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Commentationes Mathematicae Universitatis Carolinae 

14,3 (1973) 

SET FUNCTORS III - MONQMORPHISMS,EPIMORPHISMS,ISOMORPHISMS 

V. KOUBEK, J. REITERMAN, Praha 

Abstract: Given a functor F from the category of 
sets into itself, we state necessary and sufficient condi
tions on a mapping f in order that F£ be a monomorphism 
(epimorphism, isomorphism). Some corollaries concerning the 
behaviour of functors are given. 

Key words; set-functor, congruence, monomorphism, epi
morphism, isomorphism. 

AMS, Primary: 18B99 Ref. 2. 2.726. 

In the present paper, we consider functors (covariant 

or contravariant) from the category 5 of sets into it

self. 

Given a functor F , we state necessary and suffi

cient conditions on a mapping f ? X —> Y , X 4s 0 ., in 

order that P£ be a monomorphism (epimorphism, isomorph

ism). It is shown that they depend only on the congruence 

(on S ) created by P (in the sense £ ~ <%> iff 

Ff -* F^ ). 

Further, we compare congruences, created by functors, 

in connection with the morphisms which are mapped by the

se functors on monomorphisms, epimorphisms, isomorphisms. 

Conventions and definitions. Let X 1 Y be sets. 

- 441 -



Then X < Y means cojuL X < tansL Y f analogously for 

.X .£ Y . X oc Y means oaxxLX m avuLY. X* i s the fo l 

lower of the <xxtooL X * Every cardinal i s regarded as a 

set . 

Let t9<friX —* y be mappings* Put 

U f - fCMu^l- l ) ] where D=*-Cx€X-, fCx) *%(*)} , 

Ĉ  * U c S^C^) where C « <<y» e Y; f 'Oy , ) > 4 ? , 

Imf = i£(x) • .x 6 X J -

A congruence on a category is an equivalence *v on 

the class of its morphism such that if f ~ 9- then f and 

a- have a common domain and common range and 

provided the composition makes sense. 

If f-v ^ for every £ > <^ with a common domain 

and common range then *** is called the trivial congruen

ce. 

If ru is a congruence on a category K then X / A / 

is the factor-category of K with respect to <%/ • The ob

jects of K/^-' are the same as those of K . Morphisms 

are equivalence classes and the composition in K. /rv is 

defined by Ef3«Cg,3--- Ef»^] where I £ ] denotes the 

class containing f • 

The category of sets is denoted by S . The word func

tor denotes a functor (covariant or contravariant) from S 

to S . Let F be a functor, cc a cardinal, oc > 0 , De

note F00 the subfunctor of F defined by 
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F* .X -» F f C F y 3 for every .X , the union being 

taken over all Y < cc and all f ; Y > X (or 

f i .X *» Y ) in covariant (or contra variant, respective

ly) case* 

P~ denotes the contravariant power-functor: 

P~X« ecftX, V£(A)=:£-A(A)i for f;X-*y,Ae up Y . 

A functor is said to reflect monomorphisms if f is a 

monomorphism provided Ff is a monomorphism* Analogously 

for epi- and isomorphisms. 

Note; Let f : X —* y be a mapping, X -# 0 . If f 

is a monomorphism (an epimorphism) in £ then it is a co-

retraction (a retraction). Thus, every covariant functor 

(from S to S ) preserves monomorphisms and epimorphisms 

i.e. 

£ is a monomorphism ==> F £ is a monomorphim > 

f is an epimorphism ==> F f is an epimorphism. 

The contravariant case is analogous: every contravariant 

functor turns monomorphism (with non-empty domain) to epi

morphism and vice versa. Finally, every covariant faithful 

functor reflects monomorphisms and epimorphisms. If F is 

contravariant faithful and F f is a monomorphism (epi

morphism) then £ is an epimorphism (monomorphism), see 

[l]. These facts will be used later without any reference. 

Let F * £ —*• S be a functor. Put £ ~ <%, iff 

Pf a F j for every f, $, with a common domain and com

mon range. Then tv is a congruence on S , called the 

congruence created by F . In L33 we show that every con-
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gruence on -S is created by a functor and we give there 

the following description of all congruences on S . 

Theorem 1 C 3 J s Let <v be a non-trivial congruence 

on S # Then one of the following cases takes place. 

