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COMMENTATIONES MATHBMATICAE UNIVERSITATIS CAROLINAE 

1553 (1974) 

QUASICOMHJSMEOTEB LATTICES 

William H. CORNISH, Bedford Park 

Abstract: * Let L be a 0 -distributive lattice. Then L 
is qua si complemented if and only if each minimal prime ideal 
in the lattice JCL) of ideals in L contrasts to a mini
mal prime ideal in I . A necessary and sufficient condition 
is also given for the contraction map to be a bisection of the 
set of minimal prime ideals of Q(h) onto the set of minimal 
prime ideals of L • Amongst distributive lattices, a new cha
racterization of quasicomplemented lattices is presented in 
terms of "lifting** dense elements modulo the smallest cong
ruence having a minimal prime ideal as its kernel. 

Key words* 0-distributive, quasicomplemented, minimal 
ime ideal, lattice of ideals, compact space, extremally dia 
""--Krted space. 

AMS: 06A25, 06A35 Ref. &, 2.724.3 

!• 0 -distributivitv. According to Varlet 19], a lat

tice L with least element 0 is called 0 -distributive 

if it satisfies the condition: a, A J&r & 0 and a, A c =* 0 

imply a, A (Mr \/c) = 0 , for any o*,^, c in L „ This con

cept is both a generalization of pseudocomplementation and 

distributivity. It is equivalent to the condition that 3* =-

-= *CxeL:ocAJ.=: 0 for each $. € D } is a lattice-ideal 

for each ideal or non-empty subset J of L and hence, as 

was noted by Varlet C9, Theorem 1J , to the condition that the 

lattice J C L ) of ideals in L is pseudo complemented. 

By a minimal prime ideal of a lattice or semigroup with 0 
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we mean a prime ideal (necessari ly a proper subset) which 

i s minimal amongst the prime ideals ordered by se t - inc lu 

sion. For further de t a i l s on minimal prime ideals we refer 

to [51 and [ 4 ] . The following theorem shows tha t there are 

sufficiently many minimal prime ideals in a 0 - d i s t r i b u 

t ive l a t t i c e . I t i s a consequence of Keimel s general theo

ry of minimal prime idea ls , see [4, Theorem C, Corol lary] . 

Most of i t i s given in [2 , Proposition 7.26, p.923. However, 

we give an al ternat ive proof based on K i s t ' s work t5l9 des

cribing prime ideals in a commutative semigroup. 

!•--•• Proposition. For a l a t t i c e L with 0 > the fo l 

lowing conditions are equivalents 

(a) L i s 0 -d i s t r ibu t ive . 

(b) The minimal prime ideals of the semigroup (L ; A, 0) 

are minimal prime ideals of the l a t t i c e L . 

(c) For each a e l with a =$* 0 , there i s a minimal 

prime ideal P such that -a/ 4> P * 

(d) The zero ideal of the l a t t i c e L i s an in te r sec 

t ion of prime idea ls . 

Proof. (a)=s.> (b) . By [ 5 , Corollary 1.4 and Lemma 3.13 

the semigroup ( L ; A , 0 ) possesses minimal prime ideals 

and a prime ideal P i s a minimal prime ideal i f and only 

if, for each ou e P , there exis ts Str $ P such tha t 

<V A ir a 0 , Thus, if P i s a minimal prime in (LjA, 0) 

and cu^ ̂  o^ e P then a ^ A j ^ «• 0 m o>2 A Jb^ for some Sr^ » 

h>% +L P . As P i s prime Jtr^K Jtr%^Y and yet 

(a^ Vo^) A (JrA A >^)« 0 c P , by 0 - d i s t r i b u t i v i t y . I t 
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follows that a^ V a 2 e P and so P is a l a t t i c e ideal* 

(b) -=> (c) holds in the l a t t i c e ( L ; VfA}0) since 

(b) =-==> (c) holds in the semigroup (LjA^OJ by [ 5 , Lemma 

1.2J. 

(c) ===> (d) i s t r i v i a l , while (d) ===> (a) holds since 

a / A ^ = - Os-ra-Ac and i 0 \ -=• n ?j^ , for sui table prime ide

a l s P4, , imply a .A (Xr Vc) « 0 . 

