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Commentationes Mathematicae Universitatis Carolinae

13,4 (1972)

TENSOR PRODUCTS IN THE CATEGORY OF CONVERGENCE SPACES

Jan PAVELKA, Praha

Various additional structures on a category have been
studied recently. One of them is the tensor product, whose
non-trivial examples are likely to appear, sometimes in a
great number, in categories of algabras or models of Gabriel
theories., The aim of this paper is to discuss thea existence

of tengor products in the category of convergence spaces.

1, Convention. Th\e class of all objects of a category
A will be denoted by lAl . Given A, Be [ Al , we shall
denote by < A,B >, the set of all morphisms from A to
B in A, Instead of "fe <A,B ),4': we shall also write
"A-£s B¢ A" . The inverse of an isomorphism £ will be
denoted by £ .

By a concrete category we understand a couple (A,U)
where A is a category and U is a faithful functor
A — Set

For A,B el Al we shall write " A & B"  whenever
UA =UB and the identity of the underlying set carries

a morphism in A , For two functors P, (4 in m variables
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with values in a concrete category, "P < G* will stand
for * F(A ,..,Ap) & G(Ay,...,Ap) for any objects
A,‘,..., ALelARlY

2, Definition. Let (A ,U) be a concrete category.
A structure of the symmetric monoidal closed category (SMC)
on (A,U) consists of the following data:
(1) a functor @1 Ax A — A (tensor product),
(i1) an object Je lA| together with natural equi-

valences
ABC

(LeB)®C Ao A®(BBC) ,

B
AeB £ Bea ,

A
A®) ~ A ,

A
Je A A A .
(1i1) a strong hom-functor H in (A ,U) , i.e. 2

functor A*x A —» A4 1linked with the ordinary hom-functor

{~,->4 of A by means of the commutative diagram

Jl-————-}l
("“)& \ /

(iv) en adjunction in two variables
“Alc
<A@B,C> = <A,H(B,C)), .

A couple of functors ® , H satisfying the condi-
- tions (i) and (iii) will be called a ténsor couple in
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(A,U0) provided that it can be completed to an SMC struc-
ture in (A,U) .

3. Remark. The natural isomorphisms sub (ii) alone do
not enable us to treat ® as an associative and commuta-
tive product with a bothsided unity J unless we show that
they are coherent in the sense of [4], Nevertheless, the
fact that both tensor products we shall describe explicitly
are coherent and that we shall dispense with the notion of
coherence throughout the discussion of otherpossible cas‘es
allows us to omit it from our further consideration.

With this reservation, the essence of the above defini-
tion is taken from [2]., Let me recollect some of its imme-
diate consequences.

1) The monoid < J,J3> is commutative,

2) The identity functor of A is naturally equivalent
with H(J,~) .

3) For any fixed C  the contravariant functor H(-,C):
tA¥*— A is a right self-adjoint, therefore it trans-
fers colimits to limits,

4) If (& ,H), (®,H’)  are tensor couples in
(A,U) , then for any natural transformation % : @—s @
there is exactly one natural transformation o : H — H’

making the diagram

ABC
CA®B,C>— o <A,H(B, 00
<1 <1a9n®>
/ABC

CA® B,0>— o A,H(B,0))

- 695 -



commutative for any A,B,C € Al | and vice versa.

4, Exemple. Up to a natural equivalence, there is ex-
actly one SMC structure in (Set, 1gy.) ,formed by the car-
tesian product X x Y , the functor (- ,-)>g, , a one-

point set {0} , and the isomorphisms af'% c}', n} , £ ,

4:.:" , defined.

ay ), %) = (x, (g, 2))

cﬁ (x, ) = (g,x),

IL:(N,D) = l:(ﬂ,x)- x.xeX,yeY,6 zeZ ,
NiZ3

s f@xN(y) w g(x,y); XxYErZ e SetsxeX, ya¥

respectively.

5. Definition. Let @ denote the least infinite ordi-

nal, By an L -space we shall understand a couple (X,A)
where X is a set and A c X% x X is a relation bet-
ween sequences in X and elements of X satisfying the
following axioms:
. . 4

(10) (4%, b, "), Uxyh,x®) e A always implies x” = x? .

(I1) Ifx, » x for allm e @ then (Exp¥,x)€ N .

(L2) If ({“m}:“)‘ A and h‘“m’ is a subsequence of
Ax,b, then (Suy 1,x76 A .