1) There exists a normal subgroup If , of a symmetric group 

So-, (of all permutations of a finite cardinal oc, ) such 

that, for every £,$•. X — > T , £ ̂v 9. iff one of the 

following holds: 

a) Vrr\, £ , l«rv$> < oc 

b) There exist Jk.* Y--> co, i : cc->y, A e K such that 

X * Jfo, «Jfe • f =-. 9* • 

2) There are cardinals ct^, oca,..., oc^ , /&.-.,/34,..., [3m, where 

(**< £n.* < " • < ft * <*w < ** < • • • < ^m. > 

<*-<!>fi<n~i i n f in i t e , fin, ei ther inf in i te or equal to A such 

tha t , for every £, 9- s X —*> Y , £ <v> % i f f one of the 

following holds: 

a) Irnvf , Ъm g, < ©c ń 

b) <x,j^ £ 1/m, £ & ltrn,fy< <x^A , VL ^< fi± for some <i 

c) xc^ £ Vm.£ St Im>$,9 U ^ < (3^ . 

The congruence described in 1) is called the fine con

gruence with the characteristics (oc,.K) . The congruence 

described in 2) is called the coarse congruence with the 

characteristics <Coo-f,..., vc^ ) , ( fl^ ,..., (l^ ) > . 

The preceding theorem will now be used for an investi-
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gation of a necessary and sufficient condition for 

£ ; x —** y in order that F£ be a monomorphism (epi-

morphism, isomorphism)* It turns out that these conditions 

depend only oh the congruence created by F . We may con

sider only functors creating fine and coarse congruences. 

In fact, if F creates the trivial congruence then it is, 

up to natural equivalence, constant on non-empty sets (and 

so F£ is an isomorphism for any f t X — > Y, X 4* 0 ) -

Ir^gmj^S. Let F be a covariant functor creating the 

coarse congruence with the characteristics 

<C«:i, .-.,«*m,),r/J^,..M fim,)> . Let £ ; JC >Y be a map

ping, X 2r oc^ . Let Of *z ($£, , where #- m ima# <b .As

sume that either fi^, > #0 or (Y- .Lnv £ ) 2: C^ , Then 

there exists a monomorphism 9, ? X — > Y such that 

F£ m F ^ . 

Proof: If ( y - Ira, f ) 2 C^ , then we can find a 

monomorphism <%>: X — > Y such that <%> Cx ) -» £ Cx ) for 

x £ X - C f . By Theorem 1, F£ » F .j' because 

11 4?^ c £ ( £p) u q,( C4?) < #£ - If l3^ >- -Ko , then the

re exists Z c X such that Z D C^ , Z ~ Cf ^ Z <z 

*z fl£. . Following the definition of Cf and taking 

to account that £ ( Z ) n £ ( X ~ Z ) - r # , €/% _ ^ is a 

monomorphism* Further f (Z) -̂  Z and so there is 

9.: X — > Y such that ^ / j _ 2 *=- */x- Z and ^/z ie 

a bisection onto f (Z ) . Obviously, <$, is a monomorph

ism; as VLfy c £ ( Z ) «<: (3̂ , } we have F£ =• F*^ by ©*©o-

rem 1. 
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£*;Let F be a covariant functor creatir*& «&fce 

coarse congruence with the characteristics ^CCct̂ -...., -^^) » 

C/5^ ,*. . $ /3 / t a )> . Let f: X —* y be a mappi*lgf 

y s . * ^ IA»j f . Let C Y- 1/m, £ ) < /3-j. , where -j, » 

=. orta^ -i • Assume that either /3i > -Kn or y * «*4 » » ° 
(y - Lm, £ ) u £(C f ) ^ Cf • Then there exists an ePi-# 

morphism 9, J X — * y such that Ff - F9- • 

Proof: If CY - Un,£) u €(Cf) * C ^ , then th«*e 

exists X^ D Cf such that f ( Cf - X^ ) « f (Cp) and 

X ^ r - W f . Choose 9-s X — * y such that fCx)** 

» $.(*) for every # e X - X4 and ^CXf)-* Y~ hn£ * 

Clearly, 9* ia an epimorphism and U ^ c Cy- ImiS) o 

u £ CX,) < !2 Cy - I*tv£> . Therefore Ff « F ^ . If jSj. -> ** , 

then there i s Z c Y such that CY- Imv£)c Z and 

Z-* Z ~ ( Y - l m . f ) - Z n _W>f < /3* . Then £~<(Z) ~* % 

and so we can choose 9. t X —*» Y such that 

fr/x-f-'CZ) ^ A - r W Z ) and fr'^ZM-Z • 

Obviously, ^ is an epimorphism; as U^, <* Z < /3^ ; we ha

ve Ff -* F9-* by Theorem 1. 