Otherwise, a, A (fr V c) $• ?£. for some £ and s o c i i F ^ , 

whence Jb", e e P ; as a A J K r = r O a a A c and P i i s 

prime- But then Sr V c e P.J yie lds an impossibili ty* 

Since any prime ideal of the l a t t i c e (L* y,A, 0) i s a 

prime ideal of the semigroup (L* A, 0) , Theorem 1.1 shows 

that a l a t t i c e L with 0 i s 0 -d i s t r i bu t ive i f and only 

i f the minimal prime ideals of ( L ; V, A , 0 ) are precisely 

the minimal prime ideals of ( L j A , 0 ) * 

Following Varlet [9J> a l a t t i c e L with 0 i s called 

q ua s i complement ed if , for each x B L $ there i s an element 

x' e L such that x Ax' ss 0 and x V x* i s dense. Of 

course, an element d e L i s dense i f -Ca e L : GO A<±«- 0}» <0l . 

In general the element x' i s highly non-unique• Besides 

being 0 -d i s t r i bu t ive , a pseudocomplemented l a t t i c e L i s . 

qua s i complemented - we may simply choose * \ to be .x* , the 

pseudo complement of .x . 

For an element x in a l a t t i c e L with 0 , l e t (*]-=• 

« { a e L : a - s ^ 1 denote the principal ideal generated by x • 

Then, as was established by Varlet T9, Theorem 103, a 0 -

d i s t r ibu t ive l a t t i c e L i s qua s i complemented i f and only 
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if, for each x € L ? there exiats x' c L such that 

Cx3**=* <*'3* . 

Let Jiwv(L) denote the set of all minimal prime ide

als of a 0 -distributive lattice L . We may turn Mm, C D 

into a Hausdorff topological space by endowing it with the 

so-called hull-kernel topology which ha© the sets of the 

form iPe Mm, (L ): x ^ P 1 (x e L ) as a base for 

the open sets. For details on this topology see [53, £43, 

[63 and [83. Applying Theorem 1.1 and the main theorem of 

[8], we immediately obtain 

1.2. Proposition. A 0-distributive lattice L is 

quasi complemented if and only if Mlm,(h) is a compact 

Hausdorff space* 

Of course» 1.2 is also a consequence of [4, Proposition 

5*10, Corollary3» Proposition 1.2, together with the next 

result, constitute our tools for proving the main results 

of this paper. 

1.3» Proposition. Let L be a quasi complemented 0 -

distributive lattice. Then Mlm C D is extremally discon

nected if and only if for each ideal D in L , there ex

ists ^ e L such that 3+ & (yl* , 

Recall that a topological space is extremally discon** 

ted if and only if the closure of each open set is open, 

position 1.3 can be obtained by adapting ll, Theorem 4-43 

rom ring-notation to lattice-notation. There are no hidden 
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difficulties . Alternatively, it is easily proved that, 

for a qua si complemented 0-distributive lattice L , the 

space of minimal prime ideals is the Stone representation 

space for the Boolean algebra of all ideals of the form 

(vX J** (/el) • That we have a Boolean algebra can be 

seen from either L9, Main Theorem, p.1563 or 17, Theorem 13« 

The assertion then follows from the well-known fact that a 

Boolean algebra is complete if and only if its representa

tion space is extremally disconnected and the observation 

that the Boolean algebra of ideals Cx3** is complete if 

and only if the condition of 1.3 obtains. This last obser

vation follows from 17, Theorem 2, Corollary]. 

1.4. Lemma. For any 0-distributive lattice L , 

MUm, (3(L)) is a compact Hausdorff extremally discon-

eeted space. 

Proof. Since L is 0 -distributive, JCL) is 

pseudocomplemented amfl so Jitm,C3CL)> is compact and Haus

dorff because of 1.2. For a non-empty subset of 3 of 

3 ( L ) , 43 € 3 C D : 3 r » X » C 0 3 for each X € 31 ~ 

» 4 3 e 3 C L) t 3 *r - 0 , where T-. V fX : X e 3 31 and 

so the rest follows from 1.3. 

