Commentationes Mathematicae Universitatis Caroline

Jan Pelant; Vojtěch Rödl
 On generating of relations

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 1, 95--105

Persistent URL: http://dml.cz/dmlcz/105473

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
14,1 \text { (1973) }
$$

ON GENERATING OF RELATIONS
J. PELANT, V. RÖDL, Praha

Abstract: Given a family of relations \mathbb{R}_{i} indexed by a set I and a relation τ on I one can form a new relation $\Omega\left(\tau, R_{i}\right)$ induced by R_{i} and τ. (If τ is an ordering then $\Omega\left(\tau, R_{i}\right)$ is the lexico-graphic product of R_{i}.) The question is studied how many R_{i} are necessary to generate a given relation R. This is related to prefe-rence-relations in psychology.

Key words: relation
AMS, Primary: 05C99

Introduction. Let X be a set, let $\left(\mathcal{R}_{\boldsymbol{f}}\right)_{i \in I}$ be a family of binary relations on \boldsymbol{X}. In addition, let $\boldsymbol{\tau}$ be a binary relation on I. This system of data generates a new binary relation on \boldsymbol{X} defined in the following way: $\langle x, y\rangle \in \mathbb{R}$. if and only if there is $i \in I$ such that 1$)\langle x, y\rangle \in \mathbb{R}_{i}$, 2) $\langle r y, x\rangle \notin R_{i \prime}$ for every $\left\langle i^{\prime}, i\right\rangle \in \tau, i \neq i^{\prime}$.

Thus we can, from relations R_{i} and τ of special character, obtain relation far more general. For example any antisymmetric relation is generated in this sense by means of quasielementary preferences R_{i} (by a quasielementary preference we understand $R \subset x^{2}$, what may be written as $R=$ $=A \times B$, where $A \subset \boldsymbol{X}, B \subset X$ and $A \cap B=\varnothing$; in case of $A \cup B=X$ we say that R is an elementary preference) and a bi.ur order τ. At this place we might recall the
motivation of the above cons ruction: having an antisymmetric relation $\boldsymbol{\rho}$, we interpret $\langle\boldsymbol{x}, \boldsymbol{y}\rangle \in \boldsymbol{\rho} \boldsymbol{\rho}$ as "x is preferred to of " and try to represent ρ by means of a system of simple decisions. For instance, the above theorem statěs that any antisymmetric reletion on a set X may be obtained from a finite sequence of subsets $V_{1}, V_{2}, \ldots, V_{m}$ of X, if we interpret them as properties for elements of X and where for $i<j$ we consider the i-th properiy more important than the $j-t h$ one. Hence we prefer x to \mathcal{Y}, whenever from the point of the most important property V_{j} we prefer x to y (V_{j} is the most important property if j is the first j such that x is compatible with y in $\left.V_{j}\right)$ 。

Given a certain class of relations \mathcal{L} (elementary preferences, quasielementary preferences, linear orders, partial orders, etc.) and a relation R generated by means of relations from \mathscr{f}, and appropriate relation τ (τ linear order, respectively) we define the dimension (the linear dimension, respectively) of R with respect to for as the least number of $\mathbb{R}_{i} \leqslant$ for wich generate R via some relation (linear order, respectively). Very often we realize that the dimension of relations with respect to \mathcal{L} grows beyond any limit merely ascertaining the number of elements in \mathscr{C}. (This is the case in both foregoing instances.) In 1970 a problem was put by professor Katětov: what is the behavior of dimension in cases which one cannot decide by merely comparing the numbers, namely what happens when we generate general relations from partial orders. In the sequel, we shall concern ourselves in the dimension with respect to
partial orders only.
We siall show that there exist tournaments (trichotonomic relations) of an arbitrarily great dimension. First we proved that the linear dimension of tournaments grows beyond any limit. The general result was achieved by formulating a correspondence between the general and the special dimension of tournaments.

We would like to thank A. Pultr who not only acquainted us with the problem mentioned above, but helped us in the development of its solution.