(L3) If {“m;‘; x are not in A , there is a subsge-

quence {th'i of {X,? such that ({alg%":“)‘ A does not

hold for any subsequence 4&,.,‘ $ of U‘h,,,’ 4
. n
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The relation A will be called a convergence in X .
We shall call an L -morphism any triple (CX,A)£,(X,N)
wnere (X,A), (X’,A) are L -spaces and X —£—? X’ is
a mapping such that ({x,},x)e A always implies
({€Cxp)3, £x)) e A"

All I -spaces and L -morphisma form a category <.
We define an underlying set functor ug : 8 —» Sat by
the rule

ugc(x,m,f,(x',/\'n = (X,£,X°) .

Obgerve that owing to the axiom (L1) any constant map-
ping of the underlying sets carries a morphism in &£ .

For the sake of brevity we shall in the sequel omit
these part of the proofs that rest in plain verifying of so-

me assumptions.

6. Proposition. Given a diagram D: A — &£ in &£,
Dld) = (X, Ad), d e Al , Let (XEds X3)qaias be

the limit of Uy e D in Set . Putting
A =§4xpt,x) %, x@X and for any d & |41 we have

($6, (%), £0(xN e Ad T , we obtain (CX,A) 2 (X , A Wyqum

as the 1limit of D in & .

7. Propogition. @ = ((X,A),£,(X’, A’) is an epi-
morphism in & iff for any x’e€ X’ +there is a sequence

{xp? in £(X) such that ({xp?,x")e A’ .

Proof. Let M be the set of all the A’ -limits of
sequences in £(X ). Suppose M & X’ . We shall use the
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usual push-out construction to prove that @ is not an epi-
morphism,

We put X/ =M U (CX'-M)x§0} UC(X'=M)x{43)
and define mappings ® _X”-—-p.X', v: X¥—> eep 2 so that

wlh = 4y s ulx i) = x’ for x’'€e X'-M, ¢~ 0,4 ;

vix)s f for x'eM; »(x)i)=44} forxeX'-M, i =
=0,4 .Then A w4 (4xp ¥, x"Vxp,x"€ X”; ()}, @ (x")) e A

and there is m e @  such that ) » (x, )2 »(x")} 1is
mzm,

a convergence in X” ., Putting g;IM = 4y and ¢; (x") =
=(x’y4) for xe X'-M , we obtain 1 -morphisms g; =

= (X’ N 94 ,(XA")), 4= 0,4 such that 9 & 7, vhile
Bg=%9 -

The other implication is a consequence of (1O).

In order to avoid the persistent occurence of the for-
gztful functor in the formulas and thus to make the text mo-
re readable, we shall in the further notation disregard the
difference between an object of & and its underlying set.

We shall write "xp—> % in X instead of *(fx,},x)e€
€ A" and say that £35 X — X’ is continuous or that it
is a morphism instead of * £ carries a morphism in &£° .

c’}yy, will denote the constant mofphism mapping an L -
space X on g eVY .

We shall use A to denote the set w +4  of all or~
dinals at most equal to @ with the convergence of the

ordered topological space Tg, 4 -

8, Lemma, Let 4%, % be a sequence of points in an L -

- 698 -



space X . The following conditions are equivalent:

1) Xm —» X in X .
2) The mapping A —2— X defined @(m) = Xnm

for m @« @ ,@(®)=x is continuous.
Proof. The non-trivial implication is (4 =w> 2 ), Let

Xm—7 X in x .
a) Assume that @, —> m in A . Then from some M,

on we have @, = m and every subseguence {q(a,,,@)? of

as a constant subsequence, which

{g(a,)} has {@(ag, Vpzm,
converges to @(m.) in X . By (13) @(a,) — @(m) in X .
b) Assume that @mn—> @& in A . Then for any subse-

quence {9 (ag, )} of {@(a,)} the sequence fay § has a

non-decreasing subsequence {a«,"_ %Y . Either ay, = @ from
” n

some m, on and we proceed in the same manner as in a), or

{%z”f has an increasing subsequence {a'*z.,, f . In that
L.

case 4?(12-“‘” )3 is a subsequence of {x,? and conver-
L.

ges to x in X , Again,@(@p)—> g(@)in X. ¢ is continu-

ous,

9. Propogition. The object A with all its endomorph-

isms in & forms a left adequate of & in the sense of [3].
Proof. Given any X € /€| we define a small category
Hay (X) with the set of objects <A, XDy, , whose morph-

iems are all the triples (£4, «x,f,)  where £,,£, €
e<A, XD, x€<A,A)y end £, =£Hox .

