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STRENGTHENING UPPER BOUND FOR THE NUMBER OF CRITICAL LEVELS
OF NONLINEAR FUNCTIONALS

Svatopluk FUUIK, JindFich NECAS, Ji¥{ SOUCEK, Vladimir
SOUCEK, Praha

1. Introduction. Let x > 0 and let f, g be two
nonlinear functionals defined on a real Banach space X .
Denote f’ and g’ the Fréchet derivatives of f and g
respectively. Set M, (f) = {x e X; £(x) =« 3. The point
“ € M, (£) is said to be the critical point of the
functional g with respect to the manifold M, (£) if
there exists A e« E, such that A f'(w) = g'(w) .

The value of the functional g at the critical point is
called the critical level.Let I’ be the set of all cri-
tical levels, i.e. [' is the set of all 4 € E, for
which there exist A e E, and w« e X such that the
following equations hold:

1) At (w) = g'tu) ,

() fCw) =
(3} g = ¥ .

This paper deals with the investigation of the set I' .
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The main result of this bianch of nonlinear functional
analysis is the Ljusternik-Schnirelmann theory. L.A. Lju~
sternik and L. Schnirelmann proved that the set ' is
under certain assumptions at least countable. The same re-
sult under more general assumptions was proved in many pa-
pers (for example, see [1, 2, 3]).

The main goal of our previous papers [4, 5] was to
prove the converse of the Ljusternik-Schnirelmann theory,
i.e. to prove that the set [ ia, under suitable assump-
tions, at most countable. Together with the Ljusternik-
Schnirelmann theory we obtained that I' = £y, %, ¢, — 0
a8 in the linear case. One of the important assumptions is
that
() g (uw) =0 = gu) =0.

In this paper, the assumption (%) is omitted and for
the set I’ of all cumulation points of the set I" it is
proved

MeK=glixeX; ¢ (x)=0%)
(in the papers [4, 5] the main assertion was I"''= K= {07 ).
If X = § we obtain that I is at most a finite set
and this is such a strong upper bound for the number of cri-
tical levels that one can see the importance of assumptions
like (%) in the Ljusternik-Schnirelmann theory.

In Section 2, we shall prove two abstract theorems and
we give applications to the existence of solutiéna of the
Dirichlet problem for ordinary and partial differential equ-

ations (in the case K = & ) in Section 3.
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let T Dbe a mapping defined on a real Banach space
X with the values in a real Banach space Y . The Fré-
chet derivative of the mapping T at the point x e X
is denoted by T’(x) or dT(x,.).We recall that the map-
ping T is said to be
(a) completely continuous, if 1t maps bounded sets in X

into compact sets in Y and is continuous,

(b) strongly continuous, if it maps weakly convergent sequen-
ces in X onto strongly convergent sequences in Y ,

(¢) bounded, if it maps bounded sets in X onto bounded
sets in Y

(d) weakly continuous, if it maps weakly convergent sequen-
ces in X onto weakly convergent sequences in Y ,

(e) real-analytic on X (see [8]), if the following condi-

tions are fulfilled:
(i) Por each x € X there exist the Fréchet derivati-

ves o™ T(x,...) of arbitrary orders.
(ii) For each x € X there exists o > ( such that
for all h e X, Inll & & it is

® 1 ” m
T(x + &) = d” T(x, %)

(the convergence of the series on the right hand side is lo-

cally uniform and absolute in the norm of the space Y ),

where ™ is the vector [4,..., #]1 with m components.
We use the symbols " —> " and " —>> " to denote

the weak and the strong convergence, respectively.
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The abstract theorems from Section 2 are based on Theo-
rem A (for proof see [5, Theorem 3.1]). Let X, , X,, X,
be three real Banach spaces such that JC1 c Xs . Suppose
that <.,.) is a bilinear form on X, x X, continc-
ous on X2 for fixed % € X,, and such that the follo-

wing implication holds:
{M,x>= (0 for each h e X, = x =0 .

Let f,g:X, —> E;, be two functionals such that
(f 1)(g 1) {,¢ are real-analytic on X, .

