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NONLINEAR OPERATOR EQUATIONS AND BOUNDARY-VALUE PROBLEMS

Walter PETRY, Dusseldorf

Abstract: Let W and ¥V be real Banach spaces with

duals W* and V* , respectively. Suppose that Wc V and
let I, be the 1n,1ect10n mapping of W into V.Let T be a

mapping from D, cV into W* and £eV* . Under suitable
conditions on T the existence of at leust one solution

Mo € DT of Tw = Iﬂ*f

is proved using regularization methods, where I: is the
dual mapping of I, . An application to nonlinear elliptiec
boundary-value problems is given.
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-« Let W and V be two real Banach apaces with
duals W* and V* , respectively, and let W c V . Recently,
the author [6] has studied mappings T with domain of de-
finition D, in V and range in V* ., Under suitable
conditions on T there exists at least one solution w, &
e Dy to Tw=£ with £ e V* , The proof is based on
regularization methods. This general existence thebr_em was

applied to nonlinear elliptic boundary-value problems of
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¢ . 2, See also Hess [4]1, where a related theorem is gi-
ven. using other regularisation methods. It is an open ques-
tion, whether the general existencg theorem in [6] can also
be applied to differential equations of order greater than
2.

In this paper, we will suppose that T is a mapping
with domain of definition Dy in V and range in W*
and we will prove the existence of & solution u, s D-,- to
Tu = I;“f , where I*  is the dual mapping of the in-
Jjection mapping I,, of W into V (Theorem 1). This
theorem is applied to a class of nonlinear elliptic bounda-
ry value problems of order 2m (Theorem 2). Bui An Ton
[3] also studied operator equations of the form Tw = I,’," £,
but he assumes that T is & mapping of Dy =V inte W* .
It should be remarked, that the result of [61 is valid - in
tine case of equations of order 2 - also for more general
classes of differential equations, but for the class of
differential equations studied in this paper, our present

result is (for m =1 ) leas restrictive than the result of
fe6l.

2. Let V and W be two real reflexive separable
Banach spaces with Wc V , where the natural injection
mapping I, of W into V shall be continuous.

Let Y* and W* be the duals of V and W , respec-
tively. The pairing between V and V* shall be denoted
by ((.,.)) and that of W and W* by (-,:) .

By —> &and —~ we will denote the strong and weak
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convergence, respectively.

By a theorem of Browder-Bui An Ton [2], there exists a
separable Hilbert space H (the inmer product shall be de-
noted by <., -> ) and a compact linear mepping I, of H
into W  such that I,(H) is dense in W (see also [6]).

The dual mappings of I, and I, shall be denoted by
I and I} , respectively.

To prove an existence theorem for operator equations

with mappings from D ¢V inte W* we will use regulariza-

tion methods. Therefore we introduce

Asgumption 1: (a) For each € €10,4] , let Alg,.):
Y —> V¥ be bounded (i.e. maps bounded sets into boun-
ded sets) and demi-continuous (i.e. continuous from the
strong to the weak topology).

(b) Let there exist a mapping A:V—> W* such
that any sequences {aw,3cW and f¢,%cJ0,4] satis-

fying e, — 0 and I aw, —= «, in YV  imply
I;“A(em ,I,‘mr,,&) ——\A.(Ai-o) in W*
(c) Suppose that for all € €10,1] and all weW
(CACe, L), L)) = 99(1!14wilv)- NI, lly
where < : R1—+ ! with (i) @ (x) continuous;

(ii) oK)—> 0 8 X —> © .

Assumption 2: (a) For each e 10, 1] let B(g,-):
V—> V¥ be bounded and demicontinuous. Furthermore
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suppose that for all ee 10, 1] and all aw e W

(B, L), awN =0 .

(b) Let there exist a mapping B:D(B)c V—W* ,
icee D(B)=AueV:B(u) eW*3 , such that any se-
quences 1€,3c10,11 and 4w, 3c W satisfying En—> 0,
Liwp—= s, in V and 0< ((Blgy,, Iqwy), Liw,)) & €

with some € >0 imply w, € D(B), i.e. B(u,) e W* , and

* : x
I¥B(g,,Tan) —~ Bx,) in ¥*
In this section we will consider the existence of a so-

lution u, € D(B) teo

(2.1) Alw) + Bluw) = IFf

with feV*.