Theorem 3 s Let F be a functor creating the coarse 

congruence *v with the characteristics <Coc^,..-, cc^) , 

((l4,,H,p*)> • Let f: X — > y be a mapping, X + 0 . 

Then the following conditions are equivalent: 

a) Pf is a monomorphism if P is covariant, 

Pf is an epimorphism if P is contravariant. 

b) C£l is a monomorphism in S/'v • 

c) C £ 3 is a coretraction in S/~/ 
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d) Cf < p>z, as soon as X ar cc^ «. 

Proof: First we shall prove this theorem for a covari-

ant functor. 

a) ===»> b) is obvious. 

b) =s> d) Choose a bisection 9- ; X —-> X such that 

9. C €~4 (<& ) ] * f ~4 (n^ ) for every 4, e / and 9. f* > 4-

4= # provided x e Cf • We have f» 9̂  » £ and so 

C £ K 9 - 3 » C f 3 1 L 4 x J . If t f 3 i s a monomorphism, 

f ^ I = r £ ' f x J , i . e . 9 - ^ ^ x * Now> apply Theorem 1 to 

g< and ix • Using the fact that 

we get d) immediately. 

d) =*> c) If JC < oc^ then F$- * Ff 9 FCo^f >» F4x for 

any $-. 7—> X by Theorem 1. Thus C9J » r f 3 ^ L4X1 and 

so c) holds. 

Let X 2 cCj , Put ,fo » 4, - f where -t . Y—> Y v C$ is 

the canonical injection. Then Jfo fulfils the assumptions 

of Lemma 2 and therefore there exists a monomorphism 

£. j X —> 7 v Cf such that FJh, = Yfy . Choose JL : Yv Cf -*> 

— • X with K * <fr * \ x . Then FC/t^^FfssF^FC-L •£>-=. 

* VK • F^-P^f* - Thu* ln,*k,ll$3 « C 4 x J and so £•£! is 

a coretraction. 

c) T B > a) is evident. 

Now, let F be contra variant. Then P~ -» F is cova-

riant and it creates the same congruence as F (as P* is 

faithful); further, CY~* F ) £ is a monomorphism iff F£ 

is an epimorphism. This concludes the proof. 
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Theorem 3* : Let F be a functor creating the coar

se congruence /v with the characteristics <(tc^7...f oo^), 

(($11 ""> fim, ) y • Le,t £; 3C —* Y be a mapping, 

.X 4- 0 0 Then the following conditions are equivalent: 

a*) F£ is an epimorphism if F is covariant, 

Ff is a monomorphism if F is contravariant. 

b*) T£3 is an epimorphism in &/^ * 

c*) [£3 isa retraction in -$A^ * 

d*) (y - 3 W £ ) < (3.4, as soon as T ^ ©c^ # 

Proof: We may again assume that F is covariant (if 

F is contravariant then use P"o P as above). 

a*) ==-.> b*) is obvious. 

b*) -==:> d*) Choose ty0 a Jm,f and define 9-: Y—* T 

by 

Ô Ctf) « rx for # e 1rm,i. , t̂ Ĉ x) * ^ 0
 f o r ** 6 Y~ -fr*1-? • 

Thus, 9"»f » f and so C 9.3* C£J » £AyJ • f £3 - If 

££1 i s an epimorphism, then [9.J HyJ , i . e . 9 ,^ 4y . 