Suppose that for each x € X, there exists a couple
F(x), G(x) e X, (if there exists at least one, then

it is unique) such that
(£2) dfi(x,f) = <, P(x))> ,

(8 2) dg(x,h) =<4, 6Gx)>

for each % € X, and let

(£ 3)(g 3) F,G: x1 — Xz be real-analytic on X,  and

(g 4) G: 11 —_ X2 is completely continuous on X, .
Let % >0 and denote M, (f)={x€X,;£f(x)=x}%,

B)=4{xeM,(£)n X, ; there exists A € E; such

that Adf(x,h ) = dg (x,h) for each h e X ? .
Let x, € B, and let A, 6 E, be the corresponding

eigenvalue from the definition of the set :B,, . Suppose

A, = 0 and

(£ 4) F'(xa)-J-f-L,

where J is an isomorphism from J{1 onto )C2 and [ :
: X.,—" x, is a completely continuous linear operator.
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Then there exists a neighborhood U (x,) in X, of
the point x, such that the set ¢ (B, n U (x,)) is

a one-point set.

2. Abstract results. Theorem 1. Let X,, X,, X, be
three¢ real Banach spaces, let x, be a reflexive Banach
space and X.‘ c X, » Let the identity mapping from x,
into .X., be continucua. Suppose that <., .> is a ‘bili-
near form on X,, x X, with the properties from Theorem A.
Let £,9.: X, —> E, be two functionals with the Fréchet
derivatives £’ and ¢’ on X,.Denote B=4{xe M, (£);
there exiats N e E, such that A£'(x) = ¢g'(x)} .
Further, assume (f 1),(f 2),(f 3),(f 4),(g 1),(g 2),(g 3),
& 4),

(g 5) for each J" > 0 the set B (J) is a compact sub-
set of X, , where B(0") = {x e M, (f); there exists
A, 1Al = &, such that A£'(x) = ¢ (x)}

(g 6) g/t X,—> .X,’;‘ is a strongly continuous mapping,
(£5) £ X,B—-> X’; is a continuous and bounded mapping,
(£ 6) £(x) %= 0 for .xeM"_(f) ,

(£ 17) Mm £(x)= 0 .
N lj=¥ 0

Denote X =g ({x e X; ; g'(x)=0%) .

Then the set g (B)~ K is isolated and I'"c X,
where T'' is the set of all accumulation points of the

set ' = g (B) .
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Proof. Let «, € B (m =1,2,...) be such a se-
quence that g («,)—> 4@ K , then there exist 2,
(m =1,2,...) such that A £'Cu,)=g'(4,) . The as-
sumption (f 7) implies that the set M, (£) is bounded
and since Xg is reflexive, we can suppose that «,, — «,
in X, .

Suppose that %*F fﬂml = 0 . Then there exists a

subsequence A, , —> 0  and thus ¢ (4m,)—> 0= g'(4,)

in x;‘ . From (g 6) it follows that g ia weakly continu-
ous (see [7, Chap.I, § 4]) and thus g (um, ) —> g («,)=

= ¥ ¢ K and this ia a contradiction with the definition
of the set X . Hence there exists J° > 0 such that
A, 2o for each positive integer m and thus

a, e B(d") , Owing to Assumption (g 5), we can suppose that
Mp—> iy &€ My, (£) in X, and thue in X4, too. With
respect to Assumption (f 6) it is £°(w,) # 0 and we have

g’ Cup )l 17 ()l

A |l = -2 Em % %’
m T N ) WE e

v

Jg) .

Thus we can suppose A, —A,, l.?tol =d ., If m tends
to infinity, we obtain A, df («,,.) = dg(u,,.) and ac-
cording to Theorem A there exists a neighborhood U (u,)

in X, of the point «, such that the set g (B n U (u,))
is a one-point set and thus there exists an index m, such

that g (u, )= 9 for m Z m, and Theorem 1 is proved.

Corollary 1. Let the assumptions of Theorem 1 be ful-
filled. Suppose that X is an empty set (i.e. ¢'(x) # 0
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for each x € X, ) .