We formulate our main theorem:

Theorem 1: Suppose that Assumption 1,2 holds. Let fe
€ V* . Then there exists at least one solution «, € D(3)
satisfying (2.1). ‘

Proof: The proof follows by several steps.

(a) For ee]d,'ﬂ and x € H we sget

TCe,x)i = - (IF, TXe-IF T* ACe, I, 1,x) - I3 1¥B(e, 1, 1,50).

By Assumption 1 (a), 2 (a) and the above remarks, it fol-
lows that for each ¢ € 10,4] , the mapping T(e,.) is
compact and continuous from H .to H . Furthermore it fol-

lows by Assumptioms 1 (c), 2 (a)
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: 1
{x-Tlg,x),x>= llxllﬁ-—g- CIFIFE, x>+

1 .
+ I IfAG, L L)), x )+ (IFIFB (e, I Lx),x 0}

1 1 .
== 58, L Lad+ = (A Ce, L Lx ), I Tx)+
+ B, L, Ty, L) 2 i = L hel , 1T, Lxl, +

+ 2 QUL Tl NL Tyl 2 Il (Ul +

v —"hl"%xi"":—v (UL, Tyx )= I£l,,0) = 0
for all *eSp:{xeH: lxly=Rg¥ , where R is
a suitable positive constant. Indeed, this follows by the
assumption on ¢ and the inequality Il Ixl, < ¢ Ixly,
with some constant 4 > 0 . Hence by a theorem of Krasno-

selskii there exists for each € € 30,411 2 fixed point

X, € H of T(g,+), i.e.

(2.2) eex =€ T(e,x )= I e-Tf T¥A(e, I, [ %, )- Ty BCe, L L% ) -

Therefore by Assumption 1 (c¢), 2 (b)
O=<exe+I;_"I:‘A($,I1Ist)+ IX¥IFBCe,T, Ix,)-
- IEIXE x> =elx 13+ ((ACe, T Tx.), T, Tx ) +
(e300 (B, T, 1,50, L, x0T, Ty o, D2 € NI+
+@UT Ixgl)= gk, 1T Tx b,

Hence there exist positive constants ‘€1 , ‘6’2 such that
(2.4) Velx I, ¢, IT,Ix0 <€,

for all € € 10,4
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(b) By virtue of (2.4) there exists a sequence
16,3c10,41 such that e,—>0,8,: %, — 0 in H and
I,I,xg —= a4, in V. From (2.3) we obtain by Assumption

wn
1 (c), 2 (a)
2

0« ((BCg, I, szam) » L, szem)) == g, Ix, Iy

- ((ACe,, I, Ia"‘em) I, Ia‘xe,,,» + ((£,1, Iz‘xs,,,,))
é_so(ﬂl4 szemllv)lll:‘ Ia‘xs,,,"v + llfllv* I, szi,,,uv e €
with some constant ¥ by (2.4) and the assumption on ¢ .
Hence by Assumption 1 (b), 2 (b) and 'wf'r»::Ia"‘e,us v,
we obtain u, eD(B) and

T ACe,, 1 Ixg )= Alw,), I BCe,, I, I, ) —> Blu,)

in W* as m—>o00 . From (2.2) it follows for cach x € X
*
<smxsm,.x>+611A(sm,I4I2xE“), Lx) +

+ (I,,*B(sm 1, IQ"‘:,B’IQ“) = (I,‘*:E‘,sz> .

Therefore a8 m — <o
*
(A ), I;x) + (Blay),I,x) = (17F, I x)
from which we get
Alu,) +B(ar,) = I:f ,

since I, (H) is dense in W , proving Theorem 1.

Remgrk: Theorem 1 in this section is related to wneo-
rem 1 in [6] but none of them implies the other (see the

following application).
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3. In this section we will apply Theorem 1 to nonlinear
elliptic differential equations. We use the notations of
Browder in [1). Suppose that 2 <« R™ is a bounded open
domain with sufficiently smooth boundary &L  such that
the Imbedding Theorems of Sobolev are applicable (see e.g.
[11).