A tournament T is a couple $\langle X, R\rangle$, where X is a finite set and \mathbb{R} is a subset of X^{2} such that the following holds:
$x, y \in X \Longrightarrow(\langle x, y\rangle \in R \Longleftrightarrow\langle y, x\rangle \notin R)$.
Definition 1. Let \boldsymbol{X}, \boldsymbol{I} be nonempty sets. Let $\left\{\mathbb{R}_{\boldsymbol{i}}\right.$; ie $\boldsymbol{\epsilon}$ I\} be a collection of partial ordering on \boldsymbol{X}. Let $\boldsymbol{\tau}$ be a relation on I. A relation R is said to be generated by $\left\{\mathbb{R}_{i} \mid \boldsymbol{i} \in \mathcal{I}\right\}$ and by τ if for every couple $\langle x, y\rangle \in \mathbb{R}$ there exists $i \in I$ such that the following holds:

1) $\langle x, y\rangle \in \mathbf{R}_{i}$,
2) if $i^{\prime} \in I, i \neq i^{\prime}$ and $\left\langle i, i^{\prime}\right\rangle \in I$, then $\langle y, x\rangle \notin \mathbb{R}_{i}$. The relation \boldsymbol{R} generated by $\boldsymbol{\tau}$ and by $\left\{\boldsymbol{R}_{\boldsymbol{i}}, \boldsymbol{i} \in \boldsymbol{I}\right\}$ will be denoted by $\boldsymbol{\mathcal { R }}\left(\boldsymbol{\tau}, \boldsymbol{\{} \boldsymbol{R}_{\boldsymbol{i}} \boldsymbol{\xi}_{\boldsymbol{i}} \in \boldsymbol{I}\right)$.

Proposition 1. Let $\boldsymbol{G}=\langle\boldsymbol{X}, \boldsymbol{R}\rangle$ be a graph. There exists a collection of partial orderings on $X \quad\left\{R_{i} \mid i \in I\right\}$ and an index relation $\tau\left(\tau \in I^{2}\right)$ so that $R=\mathbb{R}\left(\tau,\left\{\mathbb{R}_{i}\right\}_{i \in I}\right)$.

Proof. Put $I=R, \tau=\varnothing, R_{\langle x, y\rangle}=\Delta_{x} \cup\{\langle x, y\rangle\}$.
(We put $\left.\Delta_{x}=f\langle x, x\rangle / x \in X\right\}$.)
Proposition 2. A graph $G=\langle X, R\rangle$ has no 2-cycles iff $R=\mathbb{R}\left(\tau,\left\{\mathbb{R}_{i}\right\}_{i \in I}\right)$ where τ is a linear order of I.

Proof. Let $G=\langle\boldsymbol{X}, \boldsymbol{R}\rangle$ be a graph without 2-cycles. Put $I=\boldsymbol{R}, \mathbb{R}_{\langle x, y\rangle}=\Delta_{x} \cup\{\langle x, y\rangle\}$. Let $\tau \quad$ bs any linear order of I. Obviously $R=\Omega\left(\tau,\left\{R_{i}\right\}\right)$. If $R=\mathcal{R}\left(\tau,\left\{\boldsymbol{R}_{i}\right\}_{i \in I}\right) \quad$ where τ is any linear order of I it obviously holds: $f\langle x, y\rangle,\langle y, x\rangle 3 \notin R$.

Definition 2. Let Φ be a class of relations. The Φ dimension of a graph $G=\langle X, \Omega\rangle\left(\operatorname{dim}_{\Phi} G\right) \quad$ is the least cardinality of an index-set $I \quad$ such that $R=\mathbb{R}\left(\tau,\left\{R_{i}\right\}_{i \in I}\right)$, where $\tau \in I^{2}, \tau \in \Phi$. We write $\operatorname{dim} G=\operatorname{dim}_{\Phi} G$ (the universal dimension of G) if $\$$ is the class of all relations, We write $\operatorname{dim}_{\mathcal{L}} G=\operatorname{dim}_{\Phi} G \quad$ (the linear dimension of G) if Φ. is a class of linear orders. We write $\operatorname{dim}_{N} G=\operatorname{dim}_{\Phi} G \quad$ (the acyclic dimension) if Φ is a class of graphs without cycles.

Remark. Every graph has the universal dimension accordim to the proposition 1. Every graph without 2-cycles has the 11 . near dimension according to the proposition 2.

Notation. 1) The collection of all tournaments with m vertices is denoted by \mathbb{T}_{m}.
2) Put $D_{\varepsilon}^{T}(n)=\operatorname{Max}_{T \in J_{n}}\left\{\operatorname{dim}_{2} T\right\}$.

In the following the two main theorems will be proved:
Theorem 1. Let T be a tournament. If $\operatorname{dim} T=k$, then $\operatorname{dim}_{2} T \leq 3^{k}$.

