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QF-3 'MODULES AND RINGS

Ladislav BICAN, Praha

A?it;act: Some properties of pseudo-injective modules
and self-pseudo-injective rings were studied in [11], The
last notion appears in the literature (see e.g.[5]),[6],[9],
{10]1) also as the QF-3 rings, Jans [6] has characterized
these rings in terms of preradicals. In this paper the pseu~-
do-injective modules will be called QF~3 modules and will be
characterized hy using preradicals, Further, the characteri-
zation of QF-3 rings ag endomorphism rings of some modules is
presented and the QF-3 modules over such rings are invegtiga-
ted., Some results concerning Morita equivalence of QF-3 modu-
les and rings appears as corollaries,

Key words: Preradical, idempotent preradical, torsion
preradical, radical, QF-3 n’xodule. QF-3 'ging, ﬂat'moduh,
endomorphism ring, Morita equivalence.
AMS, Primary: 16 A36,18E40 Ref.Z, 2.723.2
Secondary: 16 A50

All'the rings considered below will be associative with
identity and all modules will be unitary. The category of
left (right) R -modules is denoted by M (Mz) and ¢ M
( Mg, rMg respectively) means M is a left R -modu-
le (right R -module, R -S -bimodule respectivelry, . Hiou wuv
confusion can arise, by a word module we shall always mean an
unitary left X -module.

A preradical ¢ for gM  is any subfunctor of the iden-
tity, i.e. @ w@assigns to each module M a submodule sa(M)
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in such a way that every homomorphism M —> N  induces
(M) —> @(N) by restriction. A preradical ¢ 1is said
to be idempotent if @2 = @ , torsion if @ is left exact
and is called a radical if @ (M/@ (My)= 0. It is well-
known that @ is torsion iff 1L < M implies @(L)=L n
neM) (see e.ge re1, Prop.l.4). For a preradical @, a
module M  is called @ -torsion if @E(M)=M end ¢~
torsion-free if o (M) = 0 . It is known that an idempotent
radical @ is torsion iff the class of @ -torsion-free mo-
dules is closed under taking injective envelopes (see e.ge.
[71, Pro.2.9). The injective envelope of a module M will be
denoted by ﬁ and Z (M) is the singular submodule of
M . Por the homological notions and results we refer to [3].

For M, N e let us define pM(N)-‘ﬁ

Xew £
€ HmR C(N,M)

1, Lemma. For every module M eg M , @, is a radi-
cal (not necessarily idempotent),

Proof: For ¢ &€ Homg (N,K), g e Hom g (K,M) and
X €@y(N) we have x g g = 0, hence x @ € py (X) and
©m is a preradical. For x e N -~ @y, (N) there éxists
£ e Homg (NM) with xf # 0 . Since py(N) ¢ Kecf, £
induces f e Homg (N/@”(N),.M) with (x + @y (N))F =

=xf%0 and N /QM( N) is therefore @y -torsion-free.

2, Definition. A module N eg M  is said tobe M -
torsion-less it @, (N) = 0.

3. Definition. A module M ey M is said to be a
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OF-3’ module if M is M -torsion-less.
A ring R is a left QF-3' ring if gR 1s a QF-3’-
- module. ‘ ’
For two preradicals ¢, @  we shall write @ < 6 if
(M) < 6 (M) for every M eg M . It is a well-known
fact that any preradical @ contains a unique largest idempo-

tent preradical which we denote by @ (see e.g.l121,(81).
Generalizing the ideas of Jans (6] we obtain the following
resultss:

4, Proposition, The following conditions are equivalent
for a module M eg M

1) @y =2y s
(2) @y is idempotent;
(3) the class of M -torsion-less modules is closed under

extensions.

Proof: (2) = (3). Let (—> ,K-:>L—£-> N—>=0be a
short exact sequence with .K,N M -~torsion-less and let
@y be idempotent. Now (o (LN B € @y (N) =0 yields
em (L) € Im o and @u(L)=g@h (L) S @y (Im oc) = py (X)=0
gives L M -torsion-less,

(3)=(2). By Lemma 1, N/@M(x) and Ou (N

/@ﬁ (N) are

M -~torsion~less, so that ‘“/q;:‘ (N) is M -torsion-less
(N

by hypothesis. But @, ( N/(Pﬁ (X)) = on )/S°§1(N) by (8],

Lemma 1,2 which shows @y is idempotent.
The equivalence of (1) and (2) is obvious.
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5. Proposition, Let M €g M. ., The class of @, -tor-
sion modules is closed under submodules iff ?M = PR

Proof: Let the class of @y -torsion modules be closed
under submodules. It is easy to see that @4 1is a torsion
radical and therefore ] ‘-S'-’.M owing to the definition of
©w - Suppose Oy (N)= N and 0 4 f e HmR(N,ﬁ) . Then
£ inducéa a non-zerc homomorphism £*3 N’ =Mf™ ! — M
which contradicts to Py (N’) = N’ . Hence Py and pg
have the same classes of torsion modules and §y = @ by
[2], Prop. 1.

The converse follows immediately from the fact that @,
and Py have the same classes of torsion modules and that

¢ 1s a torsion radical,

6. Theorem, The following conditions for a module Me
€gM are equivalent:

(1) M isa Q@QF-3" modules

(2) om = @& 3

(3) @y 1is torsion.

Proof: (1) =2»(2), Let X € @y (N) and feHmR(N,ﬁ) ,
Xf # 0 .Since @y (M) = 0 , there exists qe}[cmn(ﬁ,}d)
with ,qu, % 0 contradicting to x € oy (N) ., Hence

fw (N) & p# (N) and @, = ¢4 , the inverse inclusion
being obvious,

(2) == (3) is obvious.