Then the set I° is at most a finite set.

Theorem 2, Let X be a real Hilbert space with the

inner product (., .) . Let us suppose:
(F1) £ ie a real-analytic functional on X ,
(F2) £(0) =0, £(u)>0 for all « = 0 ,

(F 3) there exiats a continuous and nondecreasing function
c,'(t) >0 for t >0 such that for all «, h € X
d*fu, h, ) 2 e, (£CaNImi? |

(F4) the set M, (£f) = {xe X; £(x) = n } is boun-
ded,

(F 5) the operator £’ is a bounded mapping,

(F6) imf (£(x),x) Z¢c, >0,
xe M, (f)

(6 1) g is a real-analytic functional on X ,
(G 2) the Fréchet derivative g’ is strongly continuous.

Denote X = ¢ ({xe X ;¢/(x)=03) and
B={x eM,(£), there exists A € E, such that
AE(x) = g/ (x)} .

Then the set g (B) - X is isolated and I''c X .

Proof. Set in Theorem A: X = X, = X, = X, <.,.> =

=(,.),F=£,G= g .The assumptions of Theorem 2 obviously im-
ply the assumptions (£ 1),(f 2),(f 3),(g 1),(g 2),(g 3),

(g 4). One can see that (F 3) implies the crucial assumption
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(f 4) with I, = 0 . Thus the assumptions of Theor'on A are
fulfilled.
Suppose that «, € B(m=1,2,...), g(u,)=2,—~7 ¢X .

We can suppose u&, — &, , for M,,' (£) is a bounded set.
From (F 3) it follows that ¢ is a convex functional, hen-
ce R=4{xeX,; £(x) £ nx} is convex and closed, hence
weakly closed. We have &, € R and from (G 2) it follows
that g is weakly continuous (see once more L7, Chap.I,

§ 41 as in the proof of Theorem 1). Hence 7, = g (u,,;) -
—+g(u,) =y ¢ X . There exist A, ¢ E, such that

A, (u,) = ¢’ (a4, ) . By the same way as in the proof

of Theorem 1 we can prove that the sequence {T ¥ is
m
bounded., Hence we can suppose that -;.— — « € E, and
m

then there exists « € X  such that £”(u,)—> w. Now,

Assumption (F 3) impliea
4
CE () = €70y, ay — Mty) = 4d.‘£(u,+t(u@— wy), My, -
m iy Ay - i) At = Py Wy -, 02
1
where P, = ja'c,, (f(uyg+t (uy - «,)))dt > 0 . Suppose
that m %'F P, = 0 . Then there exists a aubaequence “om

such that T, + 0 and ( £ being convex - see Assump-
tion (F 3) - and continuous, thus being weakly lower semi-

continuous);
1
0= %% Fug Z ch (%»g:lffCu,+ t by = w,))dt =

Zoc (£Cu, 20 .
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Thus £ (u,) = O (see (F 3)) and «, = 0 (see (F 2)).
On the other hand, (£'(u,, )= £'(i,), iy~ 4ty) = (£(uy ), 44y, ) >0
and this is a contradiction with (F 6). Thus Lminf P > 0
mn-ro
and u, —> «, ,hence u«, € B .
With respect to Theorem A there exists an index mn,

such that 4, = 2 for m = m, and Theorem 2 is proved.

Corollary 2. Let the assumptions of Theorem 2 be ful-
filled. Suppose that K is an empty aset (i.e. ¢ (x) % 0
for each x ¢ X ).

Then the set I" is at most a finite set.

Remark. The crucial assumptions in Theorem 1 are (f 4)
and (g 5). (Assumption (g 5) says something about regularity
of solution.) Theorem 2 is formulated without this assumption,
but Assumption (F 3) is in the Banach spaces very difficult
to verify and we think that it is very probable that Assump-
tion (F 3) implies that a Banach space has the inner product.

Example. Let X = £, and for Xx = ix,3 € £, aet

[ 4 00 -
£)= 5 2 oG, g = (Fud- gt + 7 .5,277x) .