Theorem 2. Let us suppose $n>1$. Then $D_{\mathcal{L}}^{\top}(n) \geq$ $\geq \frac{\log _{2}(n)}{\log _{2}\left(2 \log _{2}(n)+1\right)}$ (hence $D_{2}^{T}(n)$ tends to infinity if m tends to infinity).

It follows from Theorem 1 and Theorem 2 that the set
$\{\operatorname{dim} \boldsymbol{T} \mid T$ is a tournament $\}$ is unbounded as a subset of \mathbb{N}.
A: Theorem 1:
Definition 3. Let $T=\langle X, R\rangle$ be a tournament, $R=$ $=\Omega\left(\tau,\left\{R_{i}\right\}_{i \in I}\right)$. Let $\left\{M_{1}, M_{2}, M_{3}\right\}$ be a decomposition of I. Denote by $B\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ the set of all $\langle x, y\rangle \in R$ which satisfy:

1) $\langle x, y\rangle \in \mathbb{R}_{i}$ for every $i \in M_{1}$,
2) $\langle i, x\rangle \in \mathbb{R}_{i}$ for every $i \in \mathbb{M}_{2}$,
3) neithur $\langle x, y\rangle \in \mathbb{R}_{i}$ nor $\langle y, x\rangle \in \mathbb{R}_{i}$ for every $i \in M_{a}$. The set $f B<M_{1}, M_{2}, M_{3}>\mid\left\{M_{1}, M_{2}, M_{3}\right\} \quad$ is a decomposition of $I\}$ is denoted by \mathbb{B}.

Convention. The symbol $B\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ will denote in the following the set defined in Definition 3.
We shall write B instead of $B\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ when there is no danger of confusion.

Remark. $B\left\langle M_{1}, M_{2}, M_{3}\right\rangle$ is a relation on X without cycles.

Hroposition 3. Let $T=\langle\boldsymbol{X}, \boldsymbol{R}\rangle$ be a tournament, $\boldsymbol{R}=$ $=\mathcal{R}\left(\tau,\left\{\mathcal{R}_{i}\right\}_{i \in I}\right)$. Let $\left\{M_{1}, M_{2}, M_{3}\right\} \quad$ and $\left\{M_{1}^{\prime}, M_{2}^{\prime}, M_{8}^{\prime}\right\}$ be deconpositions of I. Put $B=B\left\langle M_{1}, M_{2}, M_{3}\right\rangle, B^{\prime}=B\left\langle M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}\right\rangle$. Then $B \neq \varnothing, B^{\prime} \neq \varnothing$ implies either $M_{1} \notin M_{2}^{\prime}$ or $M_{1}^{\prime} \notin M_{2}$.

Proof. Let us suppose $M_{1} \subset M_{2}^{\prime}$ and $M_{1}^{\prime} \in M_{2}, B \neq \varnothing, B^{\prime} \neq \varnothing$.

There exists a couple $\langle x, y\rangle \in B \quad$ and consequently there exists $i_{0} \in I \quad$ such that $\langle x, y\rangle \in R_{i_{0}} \quad\left(\right.$ hence $\left.i_{0} \in M_{1}\right)$. Further $\left\langle i, i_{0}\right\rangle \in \tau \Rightarrow\langle y, x\rangle \notin R_{i}$ for any $i \in I$. $A s B^{\prime} \neq \varnothing$ there exists $\left\langle x^{\prime}, y^{\prime}\right\rangle \in B^{\prime}$. Since $i_{0} \in M_{1}$ and $M_{1} \subset M_{2}^{\prime}$, it holds $\left\langle y^{\prime}, x^{\prime}\right\rangle \in R_{i}$. As $\left\langle x^{\prime}, y^{\prime}\right\rangle \in R$ and $R=R\left(\tau,\left\{R_{i} \boldsymbol{i}_{i \in 1}\right)\right.$ and T is a tournament, there exists $i_{1} \in M_{1}^{\prime}$ such that $\left\langle i_{1}, i_{0}\right\rangle \in \tau$ 。

However, $M_{1}^{\prime} \subset M_{2}$, therefore $\langle y, x\rangle \in R_{i_{1}}$ which is a contradiction with the properties of i_{0}.

Definition 4. Let $\rho \subset X^{2}$ be a relation without cycles. We define $\overline{=}=\cap\left\{\sigma \mid \rho \subset \sigma \subset X^{2}, \sigma\right.$ is a partial order $\}$. Obviously $\bar{\rho}$ is a partial ordering.