The formula: Deay (X) (£5,x,f,) = < defines a func-

tor ¥ay(X)— & . Putting 'q_f-f, £fal&py, X2
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we obtain a cocompatible family 4 = (q:');.‘x“, (¢ 3]] of

the diagram D¢y (X).Our aim is to prove that g is
the colimit of D¢ay (X) in £ .

Assume that (A-i-h Y)feixey cxri is another
cocompatible family of D¢yy (X) . We seek a continuous map~
ping X —¥»> Y  such that ge £ = g° for any f e
elX4y(X)|.Thus for any x ¢ X it must satisfy the con-
dition g (x) = q":'(a) . (1)

On the other hand, using (1) as a definition of g we
have for any A-—i-* x € | Xay (X))l and aed:

AX AA
§(£¢a)) = g () = g ¥ (a= gfo it (@) = ¢F ) .

It remains to prove that ¢ is continuous. If X, —
~> x in X then the corresponding morphism ¢ from Lem-
ma 8 1s an object of H¢ay(X) and g(xyp) = geoeg(m) =
=g¥f(n)— glw)=g(x) since g% is continuous.

.

10, Proposition. Given X, Y € I& | , we shall deno-
te by B(X,Y) the set ¢ X, Y>& -with the (pointwise)
convergence: §,~> § in B(X,Y) iff §n(x)— §(x)
in ¥ for any x € X . Putting B(f,g)=<f,g> for morph-
isms, we obtain a strong hom;-functor in (&£, u.x) .

11, Proposition, Given X,Y e /&€ , we shall denote by
X @ Y the cartesian product of the underlying sets with
the convergence: (Xpm,%m) —7 (x,4) in X @ Y 1iff
g —> X in X, 4p~—> 4 in Y , and there is m, &
€ @ such that for all m = m, at least one of the
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equalities Xy = X, @ = 4 holds. Completing the de-
finition by £@ ¢ = £ x ¢ for morphisms, we obtain a func-
tor @1 L xL—>& .

Proof. Let us verify the axiom (L3). If (x,‘,nh,_)-h
~» (x,4) in X @Y , then either e.g. Xm —#> X in

X , thus having a subsequence 4 thﬂ with no subsequence

converging to x in X ., Then we ¢an claim the same for

{(x,.“,%”)!,(x,q),and X@® Y . Or for an increasing sequen-
ce {€£n3% of natural numbers we have always Xg 4 X and
Yz, ¥ 4 . In that case {(xy , 4, )# is & subsequence of

{(xm , Yyn )} , no subsequence of which converges to (x,4)
inX®Y .

12, Proposition, (@ ,B) 1is a tensor couple in
(L,U,) .

Proof. Denote by P  the singleton in & - a one-
point set 0% with one convergent sequence. 1t is easy

to verify thet for any X, Y, Z € 1&£1 the bijections

ux,Ur,uz  ux,uy  UX ux :
L AR S A of the underlying sets carry

igomorphisms in &  and that the formula

ar”zg’(.x)(ry.) = glx,n); xoYZzese ,xeX,yeY

defines correctly an adjunction @ — B . Let us only cla-
rify one thing that is not perhaps immediately seen., If
.X-’-’-*B(Y, Z2)ed eand (Xy,Yp)—= X,4) in X @Y then

for any subsequence {7 (xg )(a4pp )t of {9 (xpy) ()i =

.‘“,_7,)(&1‘f (Xm , 4m )t there is an increasing sequerce {Ln}
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of natural numbers such that either {xg, } or fgy, }
" m

is constant. Hence ?nyzg:(xmny,,)—-r?r'x”(x,g.)in z .

13. Proposition., For X,Y e /&I we shall denote by
D(X,Y) the set (X, Y >p with the (diagonal) conver-
gences §p—> F in D(X,Y) iff fn(xp)—= §(x) in
Y vhenever g, —> X in X . Defining D (f,g) =
= (f,g.) for morphisms, we obtain a strong hom-functor in
(£,Uy,) .

Proof. The non-trivial part of the proof is the verifi-
cation of (L2) for the convergence in D (X,Y) .

Let §o~> § in DCX,Y) and let fhkn? be an in-

cressing sequence of natural numbers, Let X, — X in X.

