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Commentationes Mathematicae Unlversitatis Carolinae 

14,2 (1973) 

QF-3 'MODULES AND RINGS 

Ladislav BICAHf Praha 

Abstract: Some properties of pseudo-infective modules 
and selr-pseudo-infective rings were studied in [111, The 
last notion appears in#the literature (see e.g.t5J,C6J,[9], 
[10]) also as the QF-3 rings. Jans C61 has characterized 
these rings in terms of preradicals. In ĵhis paper the pseu-
do-injective modules will be called QF-3 modules and will be 
characterized ljy using preradicals. Further, the characteri
zation of QF-3 rings a a, endomorphism rings cf some modules is 
presented and the QF-3 modules over such rings are investiga
ted. Some results concerning Morita equivalence of QF-3 modu
les and rings appears as corollaries. 

Key wordsi Preradica^, idempotent jpreradical, torsion 
preradicalf radical, QF-3 module, QF-3 ring, flat module, 
endomorphism ring, Morita equivalence. 

AMSf Primary: 16 A36f18E40 Ref.Z. 2.723.2 
Secondary: 16 A50 

All the rings considered below will be associative with 

identity and all modules will be unitary. The category of 

left (right) R -modules is denoted by KJi (MR) and n it 

( _MR , R-^S respectively) means JUL is a left K -modu

le (right % -module, J.-S -bimodule respectively/. *u«u *w 

confusion can arise, by a word module we shall always mean an 

unitary left X -module. 

A preradical a> for Rit is any subfunctor of the iden

tity, i.e. cp assigns to each module Ji a submodule <t>(M) 
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in such a way that every homomorphism .M — * H indue as 

p(M) • <}>(JO by res tr ic t ion . A preradical f i s said 

to be idempotent i f f2 m f , torsion i f <p i s l e f t exact 

and i s called a radical i f q> C^/m(M) ) • 0 * I t i s well-

known that f i s torsion i f f X fi -M implies $(L)z* L n 

n <p (.At) (see e .g*r8] t Prop.U4). For a preradical <» , a 

module it i s called <p - tors ion i f q> (M) * M and q> -

torsion-free i f p (M) » 0 . I t i s known that an idempotent 

radical p i s torsion i f f the c lass of p -torsion-free mo

dules i s closed under taking infective envelopes (see e .g . 

t73t Pro.2.9) . The infective envelope of a module M wi l l be 

denot ed by M and Z ( M ) i s the singular aubmodule of 

M . For the homological notions and results we refer to C33# 

For M . H e R M* l e t us define pu (H)** C\ Jfe*, f . 

!• Le-P-na- For every module M e^JL , <pM i s a radi

cal (not necessarily idempotent). 

Proof: For 9 e Hom.n ( .N,X) , <fr e Rom,n (K9M.) and 

x € f M(U) we have x 9 9. » 0 , hence x gp € pM (X ) and 

pM i s a preradical. For x e N -i. pM (N) there ex is ts 

£ e H ^ R O f , l i ) with x f + 0 . Since pMCJf) Q 3 U t f , £ 
-- Hi — 

induces £ e Jiom>R ( l(bM(H)f& > l f l * h ( * + pn(J f>) f « 
Jf / -* x f 4. 0 and ^/a> ( | ( ) i s therefore >̂M - torsion-free. 

2» Definition. A module JJ eR J i i s said to be i l -

toraion-less i f j»g (JO « 0 • 

3# Definition. A module J4 e ^ M, i s said to be a 
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Q>F-3f module if M is Jl -torsion-leas* 

A ring R is a left flF-3* ring if RR is a OF-3'-

- module• 

For two preradicals f> 9 # we shall write f .6 6* if 

fCM) £ & CM ) for every Jl € R Jl - It is a well-known 

fact that any preradical f contains a unique largest idempo-

tent preradical which we denote by <p (see e.g.12],C8])• 

Generalizing the ideas of Jans C61 we obtain the following 

results* 

4* Propos i t ion , , The following conditions are equivalent 

for a module Ji € R X : 

(1) fM m fM ; 

(2) q*M i s idempotent; 

(3) the c lass of M - tors ion- less modules i s closed under 

extensions* 

Proof: ( 2 ) « ^ ( 3 ) . Let 0—-** X - 5 ^ I r ^ H—^Obea 

short exact sequence with JC,.M M - tors ion- le s s and l e t 

<p^ be idempotent,, Now CfM CL )) (h £ fM CH) m 0 yields 

fto CD £ Hmv oc and <pmCL) m f% CL) £ fM C3m.cc)m pwCX)-s 0 

gives L M - tors ion- l e s s . 