It is our purpose to study differential equations of the

form

let]_ e o
mémc-m DAL (X, §pp g () (X D7 (X))

# S EDIDTB (%, 6, () () = £0x)

let|£m-1

for x € L with Dirichlet boundary conditions. Precisely,

we set [f,gl:= j;f(x)gf(\x)d\x , Uiz Vofmla_(.(l) and
W.-=Wm*)2(_o_) AnY with m* >m+m /2 , where we in-

troduce in W  the norm of W ) . In addition, we

m*, 2
set

(3.1) D(B):=fueV:| 2 [B (§ (), Twll<

sl s m-4
= ‘fw lar "W
for all are W with some constant <€, ¥ .
Furthermore let £ be an element of V* . Then we ask for an

element u, € D(B) satisfying

(3.2) | 3 LA (e, §moq ) D%, , D% 1

lg|l=m

w2 IB (S, (), Dr] = [£,ar]

for all weVW ,
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Assumption 3: (a) Each Ay (X, §_,) (with lel=

= m ) is measurable in x for fixed §,,_, in R
and continuous in §,,_4 on R*™' for almost all x in
L . Let & be the greatest integer less than m -m .2
and let §,  denote the vector §p:={f.:lecl&c b} from the
vector space TB.'%' . There exist continuous functions ¢,
and ¢, from R™  to L2(Q) eand B , respectively, and
a constant ¢, > 0 , such that the following inequalities

hold:

2
¢, £ A (X, §mg)& cocffb)(xhc,‘fgb)'hélémdl €l
IS
for allxefl and §, 4 € R ™ with
1 .4 1
— > -1 -1p1) .
i, >3 ™ (m~Ip1)

(b) Bach B, (X, §m-4) (with lec| £ m-1 ) is a conti-

nuous function from < B ™' to B!  such that for all
cel0,11, all §, 4 in ™' end almost all x in
hoR

B (X, §m_q) §oe >0 .

lcl'ém-4 44 ¢ B, (x, §m_4)l

Suppose that there exists a constant ¢, = 0 and a function

FeOxhE™ "5 Rbm’q —> R’  such that for all g el0,4],

b - 3
all §,.,, §mq in K™ and almest allx in 0

B (X, ) bl | ’
—P(\X - ')
\left!,-m-q 1+¢|B “‘,? -4”] 7?.‘:».4 ’ ?m 1

B (X3 Gam1? §oc
* € iZma A+e 1B, (%, §n g |
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In addition, suppose that for all are W , the mapping
FlEmea () Smay Cur)) , defined by

FCfamoyg (WY, Somog (09 ()1 = F O, oy g (I XD, g () (5D

. . 1
is bounded and continuous from W, 452 ta L

Theorem 2: Let Assumption 3 be satisfied. Then there

exists at least one solution x4, € D(B) of (3.2).

Proof: (a) We remark that by the Imbedding Theorems of
Sobolev it follows

m
Wm*,9. (o) e (eI, Wm*,z (L) e W, , (0

with continuous injection. Hence W and V are two real
reflexive separable Banach spaces with W< V , where the in-
jection mapping of W into V is continuous.

(b) We now define for € €30,4] and u,r eV

Y. Ay (- Smoq (D

(e Y=
ale, s, v 4+5A°€(.’gm_1 Cad)

oL <
Dw,D%] ,
Igi=m

[ B (s g ()

ol
’&(E,%’”):zledézm-d 4"'9’3“(',%,,‘_4(“)” 33’”’] ’

For #4.€V 2and weW let
o oc
a(u,w):=lx§mEA°‘(~,%m_,,(u,)).'DM,ZDfw']
and for 4 €eD(B) and we W we set

o«
)= S LB G ), Dar 1

It follows by Assumption 3 and a well-known theorem (sce e.g»

[11): For each ¢ €10,4] there exist bounded continuous
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mappings A (e, ):V—> V* and B(g,:):V—>V* sguch
that for all w, eV

(Ale, ), w)) = ale,u,r), (B (e, w), v)) =

= 2)’(5,4&,0‘) .