We shall put
@mnMu{nlkﬂém? for m 2 &,

and prove that the sequence {x/, ¥ in X defined
- up to f, ~1 arbitrarily,

-x:m=.xf,_m for m = f,

converges to x in X .
We shall apply (13). If {""2 $ is en arbitrary sub-

sequence of {xj, ¥ then the non-decreasing sequence 14»¢m?
of natural numbers has no constant subseguence., Hence it has
an increasing subsequence £ i 3 . Nevertheless,{x; }
Lm 2om
is already a subsequeice of both {x/,? and {x’p } , there-

fore it converges to ¥ in X . From X IX’Q"L it follows

- 102 -



foen (Xm)= 6o, (x4 ) —> €(x) in ¥ .

14, Let us denote by X x ¥ the product of the ob-
jects X, Y in & . By 6 it is the cartesian product of

the underlying sets with the convergence: (X, ,4,)—> (x,4)

in X x Y iff Xy—>x in X eand gp—> 4 in Y .
It is possible to prove by a simple calculation that
in any category with products the functor - x-: A x 4 =

—> A , assigning to a couple of morphisms A,,i'*Aa )

B,,-—g'-r B, e A the morphism £x g: A xBy—> Ay xB, defi-

ned through the projections to the individual coordinates:

Ayx B Ay By
’P'A: ’o(fxg,)—fopA: ,
Agx By Agx By

”53 a(fxq):gﬂﬂ," ,

is associative, commutative, and has the singleton of A as

a unity.

15, Proposition, (x,D) 1is a tensor couple in
(£,1,) .

Proof., By the above remarks it suffices to concentrate
on the adjunction which, defined by the same formula as in
12, clearly is correct.

Now let us assume that (@,H) is some tensor coup-~
le in (£€,Uy) . By 3.1 @ must have the singleton P
as a unity.

For any X,Ye | &1 we shall define mappings
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M. xey—sx0Y, tTX@Y— XxY ,
A,y =celi @ U

and
tYix,y)m (e (4, © Prx,y),

e e (x,y, xeX, yeY

whe~e 4 is the only element of P®P .

The naturality of both 4%  and t*Y as well
as the continuity of t*Y are obvious from the defini-

tions., Observe that
X xp X X PX X
nor (x,0)=r,(x,0)=x, Lok (0,x)m £,(0,x)=x,
Xy Xy
and t A" (x,y) = (x, %) for any X,Y e l&€l, x e
e X » Y € Y + If we show that ,b)(y is also always con-
tinuous, we shall have natural transformations »: @ —>

— 8, t:®@ — x .

Let (Xpm , Ym ) —> (x,4) in X@®Y . We have

n’.‘v(

Xy, @) = Ao e c,;x) ° Fox (x,) =

= Uy @) e Ao BLx) = (@) o BNny)
B (x, ) m 6o (e @A) B (4y) =

= o1 e ALy, = (¢ .

From the continuity of (4 ® ¢ ;y) o X and

(¢x ®4y)0Z" it follows
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XY,
(2) /axy(x,”fy,)-—-v BXex ), AV, ym V7 5 (x,9)
in X®7Y .
For any subsequence {b"("“@’%"@n of {/axy(x,n, wa )l
there is a subsequence {(xp, ,ym, )i of {(%p,, > Yae,)?

constant in one of the coordinates. The image of the lat-

ter under bxy converges to bxy(x,..’,) in X®Y

by (2). By (I3) we have 4" (x,,4n)— 4 (x,4) in X@Y .

/aXY

is continuous.

16, Lemma, Identity is the only natural endotransfor-

mation of (-, -, .

Proof, For any & € {{~, =Dy, <=, =D, ¢, 6 ond
X—£+ Yed we have
3 £y = eMe) = @A) o £ .
In fact, (3) establishes a one-to-one correspondence bet-
ween the endotransformations of (-,_)& and those of

4£ . But 48 has no other endotransformation than its
identity since for any o e <4z, 41 Sm.g., and XelLl
we have o*(x) = o%. c:‘ (0) sc;’ oo = x .

Consider the transformations 4« =H~—>»B, 3:D—H
conjugated to A and ¢ respectively (see 3.4). By 16
they must be carried by identity, hence H £ B and
D<H .

Let X,Y,Z 1%l ., The commutative diagram
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XYz
(X®Y,8> L <X,H(Y,B)>
(A 1,0 <My,i7%)

(Xx@Y, zy—T%¢x,B(Y,2))
shows that

a) »*  is an epimorphism in &

v) we have p*% @ (x)(g) = @ +*"(x,q) for

any XOYrE xeX, yeY

17, Lemma, If /aM
@a ® and H=3 .

is an isomorphism in & , then

Proof. It will do to prove B £ H , &~ ® will
follow from the fact that the correspondence between mu-
tually conjugated transformations is functorial.

