E ) and the topology of the normed space F B 
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coincide on A . This is again easily seen by Proposition 

1 and by the observation that for the neighbourhoods V > 

U , where V c U f in a topological linear space E , 

the following is equivalent: 

a) The operator £ ( V, U )i Ey. — > E„ is completely 

continuous. 

b) The topology 6" ( £ % E ) and the topology of the 

normed space Eyo coincide on li . 

This completes the proof. 
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