2. lain Theorems. For a 0 -distributive lattice L* 

and a prime ideal P in 3 C L ) . , c (P) denotes the set-

theoretical union of all ideals (of L ) which are in P ,. 

while for a prime ideal $» in L,*fiCS) denotes the set 
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4 J € 0 CL): J c & ? .• If we identify the members of L with 

the corresponding principal ideals which they generate and 

thereby identify L with a eablattice of 3CL) then cCP)» 

C L A P for each prime ideal P in 3 C D - fhat is, cC?) is 

then nothing more than the contraction of P to the sablatti-

ce L of J C D , fhas, in the statements of the main theorems 

we shall speak of contractions of minimal prime ideals in 

D(L) to L thooght for the sake of clarity, it will be con

venient to ase oar initial description of cCP) CPeJit^CJCL))) 

in the proofs* 

Por a prime ideal P in 3 CD and a prime ideal 0, inL, 

it. is easy to see that cCP) and qi(&) are prime ideals in L 

and OCL) ̂  respectively• fhis was observed by Katriiiak 133 in 

the case of distribative lattices. In fact the main theorems 

were inspired by [3, Lemma 12 and f he or em 51* fhey not only 

explain [3, Lemma 12] bat also clarify fheorem 5 of £33* where

in Katrin&k gives a necessary and sufficient condition, invol

ving contractions of minimal prime ideals, for the lattice of 

ideals of a distribative lattice with 0 and A to be a Stone 

lattice* 

2»3.. fheorem* 1 0 -distribative lattice L is qaasi-

complemented if and only if each minimal prime ideal in 

3 C D contracts to a minimal prime ideal in L • 

Proof* Sappose L is qaasicomplemented* Let P e 

eHim,(3(D) and -xecCP) . fhen, (xl € P . Choose x € 

c L sach that x Y*' is dense and x A / « 0 • We 

claim that x' # c<P) • Otherwise, *'e c C P ) , (x'2 e P , 

and Cx Vx'3 s* Cxi K(x'3fiP , and so the dense ele-

506 -



ment Cx V-x'3 of J C D i s in the minimal prime ideal T • 

This contradicts the following character izat ion of a mini

mal prime ideal in a 0 - d i s t r i b u t i v e l a t t i c e L ? a prime 

ideal 0, in a 0 - d i s t r i b u t i v e l a t t i c e i s a minimal prime 

ideal i f and only if, for each a 6 6) $ there exis t s Sir c 

c L \ ©» such tha t cu A Jbr m 0 * This characterizat ion 

which wi l l also be freely used below, follows from 1*1 and 

the proof of (a)-==> (b) in 1 .1 . Thus, i t is indeed the case 

tha t x* ^ c C P ) • Since c CP) i s a prime ideal i t fol--

lows tha t i t i s a minimal prime ideal* 

Conversely, suppose cCP) €)U/n> CL) for each 

P e Mim, ( 3 C D ) , Thenf we have a function c;Mn,(D (D) -> 

—*> M/urvCL) such tha t c?Pi—*> cC?5 for each P e 

€ Jfitflv (3CD) - This function i s a surjection. For i f ft e 

€. MJJTU (L) , *ftCG) i s a prime ideal in D(L) and so, 

by Zorn's lemma, i t contains a t leas t one minimal prime ide-

a.1? . Then cCP) « ©» . Since» i f a, e cCP) then Ca l e 

€ P £ f i ( f i ) and so Cal £ & > i . e . a, € G, . aC?) s 4 has 

been established and hence c ( P ) » 0, because both cCP) 

and Q» are minimal primes. The function i s continuous. 

For l e t a e L . Then, c^(< & eJil*vCL): <x 4 - P l ) « 4 P e 

eJlWCOCL)): a ,^c<P)lM?€J4w(0(L)); (aO^PJ, wMA means t lut 

the inverse image of a basic open set in Jtl/n. CL) i s a 

basic open set in Jt£a»C3(D) . Thus, MJjn(L) i s the conti

nuous image of Hun>C3CL)) and so i s compact due to 1.4. 

Because of 1.2, L i s qua s i complemented. 

- 507-



2»2. Theorem, Let L be a 0 - d i s t r i b u t i v e l a t t i c e . 

Then., L i s qua s i complemented and each minimal prime ideal 

of L i s the contraction of a unique minimal prime ideal of 

3 CD if and only for each 3*3(1*) f t h e r e , ex i s t s % « 

€ L such that J * * * C ^ l * . 

Proof. Suppose L i s quasi complemented and i f Q e 

& JLcm,CL),Pi,Pa ®Mim,(3(D) are such tha t Q*cCP 1 ) « 

»eCP^) then P, m P^ • Then* by 2.1 and i t s proof, c : 

:JtuivC3CD) —•*• Wun, CD i s a b isect ion. But, by the proof 

of 2 . 1 , c i s continuous. Hence, c i s a homeomorphism sirK 

ce each of JU^CL) and M-lm^CJCD) i s compact and Haus-

dorff. Because of 1.3 and 1*4, 3 * i s of the form 

(xl* CajeL) fox each. 3c 3 C D . The quasi complementation 

on L then implies J**.m Cat!**\m Cx'3* > as required. 