Definition 5. Let $T=\langle X, R\rangle$ be a tournament, $R=$ $=\mathbb{R}\left(\tau,\left\{R_{i}\right\}_{i \in I}\right)$. Let \mathbb{B} be a set defined in Definition 3 . We define the relation $s \subset B^{2}:\left\langle B, B^{\prime}\right\rangle \in \Delta \Leftrightarrow B^{-1} \cap \bar{B}^{\prime} \neq \varnothing$.

Proposition 4. Presumptions are the same as in Definition 5. The relation is defined in Definition 5 is a relation without cyc]-s.

Proof. In the way of contradiction, let $\left\{B_{1}, \ldots, B_{\text {年? }}\right.$? be a subset of B such that: $\left\langle B_{i}, B_{i+1}\right\rangle \in s$ for $i=1, \ldots$ $\ldots, h-1,\left\langle B_{B}, B_{1}\right\rangle \in$. It is $\overline{B_{i+1}} \cap B_{i}^{-1} \neq \varnothing$ and $B_{1} \cap B_{i}^{-1} \neq D$, hence $B_{i} \neq D$ for $i=1, \ldots, k$. The following holds for $i=1, \ldots, g_{l}-1$ and $i \in I$ according to the Definition 3:
$\left(B_{i+1} \subset R_{i}\right) \Rightarrow\left(\bar{B}_{i+1} \subset R_{i}\right) \Rightarrow\left(B_{i}^{-1} \cap R_{i} \neq \varnothing\right) \Rightarrow\left(B_{i}^{-1} \subset R_{i}\right)$.
Shortly:
(I) $B_{i+1} \subset R_{i} \Rightarrow B_{i}^{-1} \subset R_{i}, i=1, \ldots, k-1$.

We can obtain in the same way：
（II）$\quad B_{1} \subset R_{i} \Rightarrow B_{k}^{-1} \subset R_{i}$ ，
（III）$\quad B_{i+1}^{-1} \subset R_{i} \Rightarrow B_{i} \subset R_{i}, i=1, \ldots, k-1$ ，
（IV）$B_{1}^{-1} \subset R_{i} \Rightarrow B_{k} \subset R_{i}$ ．
Statements（III）and（IV）can be obtained in a similar way as（I）．First，we consider the case $k=2 \neq+1$ ．It holds according to $I, I I, I I I, I V:$
$B_{1} \subset R_{i} \Rightarrow B_{2 \eta+1}^{-1} \subset R_{i} \Rightarrow B_{2 \eta} \subset R_{i} \Rightarrow \ldots \Rightarrow B_{2} \subset R_{i} \Rightarrow B_{1}^{-1} \subset R_{i}$, hence $B_{1} \subset B_{i} \Longrightarrow B_{1}^{-1} \subset \mathbb{R}_{i} \quad$ which is a contradiction（ B_{1} is a nonempty set and R_{i} is an antisymmetric relation）． Secondly，let $k=2$ 亿．The following holds according to I ， II，III，IV：
$B_{1} \subset R_{i} \Rightarrow B_{2 \eta}^{-1} \subset R_{i} \Rightarrow B_{2 \eta-1} \subset R_{i}$ and inductively $B_{2}^{-1} \subset R_{i}$ ， hence $B_{1} \subset R_{i} \Rightarrow B_{2}^{-1} \subset R_{i}$ ．

It follows from（I）also：$B_{2} \subset \mathcal{R}_{i} \Rightarrow B_{1}^{-1} \subset R_{i}$ ．We put $B_{1}=B\left\langle M_{1}^{1}, M_{2}^{1}, M_{3}^{1}\right\rangle, B_{2}=B\left\langle M_{1}^{2}, M_{2}^{2}, M_{3}^{2}\right\rangle$ ．Consequently $M_{1}^{1} \subset M_{2}^{2}, M_{1}^{2} \subset M_{2}^{1}$ ，which is a contradiction（it follows from Proposition 3）．

Eronosition 5．Let $T=\langle\boldsymbol{X}, \boldsymbol{R}\rangle$ be a tournament， $\boldsymbol{R}=$ $=\Omega\left(\tau,\left\{\mathbb{R}_{i}\right\}_{i \in I}\right)$ ．Let s be the relation defined by Defi－ nition 5．Then $R=\Omega\left(今,\left\{\bar{B}_{B}\right\}_{B \in B}\right)$ 。