In case that y - /m, £ *> jf? we have U^ 4y *-• ( y - J<m £) u 
u ^IPo* ®3.se U^.^y « y«- Imv£ . Further I™, -Jyar 

* y and d*) follows almost immediately from Theorem 1. 

d*) .*=> c*) If Y <: vcA then F£*F^ » F(£*^) » F4 y 

for any g,: y—*•* JC by Theorem 1. Thus [£J»C^3 * tdyj 

and so c*) holds. Let /* S oc^ . Put Jfa = £ * ^ ? where 

>fv i s the projection from X x ( 7 - &m, £ ) + to J . If 

y - Xtn,£ a-* ^ then £ i s a retraction and so i s ££3 • 

If .f - Irrv £ =4= 0 then ..ft, fu l f i l s the assumptions 
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of Lemma 2* and therefore there exists an epimorphism 

ô  : X —> y such that Fg* » FA- . Choose £: y-* 

—> X with $* « i =* '/y . Then F£* FCjto&)**F(£*p,)'F£* 

- Fq> • F& =*T4y and so l£l • 1$, •$}** Liy} . Thus, 

L£ ] i s a retraction* 

c*) ====£ a*) i s evident* 

The following corollary is obtained almost immediate

ly from the preceding theorems* To prove it, just note that 

only two of all the combinations of the conditions in d) 

(Theorem 3) and d*) (Theorem 3*) can take place for a given 

mapping f i X —* J „ 

Corollary* Let F be a functor creating the coarse 

congruence />/ with the characteristics < C <*.* *'•« > ̂ v*,* > 

CI3..P-..,, fl^) > « Let -£ : X—>y be a mapping, X $ J5 . 

Then the following conditions are equivalent: 

a) Ff is an isomorphism* 

b) CfJ is an isomorphism in S/"v • 

c) Either X, y <: oc^ or X * y and Cf x Cf -

- W f ><:/3.i ss soon as I 2 0C4, * 

Theorem 4: Let F be a functor creating the fine con

gruence 'v with the characteristics ( #, , K ) . Let £ 5 

• X — > y be a mapping, X IF 0 • Then the following 

conditions are equivalent: 

a) Ff is a monomorphism if F is covariant, Ff 

is an epimorphism if F is contravariant• 

b) Cf 3 is a monomorphism in S / r v „ 

c) Cf 3 is a coretraction in S/>^ • 

449 



d) Either X < cc or f is a monomorphism. 

Proof: We may consider the covariant case only (see 

the proof of Theorem 3). 

a) =s-> b) is obvious. 

b) ==-> d) Assume that X 2r cc* and that £ ia not a mo

nomorphism. Then there are x0 > ty-o c % s u c n *-*** £C^)--

m |C%-0). Define ( j - . I ^ X by ^Cx0)--- fC^,) • ^ 0 , 

o^te) ss sc otherwise. Then cc ^ Imv 4X + Jm.^ and 80 

0/ 7^ x̂ * • • • ^9-3 + C-1x J . On the other hand* £ • 0/ » f -, 

hence t£3 £9,] -= C£] [4X3 and Cf 1 i s not a monomorph

ism. 

d) «==-> c) If X -c cc then P C ^ o f ) »F4X for any 

g.: y-~* x . Thus L9.3 Cfl • T4X3 and so c) holds. If 

£ i s a monomorphism then i t i s a coretraction and so i s 

m . 
c) ==> a) i s evident. 

Theorem 4* : Let P be a functor creating the fine 

congruence ^ with the characteristics Cot,JO . Let 

£ j X —>• Y be a mapping, X -f 0 . Then the following 

conditions are equivalent: 

a*) Pf ia an epimorphism if F is co variant, P£ 

is a monomorphism if P is contra variant. 

b*) t£l is an epimorphism in S / r v . 

c*) C £ 3 is a retraction in S/Vv . 

d*) Either Y -c co or f is an epimorphism. 

Proof: Again, we may consider P co variant (see the 

proof of Theorem 3*). 
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a** **» b~> is clear. 

b*) as) d*) Assume that Y & 00 and that f is not an 

epimorphism. Then there is q, : Y—> y such that 

lnv 9- » Lm-f and g- • f » f . Thus C9.3 Cf 3 » 

»C>fy3 Cf I but C9J 4* C4K3 by Theorem 1. Hence Cf ] 

is not an epimorphism* 

d*) mm} c*) If y *z oc then F tTf • 9.) -. F̂ . for any 

^ . y — ^ J by Theorem 1. Thua C^l Cf 1 « C 4y ] and 

so c*) holds* If f is an epimorphism, then it is a re

traction and so is £ f 3 . 

c*) ==-«> a*) is evident* 

Corollary* Let F be a functor creating the fine con

gruence rv with the characteristics ( cc ., if) . Let 

£ . j[ — y y be a mapping, X -# # - Then the following 

conditions are equivalent: 

a) Ff ia an isomorphism* 

b) Cfl is an isomorphism in S / r v . 

c) Either X f Y •< co or f is an isomorphism* 

Theorem 5: Let F be a functor, f; X — * Y a map

ping, I + jJ , Then the following conditions are equiva

lent: 

a) Ff ia a monomorphiam if F is covariant, 

Ff ia an epimorphism if F is contra variant. 

b) Either Ff m Fo^ for some monomorphism 9.; X-> 

—v- y or Ff is an isomorphism* 

c) F U • £ ) -» F ^ for some monomorphisms k,,cy . 