(3)=(1). We have 0 = @, (M) = Mn Pn‘ﬁ) , 80 that
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®m (Hy=0 , M Dbeing essential in M.

T. Theorem, Let R be a ringand M eg M with
Z(M)=0. Then @y 1s torsion iff @y is so.

Proof: If @y 1is torsion, then oy = Py <Py £ Em
by 6, and @y = @y is torsion, '

Conversely, let 0 % X =@M(ﬁ) . For pM(J?) =
=i=§m(f) we have Bu(MAK) =M AKX = gy (M A X)
by hypothesis and hence M A X = 0  contradicting to the
esgentiality of M in M . We can therefore take 0 # f €
e}mgci,M) end x € X with xf 4 0 . Since
ZM)Y=0, (0:xf) ={reR, nxf =0% is not es-
sential in R and (0:x£) AL = 0 for some non-zero
left ideal I. of R. Now Lx A" K %+ 0 since K is es-
sential in i , 8o that there exists x € L.  such that
nx € K and xxf % 0

Finally, £ can be extended to an element of Homg (M M),
~ A

gince X is a direct summand of M , which contradicts to

the definition of X .

8. Corollary. (Vinsonhaler [10], Prop.2.) Let R be e
ring with Z (R) = 0 . If the class of modules with zero
duals is closed under submodules, then R is a QF -3’ ring.

9. Theorem. Let B bea QF-3' module and T a
module, If @q(T)=0 then @ ® T 1s a QF-3’ module.
Conversely, if 9«(?) < p.r('f) and @ T is a QF-3’
module, then @ (T) = 0
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Proof: The isomorphism Homg (M,0 & T) =
& Hompg (M, 0) @ Homyg (M, T)  shows that Qgar = Pg N
N @y - Hence Qgor Be "I")-:(@a(&)e 0a (TNnpr(Be ‘f_) -
By hypothesis, ©q(8) =@, (T) =0 (@ 1a torsion by 6)
showing 0 @& T is a QF-3’ module.

Conversely, the same equality gives 0= @aeT(@Q'i') =
= 0 (1) n (or (B) @ or (BN =gy (F) A pr (B)=pg(F) ana

hence Soq(‘r) =0 .

10, Corollary (Zuckerman [11],Th.1). Let R be & (left)
noetherisn hereditary ring and A=Q ® T a left R -mo-
dule where 6 1is injective and T reduced. Then A is a
GF-3 -module iff @o (T) = 0 .

A A
Proof: There is @ . (T) = T  over a left hereditary
ring,

11, Theorem. Let M e€g M be a module which is flat
as & right module over its endomorphism ring S . If N e, M
is a (QF-3’ module then the left S -module Hom g (M,N)
is a QF-3’' moduls,

Proof: For an exact sequence 0 —>g A —>cB  we ha-
ve 0 —> M@sA—> M @B exact by flatness of Mg .

Hence the commutative diagram

~ o, A
Homg (4B, Homg (M, )) —=—s= Hom, (s A, Hom (M,R))

J 2

Homy (M &5B,8) — > Hom, (M&zA,H)—>0
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in which the verticals are natural isomorphiems,shows o*
is an epimorphism and Hom, (M ,ﬁ ) is an injective
S -module,

Now for 0 * « € Hom g (.M,ﬁ) we have mo = x +
=0 for some m ¢ M . Since gN is a @F-3’' module,
there exists f e Homg (N,N), x£ #0 . Nowef, %
4£0 since maf, = xf % 0 showing Homg (M, N)
18 Quomg(m,ny ~torsion-lesa. The S -injective envelo-
pe of Homg (M,N) is therefore Homg(M,N) -tor-
sion-less as a submodule of Homp (M, ) and we are

ready.

12, Theorem. Let gM be a (QF- 3" module which is

flat as a right module over its endomorphiem ring S . Then
S isa GF-3" ring.
Conversely, every GOF -3’ ring can be obtained in such a
way.

Proof: The direct part follows from 11 immediately whi-

le the converse is trivial,

13, Corollary (Tachikawa [9], Prop.l1.1l). Every quotient
ring of a QF-3’ ring R 1is QP-3" ,

Proof: For M € M' ¢ M M QF-23 we have M’

)
is QF-3" since @, = @y, = @h» = @f = @y . Now the
corollary follows from 12 and the well-known fact that every
quotient ring is the endomorphism ring of some R -module

between R and i

14, Remark: It should be remarked that the condition
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Mg 1a flat cannot be droppsd in general. For example, the
quasi-cyclic g -group C(g®) is a (F-3° Z -module
(since it is injective) and its endomorphism ring is the ring
of p -adic integers which is not QF -3’ . Of course,
C(p®) 1s torsion and hence not flat over the ring of p -
adic integers.

15, Theorem, Let R and § be Maorita equivalent rings
via T= Homg(P,-).If ML isa QF-3’' 1left R -module
then T(M) 1sa QF-3" 1left S -module.

Proof: Follows immediately from 11 since Pg ia projec-
tive (see [13, Ch,II, §§ 3, 4).

16, Corollary. Let R and § ©be Morita equivalent rings
via T = Homyg (P,-). Then T induces a one-to-one cor-
respondence between the isomorphism classes of QF -3’ R -
modules and GQF - 3’ S =-modules,

Proof: Let oM’ be a QF -3’ S -module, Then it fol-
lows from the well-known properties (see [1], Ch,II, §§ 3, 4)
of equivalences of categories that N’ = T(gM), JN' &
% T(RA) end S/JT’C—;'ICTAM’,, , M, = N , gives

A2, TP T(T M) =T M, , N, = X ,

showing M isa QF-% R -module. Now it suffices to

use 15,

17. Corollary. Let R and S be Morita equivalent rings.
Then R is (QF-3°> iff S is so.
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