Proof．I）If $\langle x, y\rangle \in \mathbb{R}$ ，there exists $B \in \mathcal{B}$ such that $\langle x, y\rangle \in B$ ．If $\langle y, x\rangle \in \bar{B}^{\prime} \quad$ then $\left\langle B, B^{\prime}\right\rangle \in b$ （Definition 5）．As s is an antisymmetric relation，it is
$\left\langle B^{\prime}, B\right\rangle \notin 力$. This implies that there exists no $B^{\prime} \in \mathcal{B}$ such that both $\langle y, x\rangle \in \bar{B}^{\prime} \cdot$ and $\left\langle B^{\prime}, B\right\rangle \in \mathcal{B}$, consequently $\langle x, y\rangle \in \Omega\left(s,\left\{\bar{B}_{B}\right\}_{B \in B}\right)$.
2) As T is a tournament, it is sufficient for the proof of the statement to show the following:

$$
\left.\langle x, y\rangle \in \mathbb{R}^{-1} \Rightarrow\langle x, y\rangle \notin R\left(s, f \bar{B}_{B}\right\}_{B \in \mathcal{B}}\right) .
$$

Let $\langle x, y\rangle \in R^{-1}$. There exists $B_{0} \in \mathcal{B}$ such that $\langle y, x\rangle \in B_{0}$. If $\langle x, y\rangle \in \bar{B}$ for a $B \in \mathcal{B}$ then $\left\langle B_{0}, B\right\rangle \in$ \in o according to Definition 4 , hence $\langle x, y\rangle \notin \Omega\left(b,\{\bar{B}\}_{B \in B}\right)$. Proposition 5 is proved.

Proposition 6. Let T be a tournament. If $\operatorname{dim} T=k$, then $\operatorname{dim} T \leq 3^{m}$.

Proof. The statement follows easily if we consider the remark under Definition 4, Proposition 4, Froposition 5 and in inequality $\mid\left\{\left\langle M_{1}, M_{2}, M_{3}\right\rangle \mid\left\{M_{1}, M_{2}, M_{3}\right\} \quad\right.$ is a decomposition of $I,|I|=2^{2} \mid \leq 3^{k}$.

Proposition 7. Let $G=\langle X, \boldsymbol{R}\rangle$ be a graph. Iet R be an antisymmetric relation. Then $\operatorname{dim}_{\mathcal{L}} G=\operatorname{dim}_{N} G$.

Proof. 1) Obviously $\operatorname{dim}_{N} G \leq \operatorname{dim}_{\mathscr{L}} G$.
2) Let $\mathbb{R}=\boldsymbol{R}\left(\tau,\left\{\mathbb{R}_{i} \boldsymbol{\}}_{i \in I}\right) \quad\right.$ where $\boldsymbol{\tau}$ is an acyclic relation. There exists obviously a partial ordering μ on I such that $\mu \geq \tau$ and $R=\Omega\left(\mu,\left\{R_{i}\right\}_{i \in I}\right)$, hence $\operatorname{dim}_{\mathcal{E}} G \leqslant \operatorname{dim}_{N} G$.

Now a proof of Theorem 1 follows immediately from Propositions 5,6 and 7.

B: Theorem 2:

Notation. Let $\langle\boldsymbol{X}, \boldsymbol{R}\rangle$ be a graph. The maximal cardinality of a set Y such that $Y \subset X$ and $\langle Y, R \cap Y \times Y\rangle$ is a linear order is denoted by $\ell(\mathbb{R})$.

The maximal cardinality of a set Y such that $Y \subset X$ and $(\boldsymbol{Y} \times \boldsymbol{Y}) \cap \mathbb{R}=\varnothing$ is denoted by $i\langle X, R\rangle$.

Let n be a positive integer. We define:
$L(n)=\min \left\{\ell(\mathbb{R}) \mid\langle X, \boldsymbol{R}\rangle \in \mathcal{J}_{n}\right\}$. The following two provositions are well known and we state them without proofs.

Proposition 8. $I(n) \leqslant 2 \cdot \lg _{2} n+1$.
Proposition 9. Let $\langle\boldsymbol{X}, \boldsymbol{R}\rangle$ be a partially ordered set. Then $\ell(R)$. $i\langle X, R\rangle \geq \operatorname{card} X$.

Notation. Let X be a set. Let Y be a subset of X. Let R be a subset of $X \times X$. We denote $\mathbb{R} \cap(Y \times Y)$ by R / Y.