Proof: We may assume that F is covariant and that it 
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creates a nontrivial congruence. It suffices to prove 

a) =-> b) and a) ====-> c). Thus let F £ be a monomorph-

iam. 

1) Let F create the coarse congruence with the charac

teristics <(<x^,...7 oo^,) , (fii 7 ... , fin, )> . Let 

X < COM J if y ^ X then T£ * F<^ for any monomorph-

ism q, ; X — > y ; if y < X then, by Corollary to Theo

rem 3, F£ is an isomorphism and T(-l • £) =.• fty for 

any monomorphisms -i ; Y—> oc*i , <^: X — > cc^ (see 

Theorem 1). Let X 3r oĉ  . We can suppose Y- \«n>$. <• C^ 

(or else we use Lemma 2). But then Y- I<m,£«c fi£ where 

•$, -= <ma^ *v and F£ is an epimorphism by Theorem 3*. 

Thus| F£ is an isomorphism. Further, for any monomorph-

ism ~i : y — * Z «£ o £ fulfils the assumptions of 

Lemma 2 provided Z is sufficiently large and so c) holds* 

2) Let F create the fine congruence with the characteris

tics ( cc , .N ) < If X < o c we proceed as above in case 

X < 0C4 • If X 2: oc then £ is a monomorphism by 

Theorem 4 and b), c) are obvious. 

Theorem 5*: Let F be a functor, £ s X —•• Y a map

ping, X *# 0 . Then the following conditions are equiva

lent: 

a*) Ff is an epimorphism if F is covariant,F£ 

is a monomorphism if F is contravariant. 

b*) Either ?£ ** ¥fy for some epimorphism 9-: X-> 

—> y or F£ is an isomorphism. 

c*) P ( £ » p m Yq, for some epimorphisms £ , fy . 
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Proof is quite analogous to that of Theorem 5» 

Let ^ , <*** be the congruences on S> 9 ^ is finer 

than *& if always £ ~ cy «•> £ *fc* <̂ . « Clearly, every 

congruence is finer than the trivial one? further, every 

fine congruence is finer than every coarse one. The fine 

congruence with the characteristics (co , M ) is finer 

than the fine one with the characteristics (&',$') iff 

either oo < oc* or n « cc' and K c .N' . Finally, if *\/, 

<v are coarse congruences with the characteristics 

<(«,<,,..., ̂ ) , ^ , M . , ^ ) > , < ^ , , ^ ^ , ^ , ^ ) > then 

^ is finer than ^ iff ex] z. oĉ  and, for every £ , 

A\ > /3' where ^ -=• /ntoAj. Jk> . 

Using Theorems 3, 3*, 4, 4* and their corollaries we 

get immediately the following 

Theorem 6: Let P, (x be functors of the same vari

ance. Then the following conditions are equivalent: 

1) For every f i X — > T , X # 0 , if Pf is a 

monomorphism then so is (?£ • 

2) For every £ : X — * 7 , X -# J0f , if Pf is an 

epimorphism then so is Qf . 

3) For every f s X — * Y , X * 0 t if F£ is an 

isomorphism then so is S£ . 

4) Either the congruence created by P is finer than 

that one created by S or P and G create fine con

gruences with the characteristics Coc,)f ) and (*c , J*') 

respectively for some oc , N , Hf . 

Corollary. Let F , 5 be functors of the same vari-
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ance. Then the following conditions are equivalent: 

1) For every I ; .X — • Y} X 4- 0 } Tf is a mono-

morphism iff g£ is. 

2) For every £ t X —*> Y, X + 0 , Pf is an epi-

morphism iff (?£ ia. 

3) For every f i X — * y , I * 0 , F£ ia an iso-

morphism iff Gff is. 

4) Either F and <? create the same congruence or 

P and G create fine congruences with the characteris

tics (oc,W), (oc,Hf) respectively, for some ec , K , 

If' . 
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