( 3 ) = > ( 2 ) . By Lemma 1 , /*j>M(jf) and *" I^CH) a r e 

M - t o r s i o n - l e s s , so that /m* CH) i s Ai - tors ion- less 

by hypothesis. But <pM ( /$>*(){)> * f* U\CH) b v f s 3» 

Lemma 1,2 which shows <pM i s idempotent. 

The equivalence of (1) and (2) i s obvious. 
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->• Proposition* Let .M e R H , The class of $>M -tor

sion modules is closed under submodules iff 3"w * >̂jj) 

Proof: Let the class of fM -torsion modules be closed 

under submodules. It is easy to see that pjj is a torsion 

radical and therefore fft & <pw owing to the definition of 

p M . Suppose f M (Jf) » M and 0 + f e Bom> RQf,M) - Then 

f induces a non-zero homomorphiam £* % Hf * M£mi -*• ML 

which contradicts to p M (M}) * Mf . Hence £TM and pjjj 

have the same classes of torsion modules and $>M * p# by 

C2]t Prop. 1. 

The converse follows immediately from the fact that pM 

and <p|t have the same classes of torsion modules and that 

ffi is a torsion radical. 

6* Theorem. The following conditions for a module it e 

CRJli are equivalent: 

(1) M is a ftp- y module; 

(2) fm * n i 
(3) ?M is torsion* 

Proofs ( D a o t U ) , Let * € f*<H) and f cHxwi^Or^) f 

x£ + 0 . Since ^ w ( M ) -r Q , there exists fy € .Mom* (ft, M ) 

with * f g, =# 0 contradicting to x € p M ( N ) - Hence 

(pM (Jf) S fjj (Jl) and f M * f g 1 *&• inverse inclusion 

being obvious* 

(2)*—fr(3) i« obvious. 

(3)=aaB^(l). We have 0 m fm ( M ) * M n fm (ft ) , so that 
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cpM CM) « 0 , J4 being essential in Ji , 

<*• Theorem. Let X be a ring and i t eR M, with 

ZCM.) = 0 . Then pM i s torsion i f f ^ M i s so . 

Proof* If p w i s tors ion, then pM m pft £ (pM £ pM 

by 6f and <pM sr £>M i s torsion. 

Conversely, l e t 0 +. X * <pM CM.) . For pM CX ) -

-=X = pMCX/ we have fM CM n X) - M. n X - §>M Ok n X ) 

by hypothesis and hence M n X « 0 contradicting to the 

essent ia l i ty of J4 in Ji . We can therefore take 0 4- f € 

c JtoroR CX , M ) and x e X with x £ 4> 0 . Since 

Z< i l> - 0 , ( 0 $ x f ) = ^ € 1 , /tiCf • O t ia not es

sential in X and ( 0 . x f ) n L -= 0 for same non-zero 

l e f t ideal L of X . Now L x n X + 0 since X i s e s -

sential in X , so that there ex is ts K e L such that 

K x 6 X and X. x f 4s 0 . 
.** 

Finally, f can be extended to an element of HAynv^ C J\l , J& ) , 
.** .* 

since X is a direct aummand of Jt , which contradicts to 

the definition of X . 

&* Corollary. (Vinsonhaler tlOl, Prop.2.) Let X be a 

ring with Z (&> « 0 . If the class of modules with zero 

duals is closed under submodules, then 31 is a fl.F-3* ring. 

9- Theorem. Let Ol be a & F - 3 ' module and T a 

module. If fa(T)m 0 then Q © T is a Q P - 3 f module. 

Conversely, if $>a CT) £ p T C$ ) and a © T ia a QP-3* 

module, then f^ (T) a* 0 . 
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Proof i The isomorphic J£ow,R (.M, ft © T) -S 

= .HxmvR (M , ft ) 0 3l<rnvR CM, T) shows that $>a®T * p$ n 

n pr . Henoe <p^T (&®f )**(<?&(&) <B p a ( T ) ) A ? T (S © f ) . 