1
-2.“»:4 v =2 v

Let 2 = 2 , Then the assumptions of Theorem 2 are fulfilled
and K = g (fxeX; g'(x) =03) = g (400,...],

£1,0,...13) = {0, - é—} . The equation A£°(x) = ¢'(x)
has a solution x e M,(f) iff

Xo = [0,.00,0,2,0,...7, 227"
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and

- ) -
%2 = C14+2°™,0,...,0,3-2""-4"™)7 0.1, =2
mn
Thua

-m 4

Qi) = 2™ 0, g(xd) = 4+ 27 ™= L (442
T R T R S PN

This example shows that caxd KX > 1 and each point
of the set X is an accumulation point of the set I’ ,
Thus the assertion about the set I'’ in Theorem 2 cannot

be improved.

3. _Applications. Let . be a fixed bounded domain in
the Euclidean N -space E, with the sufficiently smooth
boundary A in the case N = 2 , Denote by

(-]
Wx' (fl) the well-known Sobolev space (for definition and

properties see [6]).

A. Consider the weak solution of the equation
(3.1) (AC-1)"A"w + h(w) =0 ,
D=0 on 00 for laxl&m-1 ,

. o
i.e. we seek a function .« € W:"C.D.) such that for

[J
each 2 e W;” () the relation

(3.2) A = f.D“u.(.x)D“v(x)d.xz,/_;h(u(x)Jrv-(.x)dx
1aigm da
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holds.
Suppose that 4 is a polynomial of the degree

R < N+2m in the case 2m <N and h is a re-
N-2m

al analytic function on real line in the case 2m > N .

In each case we suppose %2 (0) = 0 . Define

4 o 2
flu) = 3 l‘%m fa I D% (x) 1% dx

and

1
gu) = [ [ ltu (x))silx)dt dix

for ue}‘ol;"(ﬂ) .

The functionals £ and g satisfy the assumptions of
Theorem 2 (for validity of Assumption (G 1) see [5, Section
61). Suppose there exists . « 1:’2'_"“ () such that

L hulx)w (x)dx = 0  for each e W™(Q) ,
then in each case we obtain that 4 (w (x)) = 0 almeoat
everywhere on Q. . Denote o« = imF{Itl; M (t) = 03 .

Thus lw(x)) =2 « > 0 almost everywhere on (L and the

trace of .« cannot be zero. This is a contradiction with
o
w e wr™ron) . Hence X is an empty set and Corol-

lary 2 may be applied, i.e. the set I' is at most finite.

Remgrk. One can see that we obtain the same result if
we replace the operator A™ by a general linear elliptic

operator.
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Example. The problem

(3.3) A+ mw) =0, w(0)=wu) =20,

1
(3.4) _{u,,'ct))’ dt = n ,

(3.5) /1f4h<'rw(f))u(t)dt dt = ¥
o Yo

o
has for a fixed . a solution « € W: (0,41) only for

the finite number of 7 ‘s.

B. Let m be an even number. Denote Xza-};',; ),
CJ
X, =Wa (AW, (), X, = L,(0), where p>N,

and let <, ,.> be the L, -duality between X, and X,.
Nem

, =—— =41) and let & be a real-analytic
N-m

Let o« € <0

function on the real line satisfying

I ()l & c(4+lal*)
for suitable ¢ > 0 and all « € E,
Assume that £ (0) + 0 and define

1 N 8w lx) \2y™
fwr= [ [+ = (_é'f’)) “dx - meas 0 ]

and

! () u(x)dx dt
g(u,)=.£j;h(tu-.¥ u(x)dux
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o1
for & & Hg” ny .

By the same way ®8s in Part A of this section we can

prove that K = # and that all assumptions of Theorem 1

except Assumption (g 5) are valid. The validity of Assump-

tion (g 5) follows from [5, Section 5]. Hence Corollary 1l

may be applied. All conditions on the function $» are ful-

filled for example in the case M (w) = ——i——;- or

14w
4

M) -
() = 4+ w2 2w o1,

[11

[2]

(31

(4]

[5]

(6]
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