Suppose L s a t i s f i e s the condition: for each J e O C L ) , 

there exis ts jj.lL such tha t 3**a»C^-3* . I t i s c lear tha t 

L i s quasicompleaeated* Let RpPa © J&w C3CL)) be such 

tha t cCPi).arC<Pa). Let 3 € P^ • Aa lu ia.. 0 - d i s t r i h ^ r t i ^ v 

3*c 3CD , 3 V J* \ i s deme in J C L ) , and 3 n 3** COX* 

a J * * n 3 * * As JCL> i a 0 - d i s t r i b u t i v e and P^ i s a 

minimal prime idea l , J* ^ P^ ana., so 3 * * c P^ . Choose 

x € L such that 3***« 3** Cxi* . ©iaii.Cx3**- d ^ c P ^ , 

so x c C x l * * S c C P i ) . Hence * 5 c ^ F ^ ) . Then, we must 

have x c K for some X « P a , whence C« 3 S X e P 2 and 

Cxi e p£ . Aa ? a i s a minimal prime ideal% 6x3*^ P 2 aad 

so. Cx3**€ P a . But J S ] * * . CxJ** - and so 3 € F2 • Thus 

P i H p f t . Because of the minimality of p ^ we conclude 
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tha t P^ » ?2 * Because of the proof of 2.1,. each Q m 

e l U m O ( D ) i s the contraction of some PcJ&wCOCL)) and 

thus Q, i s the contraction of a unique P c J t u ^ O C D ) • 

As a consequence of the proofs of 2.1 and 2.29 together 

with 1.2, 1«3 and 1.4 we obtain 

2 . 3 . Theorem. The following conditions are equivalent 

for a 0 -d i s t r i bu t i ve l a t t i c e L . 

(a) M-iavCL) i s compact, Hausdorff and extremally d i s 

connected. 

(b) L and i t s l a t t i c e of ideals 3CL) have homeo-

morphic spaces of minimal prime idea l s . 

(c) For each ideal J in L % there i s / ^ c L such that 

3* Distr ibut ive l a t t i c e s . 

3*1. Lemma. Let L be a d is t r ibut ive l a t t i c e with 0 

and a t l ea s t one dense element* Then L i s qua si complemen

ted i f and only i f for each minimal prime i d e a l ? in L and 

each X € L \ P , there exis t a dense element d and an e le

ment /ft B 7 such tha t x V -ft m d V /p, . 

Proof. 2*et J be the non-empty f i l t e r of dense e le 

ments in L • 

Suppose L i s qua s i complemented with x c L \ ? for 

some given minimal prime ideal 7 « Choose ** c L such that 

x1 A «x =s 0 and x V / i s dense. As P i s prime, * ' e P . 

Then, x V ^ = d M p, with d = * V x ' e D and ^ = x ' e P . 
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CosiYerseXyf suppose L satisfies the condition in 

the lemma. Suppose Q. is a prime ideal disjoint from 3> • 

Then & contains a minimal prime P . If ft is not a mi

nimal prime then there is an element, x c S»\P . Thm the

re exist d e l and Jp, e ? such that ,x Y"fk» d V«fa> . Then 

cL e & , an impossibility* Hence any. priae ideal ft which 

is disjoint from 1 } is a minimal prime • It follows from 

Stone's theorem that each ideal which is disjoint from the 

filter 3) , is contained in a minimal prime ideal. From [6 t 

Proposition 3*43f L is qua si complemented.• 

If 3 is any ideal in a distributive lattice L then 

it is well-known that the relation 6(3) , given by 

xt»Jfcr(©C3» (©>,*-€!,) if and only if a, V* * & Vx 

for some..'* e d > is. a .congruence. It is, in fact, the 

smallest congruence on L having 0 as a congruence class. 

When 3 is prime, the quotient lattice / © O ) is dense, 

i.e. each non-zero element is dense. We say that a dense 

element d in /QCO) c a n b e lifted to a dense element x 

in L if the congruence class of x modulo B (J) is d . 

Lemma 3.1 and these remarks yield the following theorem. 

3.2. Theorem. Let L be a distributive lattice with 

0 and at least one dense element. Then 1 is quasicomple-

mented if and only if, for each minimal prime ideal P in 

L , each dense element in ^/gct) c a n te l i f t e d t o a den~ 

ee element in L • 
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