By (3.1) it follows the existence of a mapping B: D(B)—> W*

such that for all w € D(B) and we ¥ e have
(BCwd),w) = & (u ) .
By the Imbeading Theorem of Sobolev W, (R)c W;(Sl,tﬁ )

for &< |flem-4 and W, ,(2) c ¥ () for Ipl £ &
with continuous and compact injection mapping, Hence any weak-
1y convergent sequence in ’V‘\le2 (1) 1is strongly convergent in

Wo, (B) for S<iplem-4 ana an C'P1(A)  tor IBIZ£ &,
B
respectively, Since Wc c™ea) , We obtain by Assumption 3(a)
for weV eand are W using the inequality of Schwarz
= =
|2 TA G, Em, (DD, D 2wl

Il=m
£ S A%y 1A, Gy Em (w2l 4

ltl=m

< =2 1% lgo Mg Coy Gy D » 12%l 4
- 4
<« € Uauly) = 1D, <€ Uul) e,

i.e. there exists a mapping A:V —> W*  guch that for all
weV andall weW
(Aw,w) = a (u,wr) .
(c) We now apply Theorem 1, We first prove Assumption
1 (). Let {faw,3cW and $e,%c]0,4] withg,— 0 and

M= 1 ary —= 4, in V | Then by the remark under (b)
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+

£DPu,? converges strongly to DPw, in L?cn) for
<|flem~1 and in C°(IL) for IPl&£ A&, regpecti-
vely. Let wr ¢ W +then we obtain by W e ¢™ (JL) and As-

sumption 3

LA Ce, sy )y ) = CACuy),w) | = HIXA (e, ap)-AlR), )}

_ ‘ Ay g ()
leclzem " v g, A Coy §pn g (atp))

<
£, + %

Dt = A (o G g Ui Wt Yar])

with

i =, B LA G 6, (o), Dy =D, 31

. 7 Ao (s §mogq (b)) ~A ¢ LY
% =lu§ml[(4 + €y A G, Emug () Aels Emet (“°») Yo, et

It follows by virtue of A_(:, §p_, (uo)):Darure L2 and
]J“M“_\ D%, in L2(Q) for l<i=m that 7, ,~—>

—» (0 as m —» oo .

By the inequality of Schwarz and awr € C™ (L) it follows

A (G, ¢ (a2, ))
o L ? Sm-1 n
< (|
dz"“‘limup“” L2 I( 1+ € A (> Fameq (4m))

— A L8, ) D],

Ag Gy Eoman ()
- . b))
1+ €, A (e ?m-ﬂ () A“'( ’ ?,,.,.4 o A'z

£ Cluyly, larly IEM(IA‘(" Gt (W) = A Gy Eomg (g 2

1
rupe |4 = JA G E e Ia)
M ebgcn l 1*5:»-‘“‘«(“: Em -1 Cap ) (X)) l o« :gm-1"‘m lLﬁ

o
£ = 1Tu,l, 10wl |

with some € > 0 . By Agsumption 3 (a) and the above remark
the right hand side of the inequality converges to gzero as
m —> oo ,Hence it faollows I;"A (€, ,40) — A(u,) in w¥,
proving Assumption 1 (b).
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(d) Let ¢ € 10,41 and w s W , then we obtain by

Assumption 3 (g)

Ag Gy §moy Cr)
(Al Tar), L= 3 [4+aA 0 "’;;4 oy Y, D]

Zuém[ 1+ec, D D WJ = sc jetlzem

2
UD%r 1%, = e, 1, w1

with some ¢, > (0, since for # &V the usual norm ll.wlly
of V¥ and (MZ )l.'D e ll,_g )" are equivalent norms

(see [51). Hence Assumption 1 (c) is satisfied.

(e) The second part of Assumption 2 (a) is a direct con-
soquence of Assumption 3 (b), while Asgumption 2 (b) is pro-
ved in [6] by using Assumption 3 (b).

Hence Theorem 2 follows by Theorem 1.

Bemark: (a) Conditions on By (X, §m.,) which are mo-
re¢ useful in applications and which imply Assumption 3 (b)

are given in [6] Proposition 3 and Remark 3.

(b) The differential equations studied in this paper
are of more special form than those studied in [6], but the
order of the differential equation can be of order 2m with
m integer , while in [6] the differential equation is of
second order i,e., m=4 and it is an open question whether
the order 2m can also be studied. In addition, considering
the special class of differential equationg studied in this
paper, the present Theorem 2 (for the case m=1 )is more ge-

neral than the corresponding theorem in [61.
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