Proposition 10. Let $\langle\boldsymbol{X}, \boldsymbol{R}\rangle$ be a graph. Let $\boldsymbol{R}=$ $=\mathbb{R}\left(\tau,\left\{\mathbb{R}_{i}\right\}_{i \in I}\right)$ where τ is a linear order of I. Let y be a subset of X. If there exists $i_{0} \in I$ such that $\mathbb{R}_{i_{0}} / Y=\varnothing$, then $R / y=\Omega\left(\tau^{\prime},\left\{^{\left.\left.R_{i} / y\right\}_{i \in I}\right)}\right.\right.$ - where $I^{\prime}=I-\left\{i_{0}\right\}$ and $\tau^{\prime}=\tau / I^{\prime}$.

Proof is trivial.
Notation. The symbol τ_{\uparrow} will denote a natural order of the set $\{1, \ldots$, 亿 $\}$ 。

Proof of Theorem 2. Let $T_{1}=\left\langle X_{1}, R_{1}\right\rangle$ be a tournament such that card $X_{1}=n_{1}, \ell\left(R_{1}\right)=L\left(n_{1}\right)$ and dim $T_{1}=k$. Let us suppose that $R_{1}=\Omega\left(\tau_{k} ;\left\{C_{i}^{1}\right\}_{1 \leqslant i \leqslant k}\right) \quad$ and

$$
\begin{aligned}
n<\frac{l g_{2} n}{\lg _{2}\left(2 l q_{2}(n)+1\right.}(n & \left.=n_{1}\right) . \text { We shall construct tour- } \\
& -103-
\end{aligned}
$$

naments $T_{j}=\left\langle X_{j}, R_{j}\right\rangle(j=2, \ldots, k)$ where $X_{j} \subset X_{j-1}$, $R_{j}=\beta\left(\tau_{k-j+1}:\left\{C_{j-1+i}^{j}\right\}_{1 \leq i \leqslant k-j+1}\right)$ and card $X_{j}=n_{j}$, by inductron.

Suppose that the tournaments T_{1}, \ldots, T_{j} have been constructed. $\left.R_{j}=\mathcal{R}\left(\tau_{n-j+1}, f C_{j-1+i}^{j}\right\}_{1 \leqslant i \leqslant k-j+1}\right\}$, hence $\ell\left(\mathbb{R}_{j}\right) \geq \ell\left(C_{j}^{j}\right)$. According to Proposition 9 there exists a set $X_{j+1} \subset X_{j}\left(\operatorname{cord} X_{j+1}=n_{j+1}\right)$ such that $n_{j+1} \geq \frac{n_{j}}{l\left(R_{j}\right)}$ and $C_{j}^{\dot{j}} / x_{j+1}=\varnothing$. Put $R_{j+1}=R_{j} / X_{j+1}, C_{i}^{i+1}=c_{i}^{j} / X_{j+1}, \quad(i=j+1, \ldots, k)$. It holds $R_{j+1}=\Omega\left(\tau_{k-j},\left\{C_{j+i}^{j+1}\right\}_{1 \leqslant i \leqslant k-j}\right)$ according to Proposition 10. As $\ell\left(R_{j}\right) \leqslant \ell\left(R_{1}\right)=I(n)$ for $j=$ $=1, \ldots, k$ and $n_{j+1} \geq \frac{n_{j}}{l\left(T_{j}\right)}$ it holds: $m_{j} \geq \frac{n}{L(m)^{j-1}}$. Further, $k<\frac{\lg _{2}(n)}{\lg _{2}\left(2 \lg _{2}(n)+1\right)}$, hence $n>\left(2 g_{2}(n)+1\right)^{k} \geq$ $\geq \mathrm{L}(m)^{\text {h }}$ (according to Proposition 8). Consequently $m_{m}>L(n)$. However, T_{m} is a tournament and a partially ordered set, hence $I_{\text {\& }}$ is a linearly ordered set, hence $m_{m}=\ell\left(R_{m}\right) \leqslant I(n)$ which is a contradiction.

References
[1] J.W. MOON: Topics on tournaments, Holt,Rinehart and Winston, New York (1968).
$[2]$ W. EDWARDS: The theory of decision making, Psychol. Bull .51(1954),380-417.

(Oblatum 9.2.1973)

Matematicko-fyzikálni fakulta
Karlova universita
Sokolovská 83, Praha 8
Československo