By hypothesis f ^ C§) « $>ft ( f ) = 0 ( f^ i s torsion by 6) 

showing ft © T ia a O.P-3' module. 
A .A 

Conversely, the same equality gives 0 « p e ^ T (ft © T ) = 

~ f y < T ) n ( f T ( $ ) © $>T(f))=-paCT)n p TCf ).= p a(T) and 

hence jpgCT) m 0 . 
10» Corollary (Zuckerman [ill fTh.l). Let H be a (left) 

noetherian hereditary ring and A » ft © T a left R -mo

dule where ft is infective and T reduced. Then A is a 

ftp-3$-module iff fa(T) » 0 . 

Proof: There is cpTCT) » T over a left hereditary 

ring. 

11 • Theorem. Let M € R Jt be a module which is flat 

as a right module over its endomorphism ring S . If H eR JL 

is a ftP-3* module then the left S -module H<rm,R(M,JU 

is a GIF-3* module. 

Proof: Por an exact sequence 0—>Q A >§ B we ha

ve 0 *• M ® S A — ^ M < » S B exact by flatness of Ms • 

Hence the commutative diagram 

}l<yM,3(s%9}toin,R(&,N)) ——^.H^mi,sCsA,.H>m>RrM,j5)) 

Л 
Jíom.R(J.l®sB,Íř) » &rm.R (J\A«>SA,#)-
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in which the verticals are natural isomorphisms,shows oc* 

is an epimorphism and K&m^ (H. ,,.N ) is an infective 

S -module. 

•A 

Now for 0 4- oc- c .J&mf R (.M ., If ) we have *m-oo * x 4* 

4= 0 for some /ro> e .M . Since %H 1 B a Q F - 3 ' module9 

there exists £ c HOTIV^ (%>$), x f 4- 0 . Now «^f* * 

4: 0 since ^ -c f + - .x £ 4= 0 showing E o m R (M,Jf) 

*B Pwom C/H IV) -torsion-less. The £ -infective envelo

pe of Ho7n,n (M , N ) is therefore .HomR OM., N) -tor

sion-less as a submodule of K&m,* CM ; K ) and we are 

ready• 
12« Theorem. Let Rii be a bf-V module which is 

flat as a right module over its endomorphism ring & . Then 

S isa aP-3' ring. 

Conversely, every (IF- V ring can be obtained in such a 

way. 

Proof 1 The direct part follows from 11 immediately whi

le the converse is trivial. 

13• Corollary (Tachikawa [9]t Prop.1.1). Every quotient 

ring of a $?~1} ring X. la flF-3* , 

Proof: for Jl's Jl' s ft , it Q F - 3 ' we have JC' 

is QlF - 3' since <pM 2: $>M> 2r ^jp = (j>j) -= ̂  » How the 

corollary follows from 12 and the well-known fact that every 

quotient ring is the endomorphism ring of some H -module 

between % and H . 

14* Remarks It should be remarked that the condition 
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.Ms is flat cannot be dropped in general* For example9 the 

quasi-cyclic #, -group C (41**) is a 87-3* 2 -module 

(since it is infective) and its endomorphism ring is the ring 

of jp -adic integers which is not QF-3' . Of course, 

C (fy00) is torsion and hence not flat over the ring of jp, -

adic integers* 

15* Theorem. Let R and S he Morita equivalent rings 

via T « H<m,R<P,~) . If JH is a QF-3> left K -module 

then T C M ) ia a ftF- 3' left S -module. 

Proofi Follows immediately from 11 since Ps ia projec

tive (see £13, Ch.II, §§ 3, 4). 

16* Corollary* Let X and S he Morita equivalent rings 

via T -» Kom/fc (P,~ ) . Then T induces a one-to-one cor

respondence between the isomorphism classes of GLT - V X -

modules and flt F - 3* .£ -modules* 

Proofs Let 9JH> be a QF - V S -module. Then it fol

lows from the well-known properties (see [1], Ch.II. §§ 3, 4) 

of equivalences of categories that sJb* _» TfgJtO , SJT .» 

3£ TC^jt) and i ^ ' ^ ^ - M * , M'^ a? Jl' , gives 

^L m I0g T C&) c ^ p ®s T H T ^ *Jk*+ , •*« * -* , 

showing R M is a GIF-3' H -module. Now it suffices to 

use 15. 

17* Corollary* Let X and & be Morita equivalent rings* 

Than X is a?-3' iff 5 ia BO* 
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