1) First we show that B(A,Y) = H(A,Y) for any
Yel&l . Assume that §m—~—> § 1in B(A,Y) . Then the
mapping w:A —> B(A,Y) defined y (m) = §m, ¥ (W)=
- g is continuous. Since (/;AA , 4y > is bijective,
so is <4y, 147y , and there is a mapping . A

’
X L H(A,Y) such that y(a)=i*"y’(a) for any ae
€ A . Hence
fn = ¥ (n)—> y'(w) = § in HCA,Y) .
2) Let X ©be another object of &£ . We know
£ .
- by 9 that (,A-—%,X)“‘.‘“\x‘”l is a

colimit in &£ ,
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- that H(-,Y) transfers colimits to limits,

- by 6 how the limits in & 1look like.

If §o— § in B(X,Y) then by the continui-
ty of B(£,4,) for £ e | X 4 (x)I we have always
(€, 4y >fn— <£,4y 2§ in B(A,Y) € H(A,Y) .

The family (H(x,y) <2v2y pea vy is a

limit in &£ . Thus §, — § in H(X,Y) .

.+

18, Lemma., If »%*4

@~ x and D=H .

is not an isomorphism, then

AA

Proof. 1) Since A is an epimorphism, for any

eeA®A there is a sequence {(an,&,)% in A@A

such that /aM(am,ll,’n)-—r e in A®A . Put (a.,‘er)a-tMCe).

A

If Cap, b5) — (a,6) in A @A , then »*(a,,0,)-
-v;p“(a.,bhe in A ® A . Suppose (a,,&,)7 (a,?&)
in A@A . Then @ = & = and there is an increasing

sequence {%, 3 in w such that a,k”.bj,ns @ for

meow. {a:hm_i has an increasing subsequence -Ca.h‘n} s

i D’k" 3 has an increasing subsequence ¥ &g } ., The
"

mappings A Y a4 defined @(Qge, J=am, ,Pm)=w
Tam am

for m & w \fag, Inewl, glw=e 3 'V(‘z'-*z,,,nﬂ) =

am
& (M) =w formew 14 Im eawt,y (w)sa
= hz‘f"m y ¥ bigﬂ'm >

AA
are continuous. The conver~cent seguence (goy)s (ay ,!ﬁ’ %3
% . ,
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has a common subsequence with both ™ (am)n)t and
the constant {/a“ (w,w)} . By (L0) and (L2) we have
b“(w,w) = e . The mapping A is onto .

2) If »**  is not an isomorphism, the argument abo-
ve shows that there are increasing sequences fc,?, {d,?

of natural numbers such that s (c,,dn) —> A (w,w)
in A@ A . Ve shall prove that for any X,Y e |&| the

mepping & *Y carries a morphism X xY—> X ®Y .
Assume Xg —> X in X, ayy —> 4 in Y . By the sa-

me trick as in the proof of 13 we provide sequences fu ¥

{2 ¥ such that Mo, = X, Vi, = Ym M4m —7 X in X,
d

Vpm—~—> o4 in Y ., The meppings A —> X, A—x—'—-b}'

defined P (ml= iy, , P(W)=x, gim)=v , (@)= q  are

continuous. Hence XY (xpy,4,) =
= (@) s, d, ) > PO 1) A @,0) = AV (x,4) In XY .

The transformation t: & —» X has therefore a right
inverse. From 3.4 it follows H =D, ® & x .

19, Theorem. Up to a natural equivalence, there are

exactly two tensor couples in (&, uz ) .
Proof. Observe that A @A < A x A ., The rest is a

consequence of the preceding lemmas.

20. Remark. Let &£’ be the category of all spaces for

whose convergence we demand only the axiom (IL1).
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Let A’ be the set w +1 with the convergence:
ap——>a in A" iff @y =a forallmew or
Amp =m, aAa=a& .

For X,Y el®’!l denoteby X @'Y the carte-
sian product of the u derlying sets with the convergence:
Xy tym) — (x,4) in X ®°Y if Xy —7 X in X ,

4m —> 4 in Y , and at least one of the sequences
{xm?, {ypt is a constant equal to its limit,
Substitute £’ for £, A’ for A , and @’ for
@ throughout the text and change the proposition 7 to
" @ 1is an epimorphism in &’ iff £ is onto". Surveying
the proofs (which, of course, contain gquite a few places
in this case superfluous), we can make sure that the re-

sults of this paper remain valid, -
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